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Figure 1 RNA structures recognized by TLR3

PV5 and its derivatives (RNA a~e) were transcribed in vilro using PV cDNA as a template. Upper panel, secondary structure of PV5 and its derivatives (RNA a—e) predicted by the Miold software.
Thick lines indicate dsRNA regions (1-11 bp). RNAs were incubated in FBS-iree or -containing medium at 37 °C for 30 min. The degradability of RNAs was assessed by electrophoresis on agarose
gel. The TLR3-activating ability of RNAs was assessed by IFN-g promoter reporter assay with HEK-293 cells transiently expressing human TLR3 and IFN-8 production from splenic DCs isolated
from wild-type and TLR3-deficient mice in FBS-free medium [26]. All RNAs failed to induce IFN- production in splenic DCs isolated from TLR3-deficient mice. IFN- production in mouse splenic

DCs. +, <150 pg/ml; + +, >150 pg/ml.

human epidermal keratinocytes via TLR3 [42]. UVB-damaged
small nuclear RNAs, including Ul RNA (165 nt in length) were
the determinants of TLR3 activation, but the precise mechanism
underlying how UVB-damaged Ul RNA activates TLR3 is
unknown.

The point of our recent study was that TLR3 recognizes
incomplete stem structures formed in viral sSRNA and induces
innate immune signalling [26]. Analyses with in vitro transcribed
PV-derived ssRNAs and dsRINAs revealed that some PV ssRNAs
activate TLR3 extracellularly, but do not activate RLRs, in human
and mouse cells. Stability and length of RNA are crucial factors for
TLR3 activation in that case. Functional PV RNA, 630 ntin length
(PV5), bound to TLR3 ECD with high affinity, and both the N-
and C-terminal dsRNA-binding sites of TLR3 ECD are required
for PV5-induced IFN-8 promoter activation in HEK (human
embryonic kidney)-293 cells that transiently express human TLR3
(Figure 1). Furthermore, PV5 was internalized into cells via
clathrin- and raftlin-mediated endocytosis and co-localized with
endosomal TLR3, as observed previously with poly(I:C) uptake
[43,44]. The secondary structure of PVS5 predicted by Mfold

software showed that PV5 possess double-strand regions (<11 bp
in length) arranged in tandem, which are segmented with bulge
or internal loops (Figure 1). The TLR3-activating ability of PVS
was abolished with RNaselll treatment, indicating that the RNA
duplex in PVS5 is required for both the stability and functionality
for the TLR3 activation. Analyses of PV5-derived RNAs partly
having PV5 secondary structure (RNAs a—¢ in Figure 1) showed
that longer stem structure with bulge and internal loops typically
shown in RNA model c is the core RNA structure required for
TLR3 activation in PV5 (Figure 1). Considering that dsRNA
forms an A-type nucleotide duplex with 11 bp per turn [45],
and that seven contiguous base pairs are needed for rapid duplex
formation of DNA and RNA [46], incomplete stem structures
containing contiguous base pairs may be required for stability
that facilitates TLR3 binding. A fascinating model has been
proposed for TLR3 dimer formation, in which shorter RNA
duplexes (21-30bp) can form less stable complexes with two
TLR3 molecules [36]. Thus appropriate length or topology of
multiple incomplete stems is required for TLR3 oligomerization,
leading to the production of type I IFNs and pro-inflammatory
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Figure 2 Model for dsRNA/structured RNA-induced TLR3-mediated immunity

inflammatory cytokines

Upon viral infection and sterile inflammation, virus- and host-derived RNAs are released from necrotic cells. In local environments, extracellular viral dsSRNAs and virus/host-derived structured RNAs
are rapidly taken up into cells via clathrin/raftlin-dependent endocytosis and delivered to endosomal TLR3. Once TLR3 is oligomerized by dsRNA/structured RNA, it recruits the adaptor protein
TICAM-1 that activates the transcription factors, IRF-3, NF-« B and AP-1, leading to the production of type | IFNs and proinflammatory cytokines. The TLR3~TICAM-1 signal also induces chromatin
modification in fibroblasts. In myeloid DCs, TLR3 activation triggers DC maturation capable of activating NK cells and CTLs. The key residues of TLR3, the N-terminal His®® in LRR-NT, His® in
LRR1, His'® in LRR3 and the C~terminal His** and Asn>" in LRR20, which are involved in RNA binding are shown.

cytokines. RNA tertiary structure is also important for both the
stability and activity of PV RNA.

Notably, mouse splenic DCs responded to shorter RNAs
with mismatched duplexes that failed to activate human
TLR3 expressed in epithelial cells, suggesting cell type- or
species-specific RNA recognition by TLR3 (Figure 1). The
precise mechanisms underlying this are currently unknown, but
the high density of TLR3 expression and the potent phagocytic
activity of mouse splenic DCs are advantageous for RNA-induced
oligomerization of TLR3 and effective RNA uptake. In a study
by Ewald et al. [47], mouse TLR3 was reported to undergo
cathepsin-mediated proteolytic processing in the macrophage cell
line RAW in a manner similar to that of mouse TLR9. Subsequent
studies also demonstrated that human TLR3 ECD is cleaved at
the loop exposed in LRR12 by cathepsins in a cell-type dependent
manner [48,49], and the N- and C-terminal halves of human
TLR3 remain associated after cleavage [49]. Requirement of
proteolytic cleavage in TLR3 signalling appears to depend on
cell type [49,50]. Potentially shorter structured RNAs may be
recognized by protease-processed TLR3 in mouse DCs. Further
studies are required to clarify the cell type- or species-dependent
RNA recognition by TLR3.

UPTAKE OF exRNA

The ability of exRNAs to induce cellular responses primarily
depends on the stability of these RNAs in the extracellular
milien and whether they are taken up into cells. dsRNA is
resistant to degradation compared with ssRNA and, thus, viral
dsRNA released from infected cells can be a potent activator
of neighbouring virus-uninfected cells, leading to the induction of
anti-viral states. Poly(I:C) is the most common dsRNA in
both in vitro and in vivo studies to induce cellular responses,
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including type I IFN production and NK (natural killer) cell
activation. Poly(I:C) is internalized into cells through clathrin-
mediated endocytosis and delivered to endosomal TLR3 and to
cytoplasmic MDAS (melanoma differentiation-associated gene
5) [51]. Watanabe et al. [44] demonstrated that the cytoplasmic
lipid raft protein raftlin is essential for poly(I:C) cellular uptake
in human myeloid DCs and epithelial cells. In raftlin knockdown
cells, surface-bound poly(I:C) neither enters the cells nor activates
TLR3 and MDAS, indicating that cellular uptake is a pre-
requisite for dSRNA-induced cellular responses. Upon poly(I:C)
stimulation, raftlin translocates from the cytoplasm to the cell
surface, where it associates with the clathrin~AP-2 (clathrin-
associated adaptor protein-2) complex and induces cargo delivery.
Interestingly, structured PV RNA is also internalized into cells via
raftlin-mediated endocytosis and is delivered to endosomal TLR3
[26]. B- and C-type ODN5s (oligodeoxynucleotides) that share the
uptake receptor with poly(I:C) in humans inhibit cellular uptake
of PV RNA [26,43,44,52]. Hence extracellular dSRNA/structured
RNA and ODNs are recognized by a common uptake receptor
and their internalization is regulated by raftlin. Mouse DCs
express raftlin-2 in addition to raftlin, and raftlin knockdown
does not affect poly(I:C) cellular uptake, suggesting that raftlin-2
functionally compensates for raftlin [44].

The uptake receptors for poly(I:C) have been identified by
several groups. Lee et al. [53] reported that CD14 enhances
poly(I:C)-induced TLR3 activation by mediating poly(I:C) uptake
in mouse macrophages. Furthermore, the scavenger receptor
class-A was identified as a cell surface receptor for dsRNA
in human bronchial epithelial cells and mouse cells [54,55].
However, knockout of these molecules does not result in complete
abrogation of poly(I:C)-induced TLR3 activation, indicating the
presence of another uptake receptor. Indeed, human myeloid DCs
do not express CD14 on the cell surface and an inhibitor for
the scavenger receptor does not affect poly(I:C) uptake in human
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myeloid DCs and epithelial cells [44]. Additionally, DEC-205
was identified as a receptor for ODNs in mouse DCs [56], but this
is not the case of human DCs (M. Tatematsu and M. Matsumoto,
unpublished work). Hence there must be several uptake receptors
that participate in the cell entry of RNAs/DNAs in a cell type-
and/or species-specific manner.

eXRNA-INDUCED TLR3-TICAM-1 SIGNALLING

Following TLR3 oligomerization, TICAM-1 is recruited to the
TLR3-TIR domain that activates the transcription factors, IRF-
3 (IRN regulatory factor-3), NF-kB (nuclear factor «B) and
AP-1, leading to the production of IFN-8 and proinflammatory
cytokines, as well as DC maturation [57] (Figure 2). exRNA-
induced TLR3-TICAM-1-mediated signalling is classified into
two categories; one that induces innate responses and the other that
induces adaptive immune responses. The fibroblasts and epithelial
cells that express TLR3, but not TLR7, -8 and -9, produce IFN-
B and proinflammatory cytokines in response to viral dsRNA
and structured RNA, which induce anti-viral states by inducing
IFN-stimulated genes [26]. Host RNAs released from damaged
cells could be taken up through raftlin-mediated endocytosis and
activate TLR3, if they form functional structures as observed in PV
RNA. Bernard et al. [42] showed that small nuclear RNAs derived
from UV-damaged cells induced inflammation through activation
of TLR3, but how these RNAs are delivered to endosomes and
interact with TLR3 remains unknown.

Another important TLR3 signal is the induction of adaptive
immune responses in myeloid DCs. TLR3 is highly expressed
in the professional antigen-presenting DCs, including mouse
CD8a* DCs and human BDCA3* DCs [58,59]. Myeloid DCs
mature as aresult of TLR3 activation through the expression of co-
stimulatory molecules, NK-activating molecules including INAM
(IRF-3-dependent NK-activating molecule) [60], and unidentified
molecules involved in cross-presentation pathways, leading to
the activation of NK cells and CTLs (cytotoxic T-cells) [61].
The TICAM-1-TBK1-IRF3 axis downstream of TLR3 is critical
for gene induction involved in mouse DC-mediated NK/CTL
activation [62,63]. In addition, mouse DCs produce the Thl-
type cytokines, IFN- and IL-12 (interleukin-12), via the TLR3-
TICAM-1 pathway. This facilitates NK/CTL induction. Mouse
DCs efficiently phagocytose the cell debris of virus-infected cells
and mature through virus RNA-induced TLR3 activation [64].

The most intriguing finding is a link between TLR3 signals and
epigenetic modifications [65]. Knockdown of TLR3 or TICAM-1
blocks the induction of human iPSCs (induced pluripotent stem
cells) by retroviral reprogramming in human fibroblasts [65].
Poly(I:C)-induced TLR3 activation accelerates the development
of iPSCs induced by the non-viral methods in fibroblasts. TLR3
activation leads to chromatin modification in fibroblasts by
promoting genome-wide epigenetic alterations. These findings
enable us to offer a new concept that RNA is an extracellular
mediator that accounts for a broad range of TLR3-TICAM-1-
mediated gene expression compared with other RNA-sensing
receptors.

GONCLUSIONS

In plants, insects and nematodes, dsSRNA-induced Dicer-mediated
RNA interference is a powerful strategy for protection against
viral infection [66-68]. Extracellular dsRNA is taken up into
cells and systematically induces gene silencing [69,70]. In
Caenorhabditis elegans, the membrane proteins SID-1 and SID-
2 act as transporters of extracellular dsRNA, whose ability is

dependent on the length of the dsRNA [71,72]. On the other
hand, vertebrates have developed a wide range of anti-viral
strategies, including an array of PRRs in the innate immune
system, the IFN/cytokine system and the adaptive immune system.
Extracellular dsRNAs are delivered to endosomal TLR3 that
induce innate and adaptive anti-viral immunity. Additionally,
structured RNAs with incomplete stem structures are recognized
by both the dsRNA uptake receptor and TLR3, which may
participate in the virus- or host-derived RNA-induced immune
responses during infections or inflammation. The identification
of the uptake receptor for dsRNAs and structured RNAs in
human cells and also isolation of endogenous or exogenous
TLR3-activating RNA molecules are important for improving our
understanding of TLR3-mediated immunity.
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Biological context

Toll-like receptors (TLRs) are a family of single-span
transmembrane proteins that evoke innate immunity in
response to microbial stimuli such as bacterial lipids and
non-self nucleic acids (reviewed in Botos et al. 2011 and
Kang and Lee 2011). After ligand binding, TLRs oligo-
merize and undergo conformational changes that induce
oligomerization of the cytosolic Toll/interleukin-1 receptor
(TIR) domains. This presents a scaffold for the recruitment
of downstream TIR domain-containing adaptor molecules.

There are five TIR domain-containing adaptor mole-
cules; myeloid differentiation primary response gene 88
(MyD88), TIR domain-containing adaptor protein (TIRAP)
[also known as MyD88 adaptor like (Mal)], TIR domain-
containing adaptor molecule-1 (TICAM-1) [also known as
TIR domain-containing adaptor-inducing IFN-$ (TRIF)],
TIR domain-containing adaptor molecule-2 (TICAM-2)
[also known as TRIF-related adaptor molecule (TRAM)],
and sterile o and huntingtin-elongation-A subunit-TOR
armadillo motifs (SARM). Downstream signaling from
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TLRs is mediated by the association of the TIR domains
between receptor and adaptor, and adaptor and adaptor
molecules.

TICAM-1 is a signaling adaptor for TLR3 and TLR4
that eventually activates the transcription factors, inter-
feron regulatory factor-3 (IRF-3), NF-xB and AP-1, lead-
ing to the induction of type I interferons and inflammatory
cytokines (Seya et al. 2005). TLR3 recognizes double-
stranded RNA and directly interacts with the TICAM-1
TIR domain via the cytosolic TLR3 TIR domain. TLR4
recognizes lipopolysaccharides together with a cofactor
molecule MD2, and interacts with Mal and the TICAM-2
TIR domain via the cytosolic TLR4 TIR domain. Mal and
TICAM-2 act as membrane sorting adaptors that interact
with MyD88 and TICAM-1, respectively, via TIR
domains. In response to TLR stimulation, TICAM-1 alters
its distribution profile in the cytosol from diffuse to a
speckle-like structure that is indispensable to downstream
signaling (Matsumoto et al. 2003; Funami et al. 2007).
TICAM-1 consists of an N-terminal domain (NTD), a
flexible region that harbors a binding site for tumor
necrosis factor receptor-associated factor (TRAF) proteins,
a TIR domain, and a C-terminal region that includes the
receptor interacting protein 1 (RIP1) binding motif
(RHIM). The TIR-domain of TICAM-1 is associated with
the TIR domains of TLR3 and TICAM-2, a TLR4-bridging
adaptor molecule. The TICAM-1 TIR domain is also
involved in TICAM-1 homo-oligomerization (Funami et al.
2008). A TICAM-1 TIR domain mutant (Pro434 substi-
tuted to His), defective in homo-oligomerization and dif-
fusively localized in the cytosol, abrogates NF-xB and
IRF-3 activation, but retains heterotypic TIR-TIR inter-
action with TLR3 and TICAM-2 TIRs. Recently, we have
determined the structures of the TICAM-1 and TICAM-2
TIR domain mutants (Enokizono et al. 2013). In
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combination with the structural data and yeast two-hybrid
experiments using the wild types and several mutants of
TICAM-1 and TICAM-2 TIR domain, the interaction site
between TICAM-1 and TICAM-2 TIRs was identified.

The TICAM-1 mutant lacking NTD was reported to
form a speckle-like signalsome in the cytosol without
stimulation and to show interferon-f promoter activity
higher than that of the wild-type TICAM-1 (Tatematsu
et al. 2010), indicating that NTD interacts with TICAM-1
TIR in an autoinhibitory manner. Here, we report the NMR
structure of TICAM-1 NTD and propose an interaction
mode between TICAM-1 TIR and NTD.

Methods and results
Sample preparation

TICAM-1 NTD (residue range 1-156) was cloned into the
pGEX-6p (GE Healthcare) plasmid. A *C/'°N labeled
protein was prepared by culturing E. coli BL21 cells in
stable isotope-labeled C.H.L. medium (Chlorella Industry).
Protein expression was induced by the addition of isopro-
pyl-1-thio-P-galactopyranoside to a final concentration of
0.01 mM. After induction, the cells were cultured at 25 °C
overnight and then lysed by sonication. The GST-fused
protein was purified using a glutathione-Sepharose 4B
column (GE Healthcare), and GST was excised from the
protein with PreScission protease (GE Healthcare). The
protein was further purified by size exclusion chromatog-
raphy using a Superdex 75 gel filtration column (GE
Healthcare). Finally, the protein was concentrated using a
Vivaspin 2-5 K ultra filtration system (GE Healthcare).

NMR assignment and structure calculation

NMR experiments were carried out at 25 °C on Varian UNITY
INOVA 800 and 600 spectrometers. Measurements for struc-
tural analysis were made using a 0.75 mM protein sample
resolved in 50 mM Na-phosphate buffer (pH 6.5), containing
3 mM DTT and 1 mM sodium azide. Three dimensional
amide-proton-detected ~ spectra; HN(CO)CA, HNCA,
CBCA(CO)NH, HNCACB, HBHA(CO)NH, HN(CA)HA,
and C(CO)NH, were obtained with a non-uniform sampling
schedule method and processed using the mmrtk program
(Mobli et al. 2007). ['"H-""N] HSQC, ['H-"*C] HSQC,
HC(C)H-TOCSY, "*C-edited NOESY-HSQC and '°N-edited
NOESY-HSQC spectra, obtained using a normal sampling
schedule, were processed using the NMRpipe program (Del-
aglio et al. 1995). All spectral analyses were performed with
the help of the Sparky program (Goddard and Kneller 1997).
The 'H, *C, and "°N chemical shifts were referenced to DSS in
accordance with IJTUPAC recommendations. The ['H—'SN]
HSQC spectrum of TICAM-1 NTD was well dispersed
(Fig. 1), and all the observed '"H/'*N and 'H/'>C resonances
were assigned except for the side chain "H/">N resonances of
Lys and Arg residues. TICAM-1 NTD contains four Cys res-
idues (C?, C*7, C'®, and C'**). The chemical shifts of the B-
carbons of these Cys residues indicate that all of these Cys
residues exist in reduced state.

Interproton distance restraints for structural calculations
were obtained from '*C-edited NOESY-HSQC and '°N-
edited NOESY-HSQC spectra using a mixing time of 75 ms.
The restraints for backbone ¢ and Y torsion angles were
derived from the chemical shifts of backbone atoms using the
TALOS+ program (Shen et al. 2009). The structure deter-
mination and NOE assignment were carried out using the
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Fig. 1 ['H-'"*N] HSQC spectrum of the TICAM-1 NTD with resonance assignments. The boxed region (in left) is expanded on the right
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Table 1 Structural statistics for the TICAM-1 NTD CYANA 2.1 software package (Giintert 2004). As an input for
NOE distance constraints the final structural calculation of TICAM-1 NTD, a total of
Total 3,828 3,823 distance and 231 dihedral angle restraints were used
Short range (fi — jl < 1) 1.952 (Table 1). At each stage, 100 stru.ctures were calculated using
Medium range (1 < fi — jl < 5) 976 30,000 steps of simulated annealing, and a final ensemble. of
Long range (i — jl > 5) 900 20 structures was s.elected based on CYANA target function
Nutibar of viclations values. The det'ermu?ed structures were V'thda‘ted by CYANA
Distance > 0.3 A 3 macros including dlstanc§ and apgle violation and Rama-
Angle > 5° chandran plots. The atomic coordinates and NMR data have
. - ) been deposited in the Protein Data Bank (PDB code: 2M63)
Structural coordinates rmsd (A) (residue range 5-81, 88-150) and BMRB (BMRB ID: 19106).
Backbone atoms 0.33
All heavy atoms 0.70
Ramachandran plots (%) Discussion and conclusions
Most favored regions 78.4
Additionally allowed regions 21.0 The solution structure of TICAM-1 NTD
Generously allowed regions 0.6
Disallowed region 0.0 The three-dimensional structure of TICAM-1 NTD was

determined using standard hetero-nuclear multidimensional

(b)

TPR-motif o
like
N-term. o6 ~

Three-helix a8

bundle

C-term.
180°

Fig. 2 Solution structure of TICAM-1 NTD. a Overlay of the ensemble domain, long-loop region and three-helix bundle domain were colored in
of 20 final energy-minimized CYANA structures in stereo. Main chain red, green and blue. Structures were drawn using PYMOL (http://www.
and converged side chains were colored in yellow and blue, respectively. pymol.org/)

b Ribbon diagrams of the lowest energy structure. TPR-motif like

(b 90
basic patch
A

Fig. 3 Electrostatic surface potential mapped on the molecular surface red, respectively. Surface mapping was drawn using PyMOL with
of a TICAM-1 NTD (PDB ID: 2M63) and b TICAM-1 TIR (PDB ID: APBS tools
2M1X). Positive and negative charge densities are colored blue and
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NMR methods. TICAM-1 NTD formed a single, compact
domain comprised of eight a-helices (al: 9-18, a2: 20-31,
o3: 38-51, od: 54-64, aS: 68-76, ab6: 92-106, o7:
111-128, and 08: 133-144) and a long loop region between
o5 and o6 helices (Fig. 2). In this loop, the region between
Ser82 and Glu87 is located that shows low convergence of
backbone structure because these residues have no long
range NOEs. The overall arrangement of the o-helices in
TICAM-1 NTD was found to be novel after an homology
search of the previously determined structures using the
DALI server (Holm et al. 2008). TICAM-1 NTD can be
divided into two segments, a TPR (tetratricopeptide repeat)
motif-like region (a1-05) and a three-helix bundle region
(6-a8). The TPR motif-like region has two sequentially
adjacent anti-parallel o-helical pairs (a2—a3 and ad—a5), as
is observed in typical TPR proteins. The TPR proteins
mediate the protein—protein interactions or inter-domain
assembly of multiple domain proteins. The TPR proteins
generally present tandem arrays of 3-16 motifs, which
form a right-handed super-helical structure and create an
amphipathic groove for target recognition. However, the
TPR-motif of TICAM-1 NTD does not have sufficient
repeats to create a super-helical structure, and moreover,
the ol-helix lies on the amphipathic groove (Fig. 2b).

TICAM-1 TIR domain binding site

Recent studies have shown that TICAM-1 NTD is an au-
torepression domain that directly interacts with the TI-
CAM-1 TIR domain, leading to attenuation of the TIR-TIR
interaction (Tatematsu et al. 2010). In a previous paper
(Enokizono et al. 2013), we presented the TICAM-1 TIR
domain structure and identified two distinct interaction
sites required for homotypic and heterotypic TIR oligo-
merization. A hydrophobic patch that includes the BB loop
was important in mediating the homotypic interaction of
TICAM-1 TIR, whereas a basic patch on the oE- and oE'-
helices was essential for heterotypic interaction with TI-
CAM-2 TIR (Fig. 3b left). An acidic cleft stretched over
the TPR motif-like region and three-helix bundle region
(Fig. 3a right) that could interact with the basic patch of
TICAM-1 TIR domain (Fig. 3b left) was found on the
TICAM-1 NTD surface. This suggests the possibility that
TICAM-1 NTD blocks the binding between TICAM-1 TIR

@ Springer

and TICAM-2 TIR, thus regulating TICAM-1-mediated
TLR4 signaling in an autoinhibitory manner. Further
studies are required to confirm this hypothesis.
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Abstract

Polyinosinic:polycytidylic acid (poly 1:C), a synthetic double-
stranded RNA, acts on myeloid cells and induces potent anti-
tumor immune responses including natural killer (NK) cell
activation. Myeloid-derived suppressor cells (MDSCs) system-
ically exist in tumor-bearing hosts and have strong immuno-
suppressive activity against antitumor effector cells, thereby
dampening the efficacy of cancer immunotherapy. Here we
tested what happened in MDSCs in poly :C-treated mice. NK-
sensitive syngenic tumor (B16)-bearing C57BL/6 mice were
employed for this study. intraperitoneal poly I:C treatment in-
duced MDSC activation, driving CD69 expression and inter-
feron (IFN)-y production in NK cells. IFN-y directly inhibited
proliferation of B16 cells. This NK cell priming led to growth
retardation of B16 tumors, although no direct tumoricidal ac-
tivity was induced in NK cells. Mechanistic analysis using KO
mice and function-blocking monclonal antibody revealed
that MDSCs produced IFN-a via the mitochondrial antiviral
signaling protein (MAVS) pathway after in vivo administration
of poly I:C, and activated NK cells through the IFNAR pathway.
MDSC-mediated NK cell priming was reconstituted by IFN-a

in a coculture system. Either the MAVS or IFNAR signaling
pathway was required for activation of MDSCs that led to
growth retardation of B16 tumor in vivo. The results infer that
MDSC is a target of poly I:C to prime NK cells, which exert an-
titumor activity to NK-sensitive tumor cells.

©2013 S. Karger AG, Basel

Introduction

The innate sensing of microbial molecular patterns re-
sults in the modulation of the cellular immune system
[1-3]. This innate-adaptive linkage closely associates
with suppression of infection and tumorigenesis. Many
reports showed that polyinosinic:polycytidylic acid (poly
I:C), a synthetic pattern of double-stranded RNA, has po-
tent stimulatory effects on immune responses to viral in-
fection and cancer [4-8]. Poly I:C is an agonist for pat-
tern-recognition receptors (PRRs), Toll-like receptor 3
(TLR3) and melanoma differentiation-associated protein
5 (MDADS), which transduce signals to the adaptor mol-
ecules TICAM-1 (also known as TRIF) and mitochon-
drial antiviral signaling protein (MAVS; IPS-1, Cardif,
VISA) [9-12]. They differentially modulate the functions
of myeloid dendritic cells (DCs) and macrophages, in-
cluding cytokine/IFN production and expression of sur-
face molecules that drive effector cell activation.
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