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Figure 4 | Host-microbe interactions mediated by butyrate and niacin. Butyrate is mainly produced
by clusters IV and XIVa of Clostridia. Although butyrate acts as an energy source for normal colonic
epithelial cells (trophic effect), it also has the capability to suppress proliferation of cancerous epithelial
cells that usually undergo the Warburg effect®. Butyrate upregulates histone H3 acetylation at
regulatory regions of the Foxp3 gene and facilitates differentiation of naive CD4* T cells into T, cells.

In contrast, butyrate together with other SCFAs induce TGF-f secretion by epithelial cells through an
unknown mechanism”'. Gpr109a was originally described as the receptor for niacin. Butyrate and niacin
bind Gpr109a on epithelial cells to trigger production of a cytoprotective cytokine IL-18. These microbial
metabolites also stimulate dendritic cells and macrophages to produce IL-10 and retinoic acids, both of
which are important for the development of IL-10-producing T,,s in the colon. Therefore, butyrate and

REVIEW ARTICLE

Indole is a quorum-sensing molecule
produced from tryptophan by the tryp-
tophanase of a variety of Gram-positive and
Gram-negative intestinal bacteria. Indole
enhances epithelial barrier functions in vitro
and in vivo through upregulation of compo-
nents of tight junction complexes®>*. Acetate
is another metabolite that enhances gut epi-
thelial barrier functions (Fig. 3). GF mice
succumb to Escherichia coli O157:H7 lethal
infection; however, inoculation of mice
with certain Bifidobacteria strains prevents
E. coil O157-induced death®. Bifidobacteria-
derived acetate inhibits translocation of
luminal Shiga toxin from the gut lumen to
the blood by improving epithelial defense
functions and suppressing colonic inflam-
mation. These findings provide insight into
the mode of action through which probiotic
bacteria exert a protective effect against
pathological infections and open up a new
question on how bacterial metabolites regu-
lates epithelial barrier functions.

The anti-inflammatory effect of SCFAs,
including acetate, has been well character-
ized on both epithelial and immune cell
levels®2% (Fig. 4). Oral administration of
acetate in drinking water suppresses not
only DSS-induced experimental colitis but
also inflammatory arthritis and ovalbumin-
induced allergic airway inflammation. The
therapeutic effect of acetate is canceled in
Gpr43-deficient mice, implying a major role
for the acetate-Gpr43 axis in containment
of inflammation. Acetate-dependent Gpr43
activation on neutrophils results in upregu-
lation of apoptosis-related gene clusters and
thus provokes apoptosis.

SCFAs also have an impact on the ter-

niacin contribute to the maintenance of intestinal homeostasis through multiple mechanisms.

hepaticus™®. Furthermore, sphingolipids of B. fragilis reduce cell
numbers of invariant NKT (iNKT) cells in the colon. Reduction
of iNKT cells in response to colonization with B. fragilis results in
alleviation of oxazolan-induced experimental colitis™”* because
iNKT cells are responsible for the colitis development by produc-
ing large amounts of cytokines upon stimulation with glycosphin-
golipids presented by CD1d”. All of these observations indicate that
different diet-independent metabolites have distinct roles in the
maintenance of gut immune homeostasis.

So far, a variety of diet-dependent metabolites have been linked
to the epithelial barrier, immune regulation and inflammation.
These products include bile acids, short and long chain fatty acids
and vitamins®®. Certain Bifidobacterium spp. actively produce
folate (vitamin By)®!, and its derivative, 6-formyl pterin (6-FP), is
one of ligands of the MHC class I-like molecule MR1, which pre-
sents an antigen to mucosal-associated invariant T (MAIT) cells®.
Notably, several riboflavin (vitamin B,)-based metabolites, whose
structures are closely related to 6-FP with an extra ribityl moiety,
activate Jurkat T-cell lines (expressing invariant MAIT TCR a and
B chains) to produce TNF and IFN-y in an MRI1-restricted manner.
Given that B-group vitamins including rivoflavin are known to be
synthesized de novo by certain commensal bacteria, it is possible
that MAIT cells may sense the growth of riboflavin-producing bac-
teria on the mucosa.

minal differentiation of CD4* helper T
cells®. Administration of an individual
or a cocktail of SCFAs to GF or SPF mice
increased the frequency of colonic Foxp3* regulatory T, cells®®,
which have a central role in the suppression of the inflamma-
tory and allergic immune responses®. After oral administration,
butyrate per se is less effective on the accumulation of colonic
T, as compared with that of the other two SCFAs¥. However,
this observation may reflect enhanced migration from lymphoid
tissues into the colon rather than an increase in T, develop-
ment in the colon, given that a large part of the orally adminis-
tered SCFAs are absorbed into the portal vein and/or used by
epithelial cells (butyrate is a particularly good energy source) in
the upper part of the intestine before reaching the colon. The
in vitro T, induction assay indicated that, among SCFAs, butyrate
most effectively induces the differentiation of naive T cells into T,
cells®®*, Propionate also shows the T,,-inducing effect to a lesser
extent, whereas acetate dose not have any impact on T, induction.
Consistent with in vitro observations, colonic T, cells are signifi-
cantly augmented in SPF mice with a diet containing butyrylate-
resistant starch and slightly augmented with propionylated resistant
starch but are hardly induced with acetylated resistant starch®. These
observations show that locally produced butyrate is responsible for
T, differentiation and that orally administered acetate and propion-
ate may be important for the migration of T, s into the colon. Indeed,
oral administration of propionate upregulates Gprl5 (ref. 91),
a T,-specific gut-homing molecule, in a Gpr43-dependent
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manner®. Butyrate is well known to regulate gene expression epi-
genetically by inhibiting histone deacetylases (HDACs). Chromatin
immunoprecipitation sequencing (ChIP-seq) analysis demon-
strated that butyrate upregulates histone H3 acetylation at regula-
tory regions of the Foxp3 gene locus and therefore facilitates Foxp3
expression (Fig. 4). In addition to such a direct effect on CD4* T
cells, butyrate indirectly induces IL-10-producing T, cells by
imparting anti-inflammatory properties on dendritic cells (DCs)
and macrophages in the colonic lamina propria in a Gprl09a-
dependent manner® (Fig. 4). Niacin, a pharmacological agonist for
Gpr109a, also exhibits a similar anti-inflammatory activity (Fig. 4).
Collectively, these findings demonstrate that microbe-derived
SCFAs and niacin contribute to the maintenance of gut immune
homeostasis by promoting T.., accumulation in the colon through
multiple mechanisms. In support of this idea, butyrate-producing
bacteria decreased in the microbial community of IBD patients
compared with that of healthy subjects™. It has also been reported
that gut microbiota—derived SCFAs, particularly propionate, allevi-
ate an allergic airway response induced by house dust mite extract
in mice®”. The feeding of a diet rich in fermentable carbohydrates
promotes the outgrowth of bacteria that belong to the Bacteroidetes
phylum, leading to increased serum levels of acetate and propion-
ate, which in turn increase the hematopoiesis of DC precursors®.
These DCs exhibit an impaired capacity to elicit allergy-prone T2
responses in the lung. This process requires the receptor Gpr41 but
not Gpr43. This study provides key evidence that bacteria-derived
metabolites may affect not only the local but the systemic immune
system. Collectively, the recent data support the idea that diet-
dependent metabolites shape host immunity by activating differ-
ent mechanisms, including Gprs-dependent intracellular signaling
activation and epigenetic modifications. Although further investi-
gations will be required to clarify the precise molecular mechanism,
the interactions between gut metabolites and host immunocompe-
tent cells are essential for the successful establishment and mainte-
nance of the host immune system.

Gut metabolites and disease development. Disturbance of the
microbiota has been implicated in the pathogenesis of several human
disorders, including IBD, obesity and cardiovascular disease™.
For example, gut microbial metabolism of dietary food-derived
phosphatidylcholine and vL-carnitine generates trimethylamine
(Fig. 3), which is further metabolized to trimethylamine-N-oxide
(TMAO), a proatherogenic agent, in mice and humans'**. A HFD
alters gut microbial composition in mice, leading to expansion
of deoxycholic acid-producing bacteria, namely cluster XI of the
genus Clostridium™. This secondary bile acid induces a phenotypic
change in hepatic stellate cells to secrete proinflammatory cytokines
and eventually facilitates hepatocellular carcinoma (Fig. 3).

Accumulating reports have linked gut microbiota to emotional
behavior. Alteration of the gut microbial community owing to
TLR5 deficiency increases appetite (about 10% increase in food
intake) and induces metabolic syndrome (for example, hyper-
lipidemia, insulin resistance, obesity and hepatic steatosis) in
mice without affecting the efficiency of dietary energy harvest®.
In addition, chronic ingestion of fermented milk with probiotics
can modulate the responsiveness of an extensive brain network in
healthy subjects®. Although the exact mechanism remains to be
elucidated, these observations suggest that metabolites produced
by microbial fermentation have a key role in brain activity.

A current study revealed that a mouse model of autism spec-
trum disorder (ASD) can be triggered by the gut microbial metab-
olites 4-ethylphenylsulfate (4EPS) and indolepyruvate” (Fig. 3).
Maternal immune activation induced by the administration of an
immunostimulant polyinosinic-polycytidylic acid (poly I:C) during
pregnancy causes ASD-like behavior in offspring, which is asso-
ciated with gut barrier dysfunction and systemic leakage of luminal
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metabolites. In line with these experiential observations, several
metabolites (for example, p-cresol and indolyl-3-acryloylglycine),
which are structurally similar to 4EPS and indole pyruvate, are
detected as human autism biomarkers in urine®. On the basis of
these observations, the brain-microbiota-metabolite axis can be
considered a potential therapeutic target for ASD and other neu-
rodevelopmental illnesses”. Future studies will provide mechanistic
insights into how these gut microbiota-derived metabolites con-
tribute to the pathophysiology of neurodevelopmental disorders.

Conclusions and perspectives

It is now becoming clear that the gut microbiota and its metabo-
lites have an important role in host physiology. Of note, recent
investigations indicate that different environmental factors, such as
nutrition and drugs, can profoundly affect the gut bacterial com-
munity, thereby changing the gut microbiome activity, which may
result in generations of bioactive metabolites (for example, health-
promoting or disease-causing metabolites). These observations will
have ramifications on what we eat and as such would influence food,
pharmaceutical and medical sciences by providing new concepts.
For example, the use of prebiotics and probiotics or folk medicines
often rely on traditional beliefs rather than solid scientific evi-
dence and still suffer because of the lack of more precise knowledge
concerning their modes of action. Further investigations of the
molecular mechanisms by which prebiotics and probiotics exert
their effects on animal physiology will provide new opportunities for
improving human health. Furthermore, many important immune
and metabolic disorders, including diabetes, obesity, behavioral dis-
orders and chronic inflammation, are now known to be in part due
to the imbalance of interactions between the host and microbiota
or metabolites. Accordingly, we expect that further investigation
on the molecular relationship between microbiota and metabolites
and host physiology will provide new concepts and strategies for
the development of ‘gut metabolite concept’-driven therapeutic
agents. Considering the very high diversity of gut bacterial species
in different metazoans, it is likely that yet-unexpected microbiota-
metabolite-metazoa relationships and the molecular dynamics of
these relationships remain to be explored. The use of powerful inver-
tebrate and vertebrate genetic animal model system together with
multi-omics approaches would allow us to discover and decipher
the secrets of evolutionarily conserved molecular dialogs among gut
microbiota, metabolites and metazoans, which will certainly open
new avenues to prevent and/or treat a number of disorders asso-
ciated with gut microbiota and metabolites.
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Abstract Commensal microbiota shapes the intestinal im-
mune system by regulating T helper (Ty) cell lineage differ-
entiation. For example, Bacteroides fragilis colonization not
only optimizes the systemic Ty1/Ty2 balance, but also can
induce regulatory T (Treg) cell differentiation in the gut. In
addition, segmented filamentous bacteria (SFB) facilitate the
development of Tyl7 cells in the small intestine. The 17
strains within clusters IV, XIVa, and XVIII of Clostridiales
found in human feces can also induce the differentiation and
expansion of Treg cells in the colon. Thus, the regulation of
Ty cell differentiation by commensal bacteria is evident;
however, the molecular mechanisms underlying these pro-
cesses remain uncertain. Recent studies have demonstrated
that bacterial components, as well as their metabolites, play a
central role in regulating Ty cell development. Furthermore,
these metabolites can elicit changes in histone posttranslation-
al modification to modify the expression of critical regulators
of T cell fate. In this review, we discuss the mechanisms and
biological significance of microbiota-dependent Ty
differentiation.
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Introduction

Human beings harbor over 100 trillion bacterial species, com-
prising more than 1000 strains, in the distal intestine. Com-
mensal bacteria facilitate the breakdown of food necessary for
energy metabolism in their hosts [1, 2]. Compelling evidence
suggests that colonization by commensal bacteria critically
contributes to the development of the mammalian immune
system. Given that patients with inflammatory bowel disease
(IBD) often present with dysbiosis [3], or an imbalance of
commensal bacteria, the interplay between commensals and
host cells may play a critical role in the maintenance of gut
immune homeostasis. This concept has been partly verified by
recent studies using gnotobiotic mice, in which germ-free
(GF) mice are colonized by specific strains of commensal
bacteria. So far, a select number of these strains have been
documented to induce the development of particular immune
mediators, such as type 17 helper T cells (Ty17) and regula-
tory T (Treg) cells [4—6]. Although the mechanisms by which
gut microbiota regulates host immunity have yet to be eluci-
dated, their derived metabolites can partially mediate this
immunomodulatory effect. Such bioactive materials are pro-
duced by microbiota through both diet-dependent and diet-
independent means [7]. Here, we discuss the molecular inter-
actions between commensal microbiota and Ty cell
development.

Development of effector Ty cells by commensal bacteria

Systemic immune responses are biased to T2 under neonatal
and GF conditions [4, &, 9]. Microbial exposure early in life is
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