Earlier studies reported the lower production of *IL28B* in blood cells of *IL28B*-unfavorable CHC patients [5, 27]. However, the relationship between *IL28B* genotype and expression level remained controversial, probably due to the very low expression level of *IL28B*. In the present study, there was no significant difference in baseline expression level between the *IL28B* genotypes. However, stimulation to PBMCs with IFNα and poly(I:C) raised *IL28B* expression, and this induction was significantly lower in *IL28B*-unfavorable CHC patients. More importantly, the degree of *IL28B* induction was positively correlated to the responsiveness to PEG-IFNα/RBV therapy. Our findings are consistent with a previous study showing ex vivo induction of IL28B by TLR7 agonists [28], and we further confirmed IL28B inducibility using IFN α and poly(I:C), which mimic exogenous IFN α administration in HCV patients. Because IFN λ is an essential element of innate anti-HCV responses [16, 29, 30], our data suggest that inadequate induction of IL28B is primarily responsible for virological non-response to IFN α -based therapy. To elucidate the mechanisms responsible for the genotype-specific inducibility of *IL28B*, we focused on *IFNλ4*. We report, for the first time, the presence of *IFNλ4* mRNA in PBMCs derived from CHC patients with the *IL28B*-unfavorable allele. We could not detect *IFNλ4* mRNA with the previously reported TaqMan real-time RT-PCR system [21]. *IFNλ4* expression was confirmed with a highly sensitive RT-PCR system we designed for this study, which could detect even a single copy of *IFNλ4* mRNA per assay. Although *IFNλ4* mRNA was not detected in 16 of the 23 unstimulated PBMC samples of CHC patients with the *IL28B*-unfavorable genotype, we cannot exclude the presence of *IFNλ4* mRNA under the detection limit of this RT-PCR system in these patients. However, it is important to mention that detectable level of *IFNλ4* expression was associated with NR and more severe impairment of *IL28B* induction. These data suggest that the baseline expression of *IFNλ4* in PBMCs is responsible for the non-response to IFN α treatment through suppression of *IL28B* induction. Our in vitro experiments in cell lines demonstrated that IL28B induction by IFN α , IRF7 or NF κ B was suppressed by IFN λ 4 overexpression. These data are consistent with the relationship between $IFN\lambda$ 4 and ISG induction [20-22]. Our finding of base line IL28B induction by $IFN\lambda$ 4 is also reasonable because $IFN\lambda$ promoters contain IFN-stimulated response element (ISRE) sites [11, 31] that could be activated by IFN λ 4 through STAT1 and STAT2 phosphorylation [21]. IFN λ 4 may pre-activate IL28B promoter through ISRE activation, and moreover, it may influence NF κ B-induced promoter activity by unknown mechanism. Our in vitro data support our observation in the clinical samples, and suggest that the expression of $IFN\lambda$ 4 in immune cells of IL28B-unfavorable CHC patients may weakly induce basal IL28B expression, which may be insufficient for HCV eradication [32]. But it may prevent additional induction of IL28B by exogenous IFN α treatment through impairment of IL28B promoter activity. The molecular mechanism by which $IFN\lambda$ 4 suppresses IL28B mRNA induction and promoter activation should be further investigated, although $IFN\lambda$ 4 may also have important functions affecting IFN regulation [20, 33, 34]. The lower induction of *IL28B* might be caused by the decrease of the frequency of IFNλs producing cells. However, in the present study, because we measured the expression of *IFNλs* in all PBMCs, we could not specify the subset of IFNλ4 producer cells. A recent study demonstrated that blood dendritic cell antigen 3 (BDCA3)⁺ dendritic cells (DCs) produce IFNλ3 and expression levels of *IL28B* from BDCA3+ DCs were significantly higher in subjects with *IL28B* major than those with minor type in response to HCV infection [35]. In their experiment, large volumes of blood samples (i.e., 400 ml) were required to sort very small populations of BDCA3+DC (0.054% of all PBMCs), but obtaining such a large amount of blood per patient was ethically impossible in our study. We also considered that $IFN\lambda 4$ mRNA levels might be higher when analyzed in those specific IFN λ producer cells. In conclusion, the induction of IL28B mRNA expression by ex vivo stimulation with IFN α and poly(I:C) in PBMCs was significantly associated with virological responsiveness in CHC patients treated with IFN α -based therapy. The impaired induction of IL28B was associated with the expression of $IFN\lambda 4$, generated by unfavorable dinucleotide polymorphisms near the IL28B gene. These data improve our understanding of IFN resistance and may lead to the development of new antiviral therapies targeting the IFN λ induction system. **Acknowledgements:** The authors are indebted to Dr. L. Prokunina-Olsson for providing the IFNλ4 plasmid, Dr. Rongtuan Lin for p50 and p65 plasmid and to Dr. M. Hijikata for HuS/E-2 cells. Conflict of interest: Dr. Asahina and Dr. Kakinuma belong to a donation-funded department funded by Chugai Pharmaceutical Co. Ltd., Toray Industries Inc., Bristol-Myers Squibb, Dainippon Sumitomo Pharma Co. Ltd., and Merck Sharp & Dohme. **Financial Support:** This study was supported by grants from the Japanese Ministry of Education, Culture, Sports, Science, and Technology; the Japanese Ministry of Welfare, Health, and Labor; the Japan Society for the Promotion of Science; and the Japan Health Sciences Foundation. #### Reference - 1 Alter MJ. Epidemiology of hepatitis C. Hepatology 1997;26:62S-65S. - 2 Ghany MG, Strader DB, Thomas DL, et al. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 2009;49:1335-1374. - 3 Ghany MG, Nelson DR, Strader DB, et al. An update on treatment of genotype 1 chronic hepatitis C virus infection: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 2011;54:1433-1444. - 4 Forestier N, Zeuzem S. Triple therapy with telaprevir: results in hepatitis C virus-genotype 1 infected relapsers and non-responders. Liver Int 2012;32 Suppl 1:44-50. - 5 Tanaka Y, Nishida N, Sugiyama M, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 2009;41:1105-1109. - 6 Ge D, Fellay J, Thompson A, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009;461:399-401. - 7 Suppiah V, Moldovan M, Ahlenstiel G, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 2009;41:1100-1104. - 8 Rauch A, Kutalik Z, Descombes P, et al. Genetic Variation in IL28B Is Associated With Chronic Hepatitis C and Treatment Failure: A Genome-Wide Association Study. Gastroenterology 2010;138:1338-U1173. - 9 Kotenko S. The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev 2002;13:223-240. - 10 Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003;4:63-68. - 11 Osterlund P, Pietilae T, Veckman V, et al. IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-lambda) genes. J Immunol 2007;179:3434-3442. - 12 Ank N, Iversen M, Bartholdy C, et al. An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity. J Immunol 2008;180:2474-2485. - 13 Ank N, West H, Bartholdy C, et al. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 2006;80:4501-4509. - 14 Marcello T, Grakoui A, Barba-Spaeth G, et al. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 2006;131:1887-1898. - 15 Dolganiuc A, Kodys K, Marshall C, et al. Type III Interferons, IL-28 and IL-29, Are Increased in Chronic HCV Infection and Induce Myeloid Dendritic Cell-Mediated FoxP3+Regulatory T Cells. PLoS One 2012;7. - 16 Li M, Liu X, Zhou Y, et al. Interferon-lambda s: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol 2009;86:23-32. - 17 Asahina Y, Nakagawa M, Kakinuma S, et al. Polymorphism Near the Interleukin-28B Gene and Anti-Hepatitis C Viral Response. J Clin Transl Hepatol 2013;1:39-44. - 18 Asahina Y, Izumi N, Hirayama I, et al. Potential relevance of cytoplasmic viral sensors and related regulators involving innate immunity in antiviral response. Gastroenterology 2008;134:1396-1405. - 19 Asahina Y, Tsuchiya K, Muraoka M, et al. Association of gene expression involving innate immunity and genetic variation in interleukin 28B with antiviral response. Hepatology 2012;55:20-29. - 20 Sarasin-Filipowicz M, Oakeley EJ, Duong FH, et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proc Natl Acad Sci U S A. 2008;105:7034-7039. - 21 Prokunina-Olsson L, Muchmore B, Tang W, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 2013;45:164-171. - 22 Amanzada A, Kopp W, Spengler U, et al. Interferon-λ4 (IFNL4) Transcript Expression in Human Liver Tissue Samples. PLoS One 2013;8:e84026. - 23 Sakamoto N, Nakagawa M, Tanaka Y, et al. Association of IL28B Variants With Response to Pegylated-Interferon Alpha Plus Ribavirin Combination Therapy Reveals Intersubgenotypic Differences Between Genotypes 2a and 2b. J Med Virol 2011;83:871-878. 24 Aly H, Watashi K, Hijikata M, et al. Serum-derived hepatitis C virus infectivity in interferon regulatory factor-7-suppressed human primary hepatocytes. J Hepatol 2007;46:26-36. - 25 Tasaka M, Sakamoto N, Nakagawa M, et al. Hepatitis C virus non-structural proteins responsible for suppression of the RIG-I/Cardif-induced interferon response. J Gen Virol 2007;88:3323-3333. - 26 Nakagawa M, Sakamoto N, Tanabe Y, et al. Suppression of hepatitis C virus replication by cyclosporin A is mediated by blockade of cyclophilins. Gastroenterology 2005;129:1031-1041. 27 Langhans B, Kupfer B, Braunschweiger I, et al. Interferon-lambda serum levels in hepatitis C. J Hepatol 2011;54:859-865. - 28 Murata K, Sugiyama M, Kimura T, et al. Ex vivo induction of IFN-λ3 by a TLR7 agonist determines response to Peg-IFN/Ribavirin therapy in chronic hepatitis C patients. J Gastroenterol 2013. - 29 Stone AE, Giugliano S, Schnell G, et al. Hepatitis C virus pathogen associated molecular pattern (PAMP) triggers production of lambda-interferons by human plasmacytoid dendritic cells. PLoS Pathog 2013;9:e1003316. - 30 Thomas E, Gonzalez VD, Li Q, et al. HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons. Gastroenterology 2012;142:978-988. - 31 Onoguchi K, Yoneyama M, Takemura A, et al. Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 2007;282:7576-7581. - 32 Makowska Z, Heim M. Interferon signaling in the liver during hepatitis C virus infection. Cytokine 2012;59:460-466. - 33 Booth D, George J. Loss of function of the new interferon IFN-lambda 4 may confer protection from hepatitis C. Nat Genet 2013;45:119-120. - 34 Lupberger J, Felmlee DJ, Baumert TF. Interferon-lambda polymorphisms and hepatitis C virus clearance revisited. Hepatology 2013;58:439-441. - 35 Yoshio S, Kanto T, Kuroda S, et al. Human blood dendritic cell antigen 3 (BDCA3)(+) dendritic cells are a potent producer of interferon-λ in response to hepatitis C virus. Hepatology 2013;57:1705-1715. ## Figure legends - Fig. 1. Comparison of *IFN\lambdas* expression levels between chronic hepatitis C patients with rs12979860 CC or CT/TT. (a) Baseline mRNA levels of *IL29*, *IL28A*, and *IL28B* in PBMCs expressed relative to the internal control (/int.cont.). (b) Fold changes in *IL29*, *IL28A*, and *IL28B* expression in PBMCs stimulated for 8 h with poly(I:C) (10 μ g/ml) after a 12-h pretreatment with IFN α -2b (100 IU/ml). Columns represent means \pm SEM. - Fig. 2. Impact of *IFNλs* expression levels on therapy response in chronic hepatitis C patients. Fold changes in *IL29*, *IL28A*, and *IL28B* expression in PBMCs stimulated with IFNα-2b and poly(I:C). IFNλ induction levels were compared between (a) SVR (sustained virological responders), relapsers, and NR (non-virological responders) for peg-IFNα/ RBV (P/R) therapy. (b) VR (virological responders) and NR in patients with distinct IL28B genotypes (rs12979860 CC or CT/TT). (c) SVR for P/R, SVR for protease inhibitor (PI) plus P/R triple therapy, and non-SVR for the triple therapy. Columns represent means ± SEM. - Fig. 3. Impact of *IFNλ4* on *IFNλs* expression and therapy response. Relationship of *IFNλ4* expression with (a) baseline expression of *IFNλs*, (b) *IFNλs* induction and (c) therapy response were compared in chronic hepatitis C patients with distinct *IL28B* genotypes (rs12979860 CC or CT/TT). The *IL28B*-unfavorable (CT/TT) group were subdivided into undetectable (–) or detectable (+) *IFNλ4* mRNA patients. (a) Baseline expressions of *IL29*, *IL28A*, and *IL28B* in PBMC. (b) Fold changes in *IL29*, *IL28A*, and *IL28B* expression in PBMCs stimulated f with IFNα-2b and poly(I:C). (c) Virological non-response rates for PEG-IFNα/RBV therapy. Columns represent means ± SEM. ## Fig. 4. Manipulating IFN24 expression regulates IL28B induction and promoter activity. (a) Fold inductions of IL28B mRNA in BLCs transfected with $IFN\lambda 4$ and treated with IFN α (100U/ml). (b) Fold inductions of IL28B mRNA in HEK293T cells co-transfected with $IFN\lambda 4$ and IRF7 (control, 100ng, 500ng, 1000ng). Induction rates were expressed as fold change relative to control-transfected cells. (c) Fold inductions of IL28B promoter activity in HEK293/IL28B-Luc cells transfected with IFN $\lambda 4$ and treated with IFN α (0, 10, 100, 1000 IU/ml). (d, e) Fold inductions of IL28B promoter activity in HEK293/IL28B-Luc cells co-transfected with IFN $\lambda 4$ and (d) IRF7 (control, 200ng, 500ng) or (e) p50:p65 (control, 200ng). Luciferase activities and cell viabilities were expressed as fold change relative to untreated or control-transfected cells. The error bars indicate standard deviation. *P<0.05. Table 1. Characteristics of patients analyzed for IFN λ expression levels. | Characteristic | (n = 50) | |-----------------------------------------------------|----------------------------| | Age median (range), year | 64 (29-79) | | Sex, n (%) male/female | 19 (38) / 31 (62) | | ALT median (range), IU/L | 22 (5-157) | | γGTP median (range), IU/L | 23 (10-343) | | _DLC median (range), mg/dL | 100 (38-169) | | Hernoglobin median (range), g/dL | 13.4 (9.3-16.8) | | Platelet count median (range), ×10 ⁴ /μL | 15.5 (5.2-23.6) | | ≂ibrosis stage, n (%) | | | F1,2 / F3,4 | 28 (70) / 12 (30 | | /iral load median (range), log IU/mL* | 6.8 (4.8-7.6 | | HCV core 70 a.a. n(%) [†] | | | wild / mutant / ND | 15 (30) / 21 (42) / 14 (28 | | HCV core 91 a.a. n (%) | | | wild / mutant / ND | 18 (36) / 18 (36) / 14 (28 | | SDR substitutions, n (%) [‡] | | | 0,1 / 2≦ / ND | 26 (52) / 6 (12) / 18 (36 | | L28B SNP (rs8099917), n (%) | | | TT / TG, GG | 27 (54) / 23 (46 | | L28B SNP (rs12979860), n (%) | | | €€/СТ, ТТ | 24 (48) / 26 (52 | | L28B SNP (ss469415590), (%) | | | TT/ΔG | 24 (48) / 26 (52 | | Effect of previous therapy, n (%) | | | SVR / Relapse / NR | 18 (36) / 14 (28) / 18 (36 | ALT, alanine aminotransferase; γ-GTP, γ-glutamyl transpeptidase; LDL-C, low-density lipoprotein cholesterol; HCV, Hepatitis C virus; ISDR, IFN sensitivity determining region; SVR, sustained virological responder; VR, virological responder; NR, non-responder; ND, not determined. *HCV viral load was analyzed among Relapsers and Non-responders. [†]HCV core amino acid (aa) 70R and 91L are considered wild type, while substituted amino acids are considered mutants. jgh_12902_f1.pdf jgh_12902_f2.pdf jgh_12902_f3.pdf jgh_12902_f4.pdf ## Changes in Plasma Vascular Endothelial Growth Factor at 8 Weeks After Sorafenib Administration as Predictors of Survival for Advanced Hepatocellular Carcinoma Kaoru Tsuchiya, MD, PhD¹; Yasuhiro Asahina, MD, PhD^{2,3}; Shuya Matsuda, MD¹; Masaru Muraoka, MD¹; Toru Nakata, MD¹; Yuichiro Suzuki, MD¹; Nobuharu Tamaki, MD¹; Yutaka Yasui, MD¹; Shoko Suzuki, MD¹; Takanori Hosokawa, MD¹; Takashi Nishimura, MD, PhD¹; Ken Ueda, MD¹; Teiji Kuzuya, MD, PhD¹; Hiroyuki Nakanishi, MD, PhD¹; Jun Itakura, MD, PhD¹; Yuka Takahashi, MD, PhD¹; Masayuki Kurosaki, MD, PhD¹; Nobuyuki Enomoto, MD, PhD⁴; and Namiki Izumi, MD, PhD¹ BACKGROUND: A new predictive biomarker for determining prognosis in patients with hepatocellular carcinoma (HCC) who receive sorafenib is required, because achieving a reduction in tumor size with sorafenib is rare, even in patients who have a favorable prognosis. Vascular endothelial growth factor (VEGF) receptor is a sorafenib target. In the current study, the authors examined changes in plasma VEGF concentrations during sorafenib treatment and determined the clinical significance of VEGF as a prognostic indicator in patients with HCC. METHODS: Plasma VEGF concentrations were serially measured in 63 patients with advanced HCC before and during sorafenib treatment. A plasma VEGF concentration that decreased >5% from the pretreatment level at 8 weeks was defined as a "VEGF decrease." An objective tumor response was determined using modified Response Evaluation Criteria in Solid Tumors 1 month after the initiation of therapy and every 3 months thereafter. RESULTS: Patients who had a VEGF decrease at week 8 (n = 14) had a longer median survival than those who did not have a VEGF decrease (n = 49; 30.9 months vs 14.4 months; P = .038). All patients who had a VEGF decrease survived for >6 months, and the patients who had both a VEGF decrease and an α-fetoprotein response (n = 6) survived during the observation period (median, 19.7 months; range, 6.5-31.0 months). In univariate analyses, a VEGF decrease, radiologic findings classified as progressive disease, and major vascular invasion were associated significantly with 1-year survival; and, in multivariate analysis, a VEGF decrease was identified as an independent factor associated significantly with survival. CONCLUSIONS: A plasma VEGF concentration decrease at 8 weeks after starting sorafenib treatment may predict favorable overall survival in patients with advanced HCC. Cancer 2014;120:229-37. © 2013 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. **KEYWORDS:** antiangiogenic therapy, biomarker, hepatocellular carcinoma, prognosis, α -fetoprotein. #### INTRODUCTION Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver (70%-85%) and a major cause of mortality. It is the fifth and seventh most frequent cancer and the second and sixth most frequent cause of cancer death in men and women, respectively. At early stages or at Barcelona Clinic Liver Cancer stage A, a 5-year survival rate of 60% to 70% can be achieved in well selected patients with HCC who undergo surgical therapies (liver resection or transplantation) or locoregional procedures (ie, radiofrequency ablation). However, treatment of advanced HCC that is not amenable to surgical or locoregional therapies remains a challenge in clinical practice. Sorafenib is an oral, small-molecule tyrosine kinase inhibitor that blocks the synthesis of several intracellular proteins considered to be important for tumor progression, including the platelet-derived growth factor receptor beta, raf kinase, and the vascular endothelial growth factor (VEGF) receptor. VEGF is a homodimetric glycoprotein with a molecular weight of 45 kDa. The VEGF family includes VEGF-A, VEGF-B, VEGF-C, VEGF-D, and a structurally related molecule: placental growth factor. Three high-affinity VEGF tyrosine kinase receptors (VEGFRs) have been identified: Corresponding author: Namiki Izumi, MD, PhD, Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo 180-8610, Japan; Fax: (011) 81-422-32-9551; nizumi@musashino.jrc.or.jp ¹Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan; ²Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan; ³Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan; ⁴First Department of Internal Medicine, University of Yamanashi, Yamanashi, Japan The first 2 authors contributed equally to this article. **DOI:** 10.1002/cncr.28384, **Received:** April 2, 2013; **Revised:** August 10, 2013; **Accepted:** August 15, 2013, **Published online** October 7, 2013 in Wiley Online Library (wileyonlinelibrary.com) Cancer January 15, 2014 229 VEGFR-1, VEGFR-2, and VEGFR-3. VEGFR-2 is the principal receptor that promotes the proangiogenic action of VEGF-A and has been the principal target of antiangiogenic therapies, although additional studies have underlined the importance of signaling through VEGFR-1. In 2 phase 3, placebo-controlled, randomized trials, sorafenib treatment significantly improved the time to tumor progression (TTP) and overall survival (OS) of patients with advanced HCC.^{3,4} In those trials, however, no statistically significant pretreatment factors that predicted responses after patients started receiving sorafenib were identified.⁵ Therefore, in clinical practice, it is extremely important to identify a predictive post-treatment biomarker that is associated with the treatment efficacy of sorafenib and the prognosis of patients after they start receiving sorafenib. In general, the efficacy of treating solid tumors with systemic chemotherapy agents is assessed by radiologic findings. In 2010, Lencioni and Llovet published a modification of the Response Evaluation Criteria in Solid Tumors (RECIST).6 However, the modified RECIST can be used only for typical HCC. Advanced HCCs often have atypical vascular patterns; therefore, evaluating tumor response to sorafenib is difficult with radiologic findings alone. Alternatively, α -fetoprotein (AFP) is the most popular tumor marker for HCC, and it has been reported that early AFP responses are a useful surrogate marker for predicting treatment response and prognosis in patients with advanced HCC who receive cytotoxic and antiangiogenic agents.⁷⁻⁹ However, approximately 30% of patients with advanced HCC in the Sorafenib HCC Assessment Randomized Protocol (SHARP) trial had normal AFP concentrations. 10 Therefore, the identification of a new biomarker that can complementarily predict the efficacy of sorafenib and the prognosis of patients is necessary. In a mouse model, an increase in hepatic VEGF levels was observed at 24 hours, 72 hours, and 120 hours after the administration of sorafenib, 11 suggesting that a change in VEGF levels may also occur during sorafenib therapy in humans. Therefore, we evaluated plasma VEGF changes during sorafenib treatment in patients with advanced HCC to determine whether VEGF has potential as a new biomarker for the prediction of treatment efficacy and prognosis after sorafenib administration. #### MATERIALS AND METHODS #### Patient Selection Between December 2009 and August 2012, 95 consecutive patients with advanced, inoperable HCC received treatment with sorafenib at Musashino Red Cross Hospital. The diagnosis of HCC was based on guidelines established by the Liver Cancer Study Group of Japan 12 and the American Association for the Study of Liver Diseases¹³ or by pathologic examination. According to these guidelines, a diagnosis of HCC is confirmed by histology or by characteristic radiologic findings, such as typical arterial enhancement of the tumor followed by a washout pattern in the images in the portal venous phase or the equilibrium phase on dynamic spiral computed tomography (CT) imaging or contrast-enhanced magnetic resonance imaging. Inclusion criteria were predefined as follows: 1) patients were alive 8 weeks after beginning treatment; and 2) patients had plasma VEGF and serum AFP concentrations evaluated at baseline, at 4 weeks, and at 8 weeks. Of 95 patients, 23 were unavailable for a week-8 VEGF measurement for the following reasons: 7 patients stopped sorafenib therapy because of erythema multiforme (grade 2-3) and started other therapies (radiation therapy or cytotoxic chemotherapy) within 1 month after starting sorafenib, 4 patients moved to another location before week 8, 5 patients refused to undergo a plasma VEGF measurement at week 8, and 7 patients were not available for obtaining VEGF concentration results. These 23 patients and 9 other patients who died within 8 weeks were excluded from the study. Hence, in total, 63 patients fulfilled the inclusion criteria. At enrollment, all patients had metastatic or locally advanced HCC that was not amenable to surgery or locoregional therapies, including transcatheter arterial chemoembolization (TACE) and local ablation. Written informed consent was obtained from all patients, and the ethics committee at Musashino Red Cross Hospital approved the study in accordance with the Declaration of Helsinki. #### Sorafenib Treatment The initial daily dose of sorafenib was 800 mg in 28 patients, 400 mg in 28 patients, and 200 mg in 7 patients. A reduced initial dose was allowed for patients who had the following factors: advanced age (>80 years), gastrointestinal varices with a risk of bleeding, low body weight (<50 kg), and a poor performance status (≥ 2). In total, 60 patients underwent multiphase-multidetector CT imaging before starting sorafenib, 1 month after starting sorafenib, and every 3 months thereafter. Radiologic responses to therapy were evaluated according to modified RECIST. In all patients, serial measurements of plasma VEGF and serum AFP concentrations were performed before and after the receipt sorafenib and every month thereafter, with an allowance of ± 1 week. The endpoint of the current study was OS. In the follow-up visit after sorafenib administration, the medication was discontinued if progressive disease (PD) was identified despite treatment, if intolerable adverse events occurred, or if inappropriate liver function was observed. Other palliative treatments or best supportive care were provided subsequently. An AFP response was defined as a decrease \geq 20% in the serum AFP concentration during 8 weeks of treatment. #### Plasma VEGF Measurements Serial serum samples were collected prospectively from each patient. Venous blood samples were drawn into a serum separator tube and centrifuged at ×1800g for 10 minutes, and plasma samples were stored at -80° C until measurement. Plasma VEGF concentrations were measured quantitatively using an enzyme-linked immunosorbent assay kit (Quantikine Human VEGF Immunoassay; R&D Systems, Minneapolis, Minn) according to the manufacturer's instructions. We defined a decrease in the plasma VEGF level >5% from the pretreatment level at 8 weeks as a "VEGF decrease." #### Statistical Analysis Categorical variables were compared using the chi-square test, and continuous variables were compared using the Mann-Whitney test. All tests of significance were 2-tailed, and P values < .05 were considered statistically significant. OS curves were calculated using the Kaplan-Meier method, and differences between groups were assessed using the log-rank test. OS was determined as the interval between the date of treatment initiation and either death or the last visit. A Cox proportional-hazards model was used to determine the factors associated with OS. In univariate analyses, clinical and biologic parameters (sex, age, etiology, albumin, bilirubin concentrations, Child-Pugh class, plasma VEGF concentrations, and serum AFP concentrations) and tumor factors (vascular invasion and distant metastasis) were included. A logistic regression model was used to identify the factors associated with 1-year survival after the receipt of sorafenib. All statistical analyses were performed using StatView (version 5.0) software (Abacus Concepts, Berkeley, Calif). ## RESULTS ### Patient Characteristics In total, 63 patients were enrolled in this study, and their characteristics are listed in Table 1. The diagnosis of HCC was confirmed by histology in 11 patients and by typical radiologic findings based on established guidelines in the remaining 52 patients. In all, 51 patients had previously received other therapeutic modalities, including 22 patients who previously received radiofrequency ablation, **TABLE 1.** Characteristics of Study Patients With Advanced Hepatocellular Carcinoma (n = 63) | Characteristic | Median [Range] | | |-----------------------------|-----------------|--| | Age, y | 70 [40-85] | | | Sex: No. of men (%) | 53 (84.1) | | | Baseline AFP, ng/mL | 114 [2.0-98440] | | | Baseline plasma VEGF, pg/mL | 288 [60-1580] | | | Treatment duration, mo | 4.1 [0.1-28.3] | | | Overall survival, mo | 9.3 [2.0-30.9] | | Abbreviations: AFP, α-fetoprotein; VEGF: vascular endothelial growth factor. 22 who previously underwent TACE, 1 who previously received transcatheter arterial chemoinfusion, and 6 who previously underwent hepatic resection. Twelve patients had received sorafenib as initial therapy for HCC. Among the 63 enrolled patients, 33 were seropositive for hepatitis C virus antibody, 8 were seropositive for hepatitis B surface antigen, and 22 were seronegative for both hepatitis C virus antibody and hepatitis B surface antigen. Eighteen patients had evidence of extrahepatic metastasis, and 18 had major vascular invasion. No patient was lost to follow-up in this study. #### Pretreatment Plasma VEGF Concentration and Prognosis and Extent of Hepatocellular Carcinoma Pretreatment plasma VEGF concentrations in the 9 patients who died within 8 weeks were significantly higher than in the patients who survived beyond 8 weeks (813 \pm 630 pg/mL vs 384 \pm 18 pg/mL; P = .0024). Consistent with a previous study (the SHARP trial; Llovet et al³), our data suggested that the pretreatment plasma VEGF concentration is a useful prognostic factor for sorafenib therapy. However, there was no significant difference in OS between patients who had pretreatment plasma VEGF concentrations \leq 450 pg/mL (n = 46) and those who had concentrations \geq 450 pg/mL (n = 17; P = .731). The pretreatment plasma VEGF concentration could not predict prognosis for the patients who survived beyond 8 weeks. We compared the size and extent of HCC between patients who had low plasma VEGF concentrations (\leq 450 pg/mL) and high plasma VEGF concentrations (>450 pg/mL). No difference was observed in the size or extent of HCC at baseline between patients with lower versus higher pretreatment plasma VEGF concentrations. # Association Between Changes in Plasma VEGF Concentrations and Overall Survival The median OS assessed by the Kaplan-Meier method was 16.3 months for all 63 patients enrolled in the study Cancer January 15, 2014 **Figure 1.** This Kaplan-Meier plot illustrates overall survival for all patients in the study. **Figure 2.** Changes in plasma vascular endothelial growth factor (VEGF) concentrations are illustrated. (Fig. 1). Plasma VEGF concentrations at baseline, at 4 weeks, and at 8 weeks after the initiation of sorafenib treatment were 288 pg/mL (range, 60-1580 pg/mL), 372 pg/mL (range, 69-1990 pg/mL), and 347 pg/mL (range, 64-1840 pg/mL), respectively (Fig. 2). Plasma VEGF concentrations increased within 4 weeks after the administration of sorafenib in 47 of 63 patients (74.6%). The median survival of patients who had a decrease in their plasma VEGF concentration at week 4 (n = 16) and an increase in their plasma VEGF concentration at week 4 (n = 47) were 19.5 months and 16.8 months, respectively; and there was no significant difference in OS between changes in plasma VEGF at 4 weeks (P = .645). However, patients who had a VEGF decrease at week 8 (n = 14) had a longer median survival than those who did not have a VEGF decrease (n = 49; 30.9 months vs 14.4 **Figure 3.** This Kaplan-Meier plot illustrates overall survival according to changes in vascular endothelial growth factor (VEGF) concentration. months; P = .038) (Fig. 3), suggesting that a decrease in VEGF concentration 8 weeks after starting sorafenib treatment is closely associated with a favorable prognosis. The median percentage of decrease in the plasma VEGF concentration was 18.3% (range, 7%-41.7%). There were no differences in any pretreatment patient characteristics, including HCC stage and Child-Pugh score, between patients who did and did not have a VEGF decrease (Table 2). #### Relation Between Radiologic Findings or Serum α-Fetoprotein Concentration and Overall Survival The best radiologic responses to therapy assessed by modified RECIST were classified as a complete response (CR) (n = 4), a partial response (PR) (n = 16), stable disease (SD) (n = 34), and PD (n = 9). Fourteen patients had a VEGF decrease, and their best radiologic responses were a CR (n = 2), a PR (n = 2), SD (n = 9), and PD (n = 1). There was no significant difference in OS between the patients who had an objective response (CR + PR) and those with SD. The survival of patients who had PD was significantly worse than that of the patients without PD (median OS, 5.8 months and 19.4 months, respectively; P = .0006). There was no significant difference in OS between patients who had an AFP response and those who did not have an AFP response within the group that did not have PD (ie, those who attained a CR, a PR, or SD [the non-PD group]) (Fig. 4). There also was no significant difference (P = .111) between patients who did and did not have an AFP response among those in the non-PD group who had had an elevated AFP at baseline. **TABLE 2.** Characteristics of Patients Categorized According to Variation in Vascular Endothelial Growth Factor Levels at 8 Weeks of Sorafenib Treatment | | No. of Patients (%) | | | |----------------------------|----------------------------------|-------------------------------------|------| | Characteristic | With VEGF
Decrease,
n = 14 | Without VEGF
Decrease,
n = 49 | P | | Age, y | 72 | 69 | .325 | | Sex: Men | 11 (78.6) | 42 (85.7) | .679 | | Body weight, kg | 58.3 | 62.3 | .175 | | Cause of disease | | | .210 | | Hepatitis B | 0 (0) | 8 (16.3) | | | Hepatitis C | 9 (64.3) | 24 (49) | | | Other | 5 (35.7) | 17 (34.7) | | | Prior treatment | , , , , , , | (, | .797 | | Yes | 11 (78.6) | 40 (81.6) | | | No | 3 (21.4) | 9 (18.4) | | | Baseline bilirubin, mg/dL | 0.8 | 1.0 | .375 | | Baseline albumin, g/dL | 3.4 | 3.6 | .190 | | Child-Pugh score | | | .178 | | 5 | 7 (50) | 30 (61.2) | | | 6 | 7 (50) | 16 (32.7) | | | 7 | 0 (0) | 3 (6.1) | | | Maximum tumor size, cm | , , | , , | .892 | | ≤5 | 8 (57.1) | 22 (44.9) | | | >5 | 6 (42.9) | 27 (55.1) | | | No. of tumors | | | .883 | | ≤3 | 10 (71.4) | 34 (69.4) | | | >3 | 4 (28.6) | 15 (30.6) | | | Extrahepatic disease | | | .502 | | Yes | 3 (21.4) | 15 (30.6) | | | No | 11 (78.6) | 34 (69.4) | | | Site of metastatic disease | | | | | Lung | 1 | 7 | | | Bone | 1 | 4 | | | Lymph node | 1 | 3 | | | Lung and bone | 0 | 1 | | | Major vascular invasion | | | .739 | | Yes | 3 (21.4) | 15 (30.6) | | | No | 11 (78.5) | 34 (69.4) | | Abbreviations: VEGF: vascular endothelial growth factor. It is noteworthy that all patients who had a VEGF decrease and an AFP response survived during the observation period (median, 19.7 months; range, 6.5-31.0 months). In patients without a VEGF response (n = 49), there was no significant difference in OS between those who did and did not have an AFP response (P = .147). Of 49 patients who did not have a VEGF decrease at 8 weeks, 19 patients were able to survive beyond 1 year after starting sorafenib. Nine patients without a VEGF decrease at 8 weeks survived for >18 months. #### Prognostic Factors After Sorafenib Administration In univariate analysis, among all patients, a VEGF decease and an AFP response were associated significantly with Figure 4. This Kaplan-Meier plot illustrates overall survival according to $\alpha\text{-fetoprotein}$ (AFP) response in patients without progressive disease (PD), classified as non-PD (ie, those who had a complete response, a partial response, or stable disease) according to modified Response Evaluation Criteria in Solid Tumors. OS after starting sorafenib. Major vascular invasion and PD, as evidenced by radiologic findings after sorafenib administration, also were significant prognostic factors. To predict which patients would have a highly favorable prognosis, the prognostic factors associated with 1-year survival after starting sorafenib were assessed in univariate and multivariate analyses. In the univariate analysis, a VEGF decrease, PD, and major vascular invasion were associated significantly with survival (Table 3). In the multivariate analysis, which was performed using those factors as covariates, a VEGF decrease was identified as an independent factor associated significantly with survival (Table 3). There was a significant difference in OS among the 3 groups (patients with a VEGF decrease and non-PD, patients without a VEGF decrease but non-PD, and patients without a VEGF decrease and PD; P = .0013) (Fig. 5). Only 1 patient who had a VEGF decrease was classified with PD. All 4 patients who had a VEGF decrease and an objective response (CR or PR) were able to survive during the observation period. ## Adverse Events During Sorafenib Treatment The overall incidence of treatment-related adverse events was 100%. The rate of discontinuation of sorafenib as a result of adverse events was 22.2%. Adverse events that led to the discontinuation of sorafenib treatment were liver dysfunction (63.6%), hand-foot skin reaction (18.2%), interstitial pneumonia (9.1%), and rash (9.1%). Dose reductions because of adverse events occurred in 62 patients. The most frequent adverse event leading to dose reductions was liver dysfunction (33.9%). In addition, **TABLE 3.** Prognostic Factors Associated With 1-Year Survival After Sorafenib Administration | Risk Factor | OR (95% CI) ^a | P | |--|--------------------------|------| | Univariate analysis | | | | Age, by every 10 y | 1.47 (0.75-2.87) | .266 | | Sex | | | | Women | 1.00 | | | Men | 0.26 (0.50-1.39) | .116 | | HBV infection | | | | Negative | 1.00 | | | Positive | 0.33 (0.06-2.02) | .231 | | HCV infection | | | | Negative | 1.00 | | | Positive | 1.23 (0.41-3.74) | .714 | | Albumin, by every 1 g/dL, | 1.34 (0.45-3.99) | .604 | | Total bilirubin, by every 1 mg/dL | 0.79 (0.28-2.25) | .656 | | Pre-AFP, by every 10 ng/mL | 1.00 (1.00-1.00) | .161 | | Tumor size, cm | | | | <5 | 1.00 | | | ≥5 | 0.42 (0.14-1.32) | .147 | | No. of tumors | | | | ≤3 | 1.00 | | | ≥4 | 0.26 (0.06-1.08) | .064 | | Major vascular invasion | | | | Yes | 1.00 | | | No | 4.00 (1.12-14.4) | .034 | | Extrahepatic metastasis | | | | Yes | 1 | | | No | 1.82 (0.56-5.90) | .320 | | 5% VEGF decrease at wk 8 | | | | No | 1.00 | | | Yes | 11.1 (1.29-94.6) | .028 | | PD | | | | No | 1.00 | | | Yes | 0.16 (0.29-0.86) | .033 | | Objective response: CR + PR | | | | No | 1.00 | | | Yes | 1.63 (0.49-5.42) | .426 | | AFP response | , | | | No | 1.00 | | | Yes | 2.76 (0.80-9.52) | .107 | | Multivariate analysis ^b
5% VEGF decrease at wk 8 | | | | | 1.00 | | | No | 1.00 | 044 | | Yes | 10.0 (1.02-91.3) | .041 | | PD | 4.00 | | | No | 1.00 | | | Yes | 0.20 (0.29-1.39) | .104 | | Major vascular invasion | 4.00 | | | Yes | 1.00 | , | | No | 3.03 (0.71-12.9) | .134 | Abbreviations: AFP, q-fetoprotein; CI, confidence interval; CR, complete response; HBV, hepatitis B virus; HCV, hepatitis C virus; PD, progressive disease; PR, partial response; VEGF, vascular endothelial growth factor. the incidence of adverse events was not related to plasma VEGF concentrations. #### DISCUSSION In the current study, we demonstrated that plasma VEGF concentrations change dynamically during sorafenib **Figure 5.** This Kaplan-Meier plot illustrates overall survival according to the combination of vascular endothelial growth factor (VEGF) changes and radiologic findings classified by modified Response Evaluation Criteria in Solid Tumors. Non-PD indicates patients who did not have progressive disease (PD) (ie, those who had a complete response, a partial response, or stable disease). therapy, and changes in VEGF concentration are closely associated with OS in patients who receive treatment with sorafenib. VEGF is the major mediator of angiogenesis in HCC, and several studies have correlated VEGF concentrations with the prognosis of patients who have advanced HCC. ^{5,14-21} Recently, a new staging system was proposed that includes the plasma VEGF concentration along with the Cancer of the Liver Italian Program (CLIP) score; this new system-known as the V-CLIP score-classifies patients with advanced HCC more appropriately into a homogeneous prognostic group. 22 Therefore, the concentration of circulating VEGF is included as a candidate prognostic marker for HCC, especially in patients with advanced disease. The objective of our study was to elucidate the important question of whether an on-treatment change in VEGF is a potentially useful new biomarker for predicting prognosis in patients who survive beyond 8 weeks, because such an on-treatment predictor among patients who have relatively longer survival has not yet been elucidated. In this study, plasma VEGF concentrations increased from pretreatment levels within 4 weeks of starting sorafenib in 47 of 63 patients (74.6%). This was followed by a decrease in plasma VEGF levels at 8 weeks in 68.1% of patients. A possible mechanism of this transient increase in VEGF after starting sorafenib may be related to a reactive increase against the inhibition of VEGF activity or hypoxia induced by sorafenib. This ^a The ORs for 1-year survival were calculated using logistic regression analysis. ^b In the multivariate logistic analysis, a 5% VEGF decrease, PD, and portal invasion were included as covariates. the incidence of adverse events was not related to plasma