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FIGURE 6. HBV susceptibility was decreased in RAR-inactivated cells. A, HuS-E/2 cells were transfected with the pRARE-Fluc and pTK-Rluc for 6 h followed
by treatment with or without the indicated compounds at 20 um for 48 h. Relative Fluc values normalized by Rluc are shown. Band C, HepaRG cells treated with
or without the indicated compounds 20 um were subjected to the HBV infection assay according to the scheme in Fig. 1A. HBs antigen in the culture
supernatant was determined by ELISA (B). Cell viability was also quantified by MTT assay (C). Statistical significance was determined using Student's t test (*, p <
0.05, and **, p < 0.01).
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FIGURE 7. €CD2665 had a stronger anti-HBV actwnty than Ro41 -5253,4, “chemical structure of CD2665. 8, HepaRG ceélls treated with or without 1 ‘uM preS1
peptide, 0.1% DMSO, or various concentrations of Ro41-5253 or CD2665 (5, 10, and 20 um) Were subjected to HBV infection according to the protocol shown
in Fig. 1A. HBV infection was detected by quantifying the HBs secretion into the culture supernatant by ELISA. The efficiency of HBV infection was monitored
by ELISA detection of secreted HBs. G, HuS-E/2 cells transfected with phNTCP-Gluc and pSEAP were treated with the indicated compounds at 20 um for 24 h.

Relative Gluc/SEAP values are shown. D, NTCP-(upper panel) and actin Pproteins as an internal control (lower panel) were examined by Westerri blot.analysis of

HepaRG cells treated with or without the indicated compounds at20 ;.LM Statlst‘calsugmf" cance was determmed using Student s ttest (**, p < 0.01).

(Fig. 8G, panels e-p). The rise of HBs antlgen in the culture

supernatant along with the culture time up to 30 days was
remarkably inhibited by continuous treatment with Ro41-5253
and CD2665 as well as preS1 peptide without serious cytotox-
icity (Fig. 8G, right graph). Thus, continuous RAR inactivation
could inhibit the spread of HBV by interrupting de novo
infection.

DISCUSSION

In this study, we screened a chemical library using a
‘HepaRG-based HBV infection system and found that pretreat-
ment with Ro41-5253 decreased HBV infection by blocking
viral entry. HBV entry follows multiple steps starting with low
affinity viral attachment to the cell surface followed by specific
binding to entry receptor(s), including NTCP. NTCP is
reported to be essential for HBV entry (42). So far, we and other
groups have reported that NTCP-binding agents, including
cyclosporin A and its derivatives, as well as bile acids, including
ursodeoxycholic acid and taurocholic acid, inhibited HBV
entry by interrupting the interaction between NTCP and HBV
large surface protein (19, 35). Ro41-5253 was distinct from
these agents and was found to decrease host susceptibility to
HBYV infection by modulating the expression levels of NTCP.
These results suggest that the regulatory circuit for NTCP
expression is one of the determinants for susceptibility to HBV
infection. We previously showed that the cell surface NTCP
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,s,protem expresswn correlated with susceptlblhty to HBV infec-

tion (43): We therefore screened for compounds mhlbxtmg
hNTCP promoter activity to identify HBV entry inhibitors
{(data not shown) (44). Intriguingly, all of the compounds iden-
tified as repressors of the hNTCP promoter were inhibitors of
RAR-mediated transcription. This strongly suggests that RAR
plays a crucial role in regulating the activity of the hANTCP pro-
moter (Fig. 9). We consistently found that RAR was abundantly
expressed in differentiated HepaRG cells susceptible to HBV
infection, in contrast to the low expression of RAR in undiffer-
entiated HepaRG and HepG2 cells, which were not susceptible
to HBV (Fig. 4£). RARE is also found in the HBV enhancer I
region (45). RAR is likely to have multiple roles in regulating the
HBYV life cycle.

So far, only transcriptional regulation of rat Ntcp has been
extensively analyzed (39, 46, 47). However, the transcription of
hNTCPwas shown to be differently regulated mainly because of
sequence divergence in the promoter region (48), and tran-
scriptional regulation of hNTCR remains poorly understood.
Hepatocyte nuclear factor (HNF)1la and HNF4«, which posi-
tively regulated the rat Nicp promoter, had little effect on
hNTCP promoter activity (48). HNF38 bound to the promoter
region and inhibited promoter activities of both hNTCP and rat
Ntcp. CCAAT /enhancer-binding protein also bound and regu-
lated the hNTCP promoter (44, 48). A previous study, which
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FIGURE 8. CD2665 showed a pan- genotyplc antl-HBV actlwty A-E prlmary human hepatocyte were pretreated with or wrchout compounds (50 units/ml
heparin, 20 um CD2665, or 0.1% DMSO) and |noculated with different genotypes of HBV accordlng to the scheme show in Flg 1A. HBs (A-F) and HBe (A-D)
antigen secreted into the culture supernatant was: quantn‘led by ELISA. Genotypes A (A), B (B), C C), D (D), and an HBV carrying mutations (L180M/5202G/
M204V) (E) were used as inoculum. F, HBV(L180M/5202G/M204V) was resistant to nucleoside analogs. HepGZ cells transfected with the expression plasmid for
HBV/C-AT (white) or HBV/C-AT(L180M/S202G/M204V) (black) were treated with or without 1 uMETV, 1 uM LMV, 0r 0.1% DMSO for 72 h. The cells were lysed, and
the nucleocapsid-associated HBY DNAs were recovered. Relative values for HBY DNAs are indicated. G, continuous RAR inactivation could inhibit HBV spread.

Freshly isolated primary human hepatocytes were pretreated with or without indicated compounds (1 um preS1 peptide, 10 um Ro41-5253, or 10 um CD2665)
and inoculated with HBV at day 0. After removing free viruses, primary human hepatocytes were cultured in the medium supplemented with the indicated
compounds for up to 30 days postinfection. At 12, 18, 24, and 30 days postinfection, HBc protein in the cells (left panels, red) and HBs antigen secreted into the
culture supernatant (right graph) were detected by immunofluorescence and ELISA, respectively. Red and blue signals in the left panels show the detection of
HBc protein and nucleus, respectively. Statistical significance was determined using Student's t test (¥, p < 0.05, and **, p < 0.01).

Ro41-5263
£D2655

promoter

promoter

FIGURE 9. Schematic representation of the mechanism for RAR involvement in the regulation of NTCP expression and HBV infection. Left panel,
RAR/RXR recruits to the promoter region of NTCP and regulates the transcription. The expression of NTCP in the plasma membrane supports HBV infection.
Right panel, RAR antagonists, including Ro41-5253 and CD2665, repress the transcription of NTCP via RAR antagonization, which decreases the expression level
of NTCP in the plasma membrane and abolishes the entry of HBV into host cells.
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was mainly based on reporter assays using a construct of the
region from —188 to +83 of the hNTCP promoter, concluded
that RAR did not affect hNTCP transcription (48). By using a
reporter carrying a longer promoter region, our study is the first
to implicate RARs in the regulation of hNTCP gene expression
(Fig. 9). The turnover of NTCP protein was reported to be
rapid, with a half-life of much less than 24 h (49). Consequently,
reduction in the NTCP transcription by RAR inhibition could
rapidly decrease the NTCP protein level and affect HBV
susceptibility.

NTCP plays a major role in the hepatic influx of conjugated
bile salts from portal circulation. Because NTCP knock-out
mice are so far unavailable, it is not known whether loss of
NTCP function can cause any physiological defect in vivo.
However, no serious diseases are reported in individuals carry-
ing single nucleotide polymorphisms that significantly decrease
the transporter activity of NTCP (50, 51), suggesting that
NTCP function may be redundant with other proteins. Organic
anion transporting polypeptides are also known to be involved
in bile acid transport. Moreover, an inhibition assay using Myr-
cludex-B showed that the IC, value for HBV infection was
~0.1 nm (52), although that for NTCP transporter function was
4 nm (28), suggesting that HBV infection could be inhibited
without fully inactivating the NTCP_transporter (53). HBV
entry inhibitors are expected to be useful for preventing de novo
infection upon post-exposure prophylaxis or vertical transmis-
sion where serious toxicity might be avoided with a short term
treatment (54). For drug development studies against HIV,
down-regulation - of the HIV coreceptor CCR5 by ribozymes
could inhibit HIV infection both i vitro and in vivo (55). Dis-
ruption of CCR5 by zinc finger nucleases could reduce permis-
siveness to HIV infection and was effective in decreasing viral

load in vivo (56): Thus, 1ntervent10ns to regulate viral permis-

siveness could become a method for eliminating viral infection
(55). Our findings suggest that the regulatory mechanisms of
NTCP expression could serve as targets for the development of
anti-HBV agents. High throughput screening with a reporter
assay using an NTCP promoter-driven reporter; as exemplified
by this study, will be useful for identifying more anti-HBV
drugs.
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Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a central role in chronic HBV infec-
tion. However, analysis of the molecular mechanism of cccDNA formation is difficult because of the low
efficiency in tissue cultured cells. In this study, we developed a more efficient cccDNA expression cell,
Hep38.7-Tet, by subcloning from a tetracycline inducible HBV expression cell, HepAD38. Higher levels
of cccDNA were produced in Hep38.7-Tet cells compared to HepAD38 cells. In Hep38.7-Tet cells, the
cccDNA was detectable at six days after HBV induction. HBV e antigen (HBeAg) secretion was dependent
upon cccDNA production. We screened chemical compounds using Hep38.7-Tet cells and HBeAg secre-

tion as a marker. Most of the hit compounds have already been reported as anti-HBV compounds. These
data suggested that Hep38.7-Tet cells will be powerful tools for analysis of the molecular mechanism of
cccDNA formation/maintenance and development of novel therapeutic agents to control HBV infection.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

It is estimated that two billion people worldwide have been
infected with hepatitis B virus (HBV) {1]. Chronic HBV infection
is currently a major public health burden, affecting approximately
240 million individuals worldwide {Z{. These patients have an
elevated risk of chronic active hepatitis, cirrhosis or primary
hepatocellular carcinoma {3-3}.

Following HBV infection, the viral genomic relaxed circular DNA
(rcDNA) is translocated into the cell nucleus and converted into
episomal covalently closed circular DNA (cccDNA), which serves
as a transcription template for viral mRNA. After transcription
and nuclear export, cytoplasmic viral pregenomic RNA (pgRNA) is
assembled by HBV polymerase and capsid proteins to form the
nucleocapsid. Polymerase-catalyzed reverse transcription in the
nucleocapsid yields minus-strand DNA, which is subsequently cop-
ied into plus-strand DNA to form the progeny rcDNA genome.
Mature nucleocapsids are then either packaged with viral envelope
proteins to egress as virion particles or shuttled back to the nucleus
to amplify the cccDNA reservoir through the intracellular cccDNA
amplification pathway {6--81.
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Establishment of infection and viral persistence are both depen-
dent on the formation of cccDNA during the HBV replication cycle
{9131 The half-life of cccDNA is longer than other viral nucleic
acids ranging from days to months in animal and tissue culture
models { 14~161 Thus, there is an urgent need for the development
of novel therapeutic agents that directly target cccDNA formation/
maintenance. Formation of cccDNA in HepG2 cells transiently
transfected with HBV genome is not efficient {17]. In HepAD38
cells, a tetracycline inducible HBV expression cell line, production
of secreted HBV e antigen (HBeAg) is predominantly cccDNA
dependent and thus might be useful as a surrogate marker of
cccDNA formation | 18-201. To identify small molecules that inhibit
cccDNA formation, we developed a more efficient cccDNA expres-
sion cell system. In the present study, we used Hep38.7-Tet cells
subcloned from HepAD38 cells to investigate the levels of cccDNA
formation, mRNA transcription, replication, viral particle secretion
and HBeAg secretion.

2. Materials and methods
2.1. Cell culture

HepG2.2.15 {21} and HepG2.2.15.7 cells (unpublished data, M.
Iwamoto and K. Watashi) were maintained in DMEM/F12 medium

(Life Technologies, Carisbad, CA) supplemented with 10% fetal
bovine serum, 100U/mL Penicillin, 100 pg/mL Streptomycin,
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400 pg/mL Geneticin and 5 pg/mL Insulin. HepAD38 (a gift from
Dr. Christoph Seeger at Fox Chase Cancer Center) and Hep38.7-
Tet cells were maintained in the same way as HepG2.2.15 cells
but with the addition of 400 ng/mL tetracycline.

The cells were seeded onto 60 mm dishes at a density of
8.0 x 10° cells/well with tetracycline-containing medium. After
24 h incubation, tetracycline was removed from the medium to
induce HBV replication. The plate was incubated for 6 days. The
tetracycline was then added back to the medium to prevent HBV
pgRNA transcription from integrated DNA {221 HBV replication,
cccDNA accumulation, pre-core mRNA transcription and HBeAg
secretion were only induced from cccDNA formed in the 6 days
without tetracycline. The plate was incubated for another 6 days.
The cells and culture medium were harvested at indicated time
points.

2.2. Compound sources

Entecavir was purchased from Wako Pure Chemical Industries,
Ltd. CCC-0975 was synthesized at Japan Tobacco Inc. FDA approved
drug screening library (Selleck Chemicals, Houston, TX) which con-
sisted of 414 compounds in total. Compounds were dissolved in
dimethyl sulfoxide (DMSO) to a concentration of 10 mM.,

2.3. Compound screening

Hep38.7-Tet cells were seeded into 96-well plates at a density
of 3.0 x 10° cells/well with tetracycline-containing medium. After
24 h incubation, tetracycline was removed from the medium and
then compound-containing medium was added to screening plates
at a final concentration of 10 uM in 0.1% DMSO. Screening plates
were incubated for 6 days. Tetracycline was then added back to
the medium and incubation continued for another 6 days. The
activity of compounds was evaluated by measurement of secreted
HBeAg in the medium. The cell viability was measured using the
CellTiter 96 AQueous One Solution Cell Proliferation Assay
(Promega, Japan).

2.4. Nucleic acid analysis

Intracellular core DNA was extracted as described previously
{23241 Fifteen micrograms of extracted DNA was resolved by
electrophoresis with a 1.2% agarose gel and transferred onto
Hybond-XL membrane (GE Healthcare, Piscataway, NJ) in 20x
SSC buffer. Total cellular RNA was extracted with TRIzol reagents
(Life Technologies). Ten micrograms of total RNA were resolved
in a 1.2% agarose gel containing 2.2 M formaldehyde and trans-
ferred onto Hybond-XL membrane. Extraction of cccDNA was car-
ried out using a modified Hirt extraction procedure {25-28]. DNA
(15 pg) was resolved and separated in a 1.2% agarose gel and trans-
ferred onto Hybond-XL membrane. For the detection of viral DNA
and RNA, membranes were probed with full-length HBV DNA
labeled with AlkPhos direct labeling reagents (GE Healthcare).
After incubation with hybridization buffer for 6 h at 65 °C, the
membrane was quantified by digital imaging with a LAS-4000
(GE Healthcare).

2.5. Viral particle assay

Viral particles (including virions, subviral particles and nucleo-
capsids) were extracted as described previously {281, Viral parti-
cles in culture mnedium were precipitated by adding PEG8000 to
a final concentration of 10% and incubated on ice for 1 h, followed
by centrifugation at 8000 rpm at 4°C for 10 min. Pellets were
dissolved in TNE buffer.

2.6. Real-time PCR assay

Viral DNA was quantified using EXPRESS SYBR GreenER qPCR
Supermix (Life Technologies). Core DNA and DNA containing parti-
cles selective primers were 5-CTCGTGGTGGACTTCTCTC-3' (For-
ward) and 5-AAGATGAGGCATAGCAGCA-3' (Reverse). Primers
selective for cccDNA were 5-CGTCTGTGCCTTCTCATCTGC-3' (For-
ward) and 5-GCACAGCTTGGAGGCTTGAA-3' (Reverse). The cycling
parameters were as follows: 50 °C for 2 min, 95 °C for 2 min, then
45 cycles of 95°C for 155 and 60 °C for 1 min with an Applied
Biosystems 7500 sequence detection system (Life Technologies).
The HBV plasmid was diluted over a range of 107-10? copies and
used as a standard.

2.7. Real-time reverse transcription-PCR assay

Total RNA was extracted as described previously {Z2{]. Five
micrograms of total RNA extracted with TRIzol reagents were
digested with 5 units RQ1 RNase-free DNase (Promega) and further
purified with RNeasy mini kit (QIAGEN, Hilden, Germany). Synthe-
sis of cDNA was from 1 pL purified total RNA using SuperScript I
First-Strand Synthesis System (Life Technologies), based on the
manufacturer’s instruction. The selective primers used to transcribe
cDNA from HBV RNA were 5-GACCACCAAATGCCCCTATC-3'
(Forward) and 5'-GATTGAGATCTTCTGCGACGC-3' (Reverse). The
cycling parameters as described above.

2.8. Reverse transcription-PCR assay

The cDNA transcribed from pre-core RNA were quantified using
PrimeSTAR Max DNA Polymerase (Takara, Japan). The primers
were 5-TAGGCATAAATTGGTCTG-3' (Forward) and 5'-GAT-
TGAGATCTTCTGCGACGC-3' (Reverse). The cycling parameters
were as follows: 94 °C for 1 min, then 45 cycles of 98 °C for 10,
55 °C for 5 s and 72 °C for 1 min. DNA was resolved and separated
in a 1% agarose gel.

2.9. Indirect immunofluorescence analysis

Indirect immunofluorescence analysis was performed essen-
tially as described previously {30,31]. Briefly, after fixation with
4% paraformaldehyde and permeabilization with 0.3% Triton-X-
100, an anti-HBV core antibody (DAKO) was used as the primary
antibody.

3. ELISA

The level of HBeAg in culture medium was measured using the
HBe monoclonal ELISA kit (SIEMENS, Munich, Germany) according
to the manufacturer’s instructions.

4. Results
4.1. Intracellular cccDNA formation in HBV expression cell lines

We subcloned from HepAD38 cells and selected Hep38.7-Tet
cells that showed the highest replication levels among the
established subclones (unpublished data, M. Iwamoto and
K. Watashi). We also subcloned HepG2.2.15.7 cells from
HepG2.2.15 cells (unpublished data, M. Iwamoto and K. Watashi).
To validate cccDNA levels in HBV expression cell lines, we com-
pared cccDNA formation in tetracycline inducible Hep38.7-Tet,
HepAD38 cells and non-inducible HepG2.2.15, HepG2.2.15.7 cells.
As shown in Fig. 1, cccDNA could be detected after day 6 in all four
cell lines. Hep38.7-Tet cells showed the highest levels of cccDNA
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Fig. 1. Intracellular HBV cccDNA formation in Hep38.7-Tet cells. Hep38.7-Tet, HepAD38, HepG2.2.15 and HepG2.2.15.7 cells were harvested on days 0, 6 and 12. HBV cccDNA
was extracted from the cells and analyzed by Southern blot (A) and Real-time PCR assay (B). Hep38.7-Tet and HepAD38 cells were harvested on days 0, 3, 6, 9 and 12. HBV
cccDNA was extracted from the cells and analyzed by Southern blot (C) and Real-time PCR assay (D). Full length HBV DNA (3.2 kb) served as a control (lane M). The positions
of relaxed circular DNA (RC), double stranded linear DNA (DSL) and covalently closed circular DNA (CCC) are indicated.

accumulation among the cell lines tested by Southern blot analysis
and Real-time PCR assay (Fig. 1A and B). Higher levels of cccDNA
were formed in tetracycline inducible cell lines compared to non-
inducible cell lines.

4.2. Kinetics of intracellular cccDNA formation

We further investigated the kinetics of cccDNA levels after HBV
induction in Hep38.7-Tet cells. The cells were seeded into 60 mm
dishes with tetracycline-containing medium. After 24 h incuba-
tion, tetracycline was removed from the medium and the cells
were cultured for 6 days. The tetracycline was then added back
to the medium and incubation was continued for another 6 days.
Southern blotting indicated that HBV cccDNA could be detected
at day 6 and slowly increased from day 6 to day 12 (¥ig. 1C). The
accumulation of cccDNA in Hep38.7-Tet cells was higher than in
HepAD38 cells at all timepoints examined (Fiz. 1D). We calculated

the copy number of cccDNA in Hep38.7-Tet cells from the results of
the Real-time PCR assay. At day 3 cccDNA was present at 2 copies
per cell and increased to 16 copies per cell at day 12. Liver biopsies
have been shown to contain 1-50 copies of cccDNA per cell by
Real-time PCR assay {32-3%]. The copy number of cccDNA in
Hep38.7-Tet cells was similar to that observed in HBV infected
human hepatocytes.

4.3. Kinetics of intracellular HBV DNA synthesis

To determine HBV DNA replication in Hep38.7-Tet cells, we
analyzed intracellular core DNA synthesis. As shown in Fig. 2,
HBV core DNA could be detected by Southern blot analysis at day
3 and increased until day 12 (¥ig. 2A). Using a Real-time PCR assay,
core DNA synthesis in Hep38.7-Tet cells was found to be 2-4 times
higher than in HepAD38 cells under similar conditions (¥ig. 2B).
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Fig. 2. Intracellular HBV core DNA synthesis, HBV mRNA transcription and HBc protein expression in Hep38.7-Tet cells. Hep38.7-Tet and HepAD38 cells were harvested on
days 0, 3, 6, 9 and 12. HBV core DNA was extracted from the cells and analyzed by Southern blot (A) and Real-time PCR assay (B). Full length HBV DNA (3.2 kb) served as a
control (lane M). The positions of relaxed circular DNA (RC), double stranded linear DNA (DSL) and single stranded DNA (SS) are indicated. Total cellular RNA was extracted
and HBV RNA was detected by Northern blot (C) and Real-time reverse transcription-PCR assay (D). rRNA (28S and 18S) served as a loading control. The positions of HBV
pgRNA (3.5 kb) and surface mRNAs (2.4 kb and 2.1 kb) are indicated. Pre-core mRNA was detected by Reverse transcription-PCR assay (E). GAPDH served as a loading control.
By indirect immunofluorescence analysis, Hep38.7-Tet and HepG2 cells were stained for HBcAg on day 12 (F).

4.4. Pre-core mRNA transcription is cccDNA dependent

We next evaluated the synthesis of HBV RNA in Hep38.7-Tet
cells. Northern blotting analysis showed that 3.5 kb HBV mRNA
transcription increased until day 6 and then decreased following
the addition of tetracycline (Fig. 2C). Using a Real-time reverse
transcription-PCR assay, the transcription of HBV mRNA in
Hep38.7-Tet cells was 2-3 times higher than in HepAD38 cells

(Fig. 2D). These results implied that mRNA transcription, core
DNA synthesis and cccDNA formation sequentially occurred during
the HBV replication cycle in Hep38.7-Tet cells.

Because pre-core mRNA is only 35 nt longer than pgRNA, it is
difficult to analyze by Northern blot and we therefore designed a
pre-core mRNA specific reverse transcription-PCR assay. Using
the same RNA samples shown in Fig. 2C, we found that the pre-
dicted reverse transcription-PCR product from pre-core mRNA
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could be detected at day 3 and increased in parallel with cccDNA in
the following 6 days (Fig. ZE). After the addition of tetracycline
back into the medium, viral pgRNA and envelope mRNA, but not
pre-core mRNA transcription declined from integrated viral DNA.
This result suggested that pre-core mRNA was transcribed from
cccDNA but not integrated viral DNA.

4.5. Intracellular HBc protein expression

To analyze the intracellular HBV protein expression, we evalu-
ated HBc protein in the cell using a specific HBc antibody. The
intracellular HBc protein was detected in Hep38.7-Tet cells but
not HepG2 cells by indirect immunofluorescence analysis (Fig. ZF).

4.6. Kinetics of viral particle formation

To analyze viral particle formation, we evaluated the extracellu-
lar viral particles including virions and naked capsids. As shown in
Fig. 3, extracellular HBV DNA in Hep38.7-Tet cells was higher than
in HepAD38 cells indicating that virions and nucleocapsids were
secreted into the medium (¥ig. 3A).

4.7. Correlation of HBeAg secretion and cccDNA formation

To explore the possibility that HBeAg could serve as a reporter
for formation of cccDNA, we measured the levels of its secretion in
Hep38.7-Tet cells. ELISA results indicated that the levels of HBeAg
increased until day 12. HBeAg secretion in Hep38.7-Tet cells was
approximately twice that in HepAD38 cells (Fig. 3B). There was a
good correlation between cccDNA formation and HBeAg secretion
(Fig. 1Q).
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Fig. 3. Extracellular HBV DNA and HBeAg secretion in Hep38.7-Tet cells. Culture
media of Hep38.7-Tet and HepAD38 cells were collected on days 0, 3, 6, 9 and 12.
HBV particles (including virions and naked capsids) were precipitated by adding
PEG8000 from the medium. HBV DNA was extracted from the HBV particles and
analyzed by qPCR assay (A). HBeAg in culture medium was determined by ELISA (B).

4.8. Identification of anti-HBV compounds from Hep38.7-Tet cell-
based assay

We evaluated the inhibitory activities of anti-HBV compounds,
reverse transcriptase inhibitor (Entecavir) and cccDNA formation
inhibitor (CCC-0975). Hep38.7-Tet cells were seeded into 96-well
plates with tetracycline-containing medium. After 24 h incubation,
tetracycline was removed from medium and then compound-con-
taining medium was added to the screening plates. Screening
plates were incubated for 6 days. Tetracycline was then added back
to the medium and incubation continued for another 6 days. The
activity of compounds was evaluated by measurement of secreted
HBeAg in the medium at day 12. As shown in Fig. 4, these com-
pounds had dose dependent inhibitions against cccDNA formation
and showed similar inhibitory activities as previous reports
{36,471, The inhibition of cccDNA was proportional to the HBeAg
reduction (Fig. 4A). Southern blot analysis showed that these com-
pounds caused a dose dependent reduction of cccDNA (Fig. 4B).
These results support the use of Hep38.7-Tet cells for screening
to identify compounds that affect the HBV life cycle, including
cccDNA formation.

Next, to identify compounds that affect cccDNA formation and
maintenance, we screened chemical compound library at a final
concentration of 10 pM. As shown in Tabie 1, CCC-0975 caused a
78% inhibition of HBeAg levels compared with control. Twelve
compounds caused more than 50% inhibition of HBeAg levels with-
out cytotoxicity for primary hits. These compounds included
reverse transcriptase inhibitors, HMG-CoA reductase inhibitor, a
steroid hormone, immunosuppressant agents and tetracycline.
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Fig. 4. Inhibitory activities of anti-HBV inhibitors in Hep38.7-Tet cells. Cells and
culture medium were collected on day 12. HBV cccDNA was extracted from the cells
and analyzed by Real-Time PCR assay. HBeAg in culture medium was determined by
ELISA (A). HBV cccDNA was extracted from the cells and analyzed by Southern
blotting (B). Full length HBV DNA (3.2 kb) served as a control (lane M). The positions
of relaxed circular DNA (RC), double stranded linear DNA (DSL) and covalently
closed circular DNA (CCC) are indicated.
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Table 1
Antiviral activities of hit compounds.

Compound HBeAg inhibition (% control)
Telbivudine Reverse transcriptase inhibitor 24
Entecavir Reverse transcriptase inhibitor 26
Tenofovir Reverse transcriptase inhibitor 23
Emtricitabine Reverse transcriptase inhibitor 29
Zalcitabine Reverse transcriptase inhibitor 32
Nelarabine Reverse transcriptase inhibitor 28
Pitavastatin HMG-CoA reductase inhibitor 41
Progesterone Steroid hormone 31
Mycophenolic Immunosuppressant agent 32
Leflunomide Immunosuppressant agent 24
Oxytetracycline Tetracycline antibiotic 12
Methacycline Tetracycline antibiotic 11
CCC-0975 cccDNA formation Inhibitor 22

Tenofovir and Entecavir are clinically used for HBV treatment {38}
Immunosuppressant agents have been reported to have anti-HBV
activity [ 381, Tetracycline antibiotics stopped HBV induction. These
results indicate that Hep38.7-Tet cells are a suitable system to
identify potential therapeutic agents.

5. Discussion

We subclones Hep38.7-Tet cells from HepAD38 cells which is a
HepG2 derived cell line supporting tetracycline inducible HBV rep-
lication. Upon tetracycline withdrawal, the transcribed pgRNA will
express viral core protein and polymerase and initiate reverse tran-
scription to generate rcDNA. The start codon of the C-terminally
truncated pre-core open reading frame (ORF) at the 3’ end of the
pPgRNA is copied into the viral DNA sequence and the pre-core
ORF is restored during rcDNA conversion into cccDNA. Thus, the
authentic pre-core mRNA will be transcribed only from cccDNA,
with the translated pre-core protein being further processed into
HBeAg, which is secreted into the culture medium and serves as
a marker for cccDNA formation.

Hep38.7-Tet cells exhibited higher levels of HBV mRNA tran-
scription, replication, cccDNA formation, virion secretion and
HBeAg secretion than parental HepAD38 cells. These results may
be due to the earlier transcription initiation of HBV pgRNA from
integrated HBV after removal of tetracycline in Hep38.7-Tet cells
than that in HepAD38 cells. We also confirmed that pre-core mRNA
transcription was dependent on cccDNA formation and HBeAg
secretion was quantitatively correlated with cccDNA formation.
Moreover, the secreted HBeAg levels were sufficient to discover
antiviral compounds in Hep38.7-Tet cells. In fact, we found some
hits from the small-molecular compound library that significantly
reduced the HBeAg levels. Many of these hit compounds had been
identified as anti-HBV compounds previously. In this cell-based
assay, any compounds that inhibit viral gene transcription, transla-
tion, HBeAg post-translational processing and secretion would be
selected as positive hits. For example, CCC-0975 was discovered
as an inhibitor of cccDNA production from a cccDNA-dependent
HBeAg-producing cell line, HepDE19 {7 1. This compound reduced
the HBeAg levels in primary screening and reduced the levels of
cccDNA and its putative precursor, deproteinized relaxed circular
DNA (DP-rcDNA) in further mechanistic studies. Therefore, it is
essential to evaluate the intracellular cccDNA levels in order to find
a cccDNA inhibitor. Nevertheless, Hep38.7-Tet cells serve as a high
throughput cell-based assay to identify cccDNA formation inhibi-
tors. In conclusion, Hep38.7-Tet cells will be a powerful tool to
analyze the molecular mechanism of HBV cccDNA formation and
will facilitate the development of novel therapeutic agents for
HBV infection.
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