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Abstract

MicroRNAs (miRNAs) are small, noncoding RNA mole-
cules that regulate gene expression posttranscriptionally,
targeting thousands of messenger RNAs. Long non-
coding RNAs (IncRNAs), another class of noncoding
RNAs, have been determined to be also involved in
transcription regulation and translation of target genes.
Since deregulated expression levels or functions of
miRNAs and IncRNAs in hepatocellular carcinoma (HCC)
are frequently observed, clinical use of noncoding
RNAs for novel diagnostic and therapeutic applications
in the management of HCCs is highly and emergently
expected. Here, we summarize recent findings
regarding deregulated miRNAs and IncRNAs for their
potential clinical use as diagnostic and prognostic
biomarkers of HCC. Specifically, we emphasize the
deregulated expression levels of such noncoding RNAs
in patients’ sera as noninvasive biomarkers, a field that
requires urgent improvement in the clinical surveillance
of HCC. Since nucleotide-based strategies are being
applied to clinical therapeutics, we further summarize
clinical and preclinical trials using oligonucleotides
involving the use of miRNAs and small interfering RNAs
against HCC as novel therapeutics. Finally, we discuss
current open questions, which must be clarified in the
near future for realistic clinical applications of these
new strategies.

Key words: MicroRNA; Long noncoding RNA; Hepato-
cellular carcinoma; Clinical trials; Biomarker
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Core tip: In this review, we summarize the latest findings
on deregulated microRNAs (miRNAs) and long noncoding
RNAs in hepatocellular carcinomas (HCCs) with a focus
on their clinical use as novel diagnostic and prognostic
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biomarkers. In addition, we summarize the current
status of clinical and preclinical oligonucleotide therapies
including miRNAs and small interfering RNAs as novel
HCC therapeutics. This review will enable the readers to
understand the current status of dlinical applications and
knowledge of noncoding RNAs in HCC management.

Shibata C, Otsuka M, Kishikawa T, Ohno M, Yoshikawa T,
Takata A, Koike K. Diagnostic and therapeutic application of
noncoding RNAs for hepatocellular carcinoma. World J Hepatol
2015; 7(1): 1-6 Available from: URL: http://www.wjgnet.
com/1948-5182/full/v7/i1/1.htm DOI: http://dx.doi.org/10.4254/
wih.v7.i1.1

INTRODUCTION

Noncoding RNAs contain multiple classes of RNAs that
are not transcribed into proteins. While most noncoding
RNAs studied to date are mictoRNAs (miRNAs), many
noncoding RNAs with various lengths have also been
reported.

MiRNAs are short, sm%lc stranded RNAs that are
expressed in most organisms' . Through gene expression
regulation at a posttranscriptional level, miRNAs are
111V01vcd m various physiological and pathological
processes'™. Since the discovery of miRNA lin-4 in Cae-
nothabditis elegans® as of August 2014, 1881 miRNA
precutsors and 2588 matme miRNA sequences in humans
are deposited in miRBase, a miRINA database by the Sanger
Insmute18 MiRNAs are dystegulated in neatly all types of
cancer™", and specific signatures of aberrantly expressed
miRNAs in specific cancers may have diagnostic and
therapeutic implications' "',

Long noncoding RNAs (IncRNAs) also play crucial
roles in transcription and translation"™'"". Similar to
miRNAs, their dystegulation is also associated with human
cancers'”. One of the most well-studied IncRNAs is the
HOX transcript antisense intergenic RNA (HOTAIR).
Class | homeobox genes (HOX in humans) encode 39
transcriptional factors mma]ly descnbed as master regulators
of embryonic development and display a unique gene
network organization. HOTAIR, a 2.2-kb-long RINA
residing within the H/OXC locus, was initially desctibed
in breast cancer tissues, where it is highly expressed’".
In addition to HOTAIR, many other IncRNAs are dys-
regulated in cancer tissues. Thus, IncRNAs may also
be candidates for biomarker discovery and therapeutic
applications in hepatocellular carcinomas (HCCs)!™.

In contrast to miRNAs and IncRINAs, short intetfeting
RNAs (siRNAs) are double-strtanded RINAs that degrade
mRNAs through perfect matches with their target
sequences. Although human telomerase reverse transctiptase
was recently found to function as an RNA-dependent RNA
polymerase and contribute to RNA silencing”, its activities
are not dominant in mammals. Additionally, endogenously
produced siRINAs may play functional roles under limited
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circumstances in humans™. However, the eXOgenous
application of synthesized siRNAs is an attractive method
that could be used to intervene in crucial gene expression
under p’ldmlogic"d conditions, including cancers™".

HCC is the third leqdmg cause of cancer-related
mortality worldwide™! Although advances have been
made in early detection and interventional therapies,
a continuing need exists to develop novel approaches
for the management of advanced HCC™, While many
reports have described deregulated expression levels or
functions of miRNAs and IncRNAs in HCCs, we will
focus on the potential clinical use of noncoding RNAs in
the very near future for novel diagnostic and therapeutic
applications in the management of HCCs.

NONCODING RNAS AS BIOMARKERS
FOR HCC

Deregulated expression levels of noncoding RNAs in
HCC tissues

Although several published reports have described
deregulated expression levels of miRNAs and IncRNAs
in HCC tissues"™" the data thus far vary greatly. The
differences may be because of several reasons, including
the use of different techniques or samples as controls,
normal liver tissues »s nonneoplastic tissues around
tumors, background livers with various fibrosis staging,
inflammation activities, or etiologies, such as hepatitis B,
hepatitis C, or steatohepatitis, as well as the age or sex of
the tissue-derived patients; any of these factors may cause
the differential expression status of miRINAs. Regardless
of these limitations, the plenty data about dysregulated
miRNAs in HCCs suggests that noncoding RNAs play
crucial roles in hepatocarcinogenesis™.

Deregulated expression of noncoding RNAs in HCC as
prognostic/diagnostic markers
Deregulated expression levels of noncoding RNAs in
HCC tissues that may be clinically useful as prognostic/
diagnostic markers will be described herein. The
landmark paper that initially addressed this issue focused
on miR26 expression levels in HCC tissues and was
published in the New England Journal of Medicine®?
In this study, HCC showed frequently reduced levels
of miR26, and patients exhibited low 7R26 expression
with a shorter overall survival but a better response to
interferon therapy, indicating that miRNA expression
status is associated with survival and response to therapy.
Expression levels of miRINAs have tissue specificities.
In the liver, m/R7122, miR192, and miR199a/b-3p are
highly expressed miRNAs of all mRNAs in the liver™”.
The role of mR722 loss in hepatocatcinogenesis was
confirmed in a2 mouse model™ and its expression
is decreased in HCCs, especially non-viral HCCs""!
Decreased expression of miR722 is also linked with
poor prognosis of HCCP”. Although 7R7192 was not
deregulated in HCCs in previous studies, 7#R799a/b-3p
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MIiRNA  Expression levels in HCC  Possible targets ~ Ref.
" PTEN, AKT, C/EBPb  [32,39,58]

MiR21 Uprégulated

MiR222 Upregulated 'PP2A,p27; DDIT4 - [42,43,59]
MiR223 Upregulated 0 Stathmin 0 [44]
HULC Upregulated - IGF2BP1 14547

HCC: Hepatocellular carcinoma; HULC: Highly up-regulated in liver
cancer; PTEN: Phosphatase and tensin-like protein; AKT: V-akt murine
thymoma viral oncogene homolog; C/EBPb: CCAAT/enhancer-binding
protein beta; PP2A: Protein phosphatase 2A; IGF2BP1: Insulin-like growth
factor 2 MRN A binding protein 1.

is frequently decreased in HCCs™. In contrast, miR21,
whose expression is increased when rat hepatectomy®”,
is upregulated as an onco-miRNA, resulting in the
promotion of HCCP. MiR27 expression in HCC tissues
confets resistance to the antitumor effect of interferon-q
and 5FU combination therapy®.

Similar to miRNAs, expression levels of IncRINAs
are also dysregulated in HCC tissues"®. Among them,
HOTAIR is overexptessed in HCC tissues and may
confer chemoresistance™. Metastasis-associated lung
adenocatcinoma transcript 1, which was initially dis-
covered as an IncRNA associated with metastasis®, is
also upregulated in HCC tissues and may be useful as
a biomarker for tumor recurrence. Recently, HOXA
transcript at the distal tip (HOTTIP) was discovered
to be located in physical contiguity with the HOX.A73
gene and upregulated in HCC tissues, and this was also
associated with metastasis formation and poor patient
survival®”. These results show the functional importance
of IncRNA dysregulation in HCC tissues and indicate
their possible use as novel prognostic and diagnostic
biomarkers. '

Noncoding RNAs in the sera of patients with HCC as
diagnostic markers

Although o-fetoprotein (AFP), AFP-L3, and des-gamma-
catboxy prothrombin are useful noninvasive biomarkers
for HCC sutveillance™, novel and sensitive biomarkers
that can detect eatly HCC are needed. The identification
of tumor-specific alterations in circulating nucleic acids
of patients with cancer as noninvasive methods of cancer
diagnosis is encouraging[38]. Although RINAs are generally
considered unstable, they are actually quite stable and
readily detected in patient serum and plasma. Microarrays,
polymerase chain reaction methods, and next-generation
sequencing technologies are generally utilized to detect
circulating noncoding RINAs.

Although many reports have described circulating
miRNA levels in patients with HCC, only a few tests
have been reproducible. For example, data regarding
upregulation of circulating mR27, miR222, and miR223
in patients with HCC are inconsistent®>****. Highly
upregulated in liver cancer, a 1.6-kb IncRNA, is also
upregulated in HCC tissues™ " and is detected in the
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plasma of patients with HCC"**. Although these
results are encouraging, more work is needed to make
the usability of circulating noncoding RNAs as novel
biomarkers more reliable (Table 1). Specificity and
sensitivity, as well as methods to quantitate small amounts
of RNAs in sera with high reproducibility and the
universal control to adjust the obtained data from differing
times and samples, need to be urgently determined™.

NONCODING RNAS AS NOVEL
THERAPEUTICS AGAINST HCC

Ongoing clinical trials

Mounting evidence suggests that noncoding RINAs are
frequently dysregulated in HCCs and possibly involved in
oncogenesis and may thetrefore provide novel molecular
targets as a therapeutic intervention. However, due to the
complexity associated with pleiotropic miRINA functions
and IncRNAs, the number of clinical trals is presently
limited®”. The leading nucleotide-targeting therapy,
Miravirsen, an LNA-based anti-miR122 against hepatitis
C virus replication, has been successful in a Phase I
a study[m. In addition, MRX34, a liposome-formulated
miR-34 mimic developed by Mirna Therapeutics,
produced complete HCC regression in mouse models™,
and a Phase [ study is cutrently recruiting patients with
advanced liver cancer for HCC therapeutic intervention
(NCT01829971).

While siRNAs are not endogenous noncoding RNAs,
they can be described as noncoding RNAs that have
been tried as novel therapeutics against HCC. ALN-
VSP (Alnylam Pharmaceuticals), an RINAi therapeutic
targeting vascular endothelial growth factor and kinesin
spindle protein, has been shown to be well tolerated in
Phase 1 studies (NCT008822180 and NCT01158079) for
the treatment of primary and metastatic liver cancer. The
results demonstrated disease control lasting more than
6 mo in the majority of patients, including a complete
response in a patient with endometrial cancer who
had multiple liver metastases. TMK-polo-like kinase 1
(PLK1) (Tekmira Pharmaceuticals), an RINAi targeting
PLK1, is also undet a Phase I /II trial INCT01437007).
Early results show that TKM-PLK is well tolerated
and demonstrates clinical benefits. Although primary
results from these potential therapeutics are encouraging,
the benefits and unexpected side effects need to be
determined, especially under long-term use.

Preclinical trials :

Anti-miR21 and anti-miR221 are under development for
clinical use (Regulus Therapeutics). MZR27 is one of
the most validated microRNA targets, with numerous
scientific publications suggesting that 7/R27 plays an
important role in the initiation and progression of
cancers, including liver cancer>?, Similarly, m/R2271
has been identified to be upregulated in multiple cancers
including liver cancer™ . Anti-miR21 and anti-miR221
prolonged survival time in a preclinical mouse model
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~ Name  Content L n
MiR34 . MRX34  Liposome-formulated miR-34 mimic ‘Mirna Therapeutics .
VEGF/KSP. ALN-VSP. . RNAi targeting VEGF/KSP . Alnylam Pharmaceuticals -
PLKI1  TMK-PLK1  RNAitargetingPLK1 ~ Tekmira Pharmaceuticals  Phase I /I
MiR21.  AntimiR21  AntisenseagainstmiR21 . Regulus Therapeutics - Preclinical
MiR221 AntimiR221  AntisenseagainstmiR221 ~ Regulus Therapeutics ~ Preclinical
MiR7  MiR7 mimic MiR7 mimic _ MiReven  Preclinical

VEGEF: Vascular endothelial growth factor; KSP: Kidney-specific cadherin; PLK1: Polo-like kinase 1.

that genetically develops HCC. An »#/R7 mimic is
also under development (MiReven). Mir7 targets the
phosphomositide 3-kinase (PI3K) pathway and decreases
tumor growth both # zitro and 7 2ive®". These tesults ate
summarized in Table 2.

CHALLENGES FOR BETTER CLINICAL

TRANSLATION

Several other miRNAs, including IncRNAs, which are
dysregulated in HCCs, can be attractive therapeutic
tatgets by RNA mimics, antisense RNA, or siRNA. In
fact, many publications have reported their efficacy.
However, obstacles remain to be addressed”": (1) The
mote reproducibility of the results should be achieved
to make the data more reliable; (2) Identification of
driver miRINAs in oncogenesis is important to develop
therapeutics targeting such miRNAs, although we
may be able to use passive miRNAs as prognostic and
diagnostic bio-markers; and (3) The delivery methods
of oligonucleotides into specific tissues with improved
oligonucleotide modification, and safety need to be
seriously considered for utilizing miRINAs in clinical
applications. Because miRNAs generally target multiple
mRNASs, unexpected outcomes, “off-target effects,” may
occut, even when targeting a single miRINA.

More research to solve these issues is definitely
needed for the improved translational application utilizing
the data about miRINAs in HCCs.

CONCLUSION

The discovery of miRNAs and IncRNAs has opened
up new possibilities for novel diagnostic and therapeutic
tools against HCCs. However, several important issues
remain to be resolved. We must conduct continuous

research to develop innovative and useful applications of
the miRINA data in the clinical management of HCCs.
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Abstract MicroRNAs (miRNAs) are small, noncoding
RNA molecules that regulate gene expression post-trans-
criptionally through complementary base pairing with
thousands of messenger RNAs. Although the precise bio-
logical functions of individual miRNAs are still unknown,
miRNAs are speculated to play important roles in diverse
biological processes through fine regulation of their target
gene expression. A growing body of data indicates the
deregulation of miRNAs during hepatocarcinogenesis. In
this review, we summarize recent findings regarding
deregulated miRNA expression and their possible target
genes in hepatocarcinogenesis, with emphasis on inflam-
mation-related hepatocarcinogenesis. Because miRINA-
based strategies are being applied to clinical therapeutics,
precise knowledge of miRNA functions is crucial both
scientifically and clinically. We discuss the current open
questions from these points of view, which must be clari-
fied in the near future.
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Introduction

MicroRNAs (miRNAs) are short, single-stranded, non-
coding RNAs, which are expressed in most organisms,
from plants to vertebrates [1]. Since the discovery of the
miRNA lin4 in Caenorhabditis elegans [2, 3], 1,872
miRNA precursors and 2,578 mature miRNA sequences in
humans have been deposited in miRBase, a public repos-
itory hosted by the Sanger Institute, as of November 2013
[4]. Bioinformatic predictions suggest that miRNAs regu-
late more than 30 % of human protein-coding genes [5-7].
Through the regulation of gene expression, miRNAs are
involved in various physiological and pathological pro-
cesses, including cell proliferation, apoptosis, differentia-
tion, metabolism, oncogenesis and oncogenic suppression
[8, 9]. Thus, it is not surprising that deregulation of
miRNAs is linked closely to various human pathological
conditions. In this review, we will describe the crucial role
of miRNAs in liver carcinogenesis, especially inflamma-
tion-related hepatocarcinogenesis.

Biogenesis and functions of miRNAs

Transcription is the first step in miRNA expression
(Fig. 1). Similar to most protein-coding genes, transcrip-
tional factors, enhancers and silencers are involved in
miRNA transcription [10-12]. Epigenetic mechanisms,
such as promoter methylation or histone modification, also
regulate miRNA transcription, and it was shown that his-
tone deacetylase (HDAC) inhibition results in transcrip-
tional changes in ~40 % of miRNAs [13].

Primary miRNAs, which possess stem-loop structures,
are transcribed by RNA polymerase II [8]. These pri-
miRNAs are processed by a microprocessor complex
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Fig. 1 Biogenesis of miRNAs.
The primary miRNA transcript
(pri-miRNA) is transcribed
from the genome by RNA
polymerase I or I{I. The
microprocessor complex

miRNA gene

Transcription I}

Drosha~DGCRS cleaves the pri-
miRNA into the precursor
hairpin, pre-miRNA in the
nucleus. The pre-miRNA is
exported from the nucleus by
exportin-5-Ran-GTP. In the
cytoplasm, the RNase Dicer in
complex with the double-
stranded RNA-binding protein,
TRBP, cleaves the pre-miRNA
hairpin to its mature length. The
functional strand of the mature
miRNA is loaded together with
Argonaute (Ago2) proteins into
the RNA-induced silencing
complex (RISC), where it
guides RISC to silence target
mRNAs through mRNA
cleavage or translational
repression. The passenger strand
(black) is degraded

comprising Drosha (RNAase III) [14] and DGCRS8/Pasha
[15] in the nucleus [16]. The processed products are
approximately 65-nucleotide hairpin-shaped precursors
(pre-miRNAs) that are transported to the cytoplasm via
exportin-5 [17, 18]. Pre-miRNAs are further cleaved into
mature miRNAs by Drosha and Dicer RNA polymerase III.
Mature miRNA duplexes are loaded onto an RNA-induced
silencing complex (RISC) and are unwound into the single-
stranded mature form [19-21]. The resulting co-complex
directly targets the 3’-untranslated regions (3/-UTRs) of
target mRNAs, depending on the sequence similarities, to
negatively regulate their expression by enhancing mRNA
cleavage or inhibiting translation (Fig. 1) [8, 22]. Because
most miRNAs guide the recognition of imperfect matches
of target mRNAs, individual miRNAs have multiple
(probably hundreds) of mRNA targets. In addition, multi-
ple miRNASs can cooperate to regulate the expression of the
same transcript [6]. Thus, depending upon the identity of
the target mRNAs, miRNAs play roles as “fine-tuners of
gene expression” in the control of various biological
functions.

Identifying functionally important miRNA target genes
is crucial for understanding the impact of specific miRNAs
on cellular function. However, this is challenging because
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miRNAs usually have imperfect complementarity with
their targets [22]. In mammals, the most consistent
requirement for miRNA-target interaction, although not
always essential, is a contiguous and perfect pairing of the
miRNA (nt 2-8), representing the “seed” sequence [22]. In
many cases, the seed sequences determine this recognition,
but in other cases, additional determinants are required,
such as reasonable complementarity to the miRNA 3’ half
to stabilize the interaction. In addition, target pairing to the
center of some miRNAs has also been reported [23].
Although public miRNA target prediction algorithms, such
as TargetScan [24] and PicTar [25], have facilitated the
rapid identification of miRNA target genes [22], candidates
should be validated experimentally.

miRNAs and cancer

The involvement of miRNAS in cancer pathogenesis is well
established. miRNAs can affect six hallmarks of malignant
cells, which are (1) self-sufficiency in growth signals, (2)
insensitivity to anti-growth signals, (3) evasion of apopto-
sis, (4) limitless replicative potential, (5) angiogenesis, and
(6) invasion and metastasis [26]. miRNAs are frequently
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up- or downregulated in malignant tissues and can be
considered oncogenes or tumor suppressors, respectively.
However, it is essential to test experimentally whether the
deregulated miRNAs are actually causative to carcino-
genesis, since miRNAs have a very restricted tissue-spe-
cific expression and the apparent miRNA modulation in
cancer tissues may only reflect the different constituents of
a cell population as compared to normal tissues. Extensive
analyses have confirmed the causative roles of miRNAs in
cancer by using either human cancer cells or genetically
engineered animal models, such as transgenic expression of
miR-155, miR-21 and miR-15-a/16-1, which are sufficient
to initiate lymphomagenesis in mice [27-29]. These results
suggest the potential role of miRNAs in the pathogenesis of
carcinogenesis and as therapeutic targets.

miRNAs and hepatocarcinogenesis

Numerous reports regarding the deregulated expression of
miRNAs in human hepatocellular carcinoma (HCC) are
extant. Most studies compared the miRNA expression
levels between cancer tissues and background non-tumor-
ous tissues, selected candidate miRNA(s) and revealed
their target genes, which may be involved in carcinogen-
esis. As shown in Tables 1 and 2, many miRNAs have been
identified as downregulated or upregulated in recent studies
(Tables 1, 2). However, these numerous results are not
always superimposable due to the large variances in the
results. These significant differences may be due to several
reasons, such as the use of different techniques or different
samples as controls, normal liver tissues versus peritumoral
non-neoplastic tissues. In addition, one may need to take
into consideration the fact that HCCs arise in background
livers with different etiologies, such as hepatitis B, hepa-
titis C or steatohepatitis, and also the age or sex of the
tissue-derived patients and background liver condition,
such as fibrosis staging or inflammation activity, which
may result in differences in the expression status of
miRNAs. Despite these considerable limitations, the list
suggests that diverse miRNAs play crucial roles in he-
patocarcinogenesis. We will briefly describe some of them
below.

The expression levels of miRNAs have restricted tissue
specificities. In the liver, miR-122, miR-192 and miR-
199a/b-3p are the three most expressed miRNAs,
accounting for 52, 17 and 5 % of all mRNAs in the tissues,
respectively [30]. The tumorigenic role of the loss of miR-
122 was econfirmed in gene-knockout mice [31, 32] and its
expression is indeed decreased in half of the HCCs, espe-
cially non-viral HCCs [30]. We also reported that
decreased expression of miR-122 is linked with poor
prognosis of HCC [33]. While miR-192 does not appear to

be deregulated in HCC samples in previous studies, miR-
199a/b-3p is decreased with high frequency in HCC, which
is closely linked to a poor prognosis of HCC [30]. In
contrast, miR-21, whose expression is increased following
rat hepatectomy [34], is upregulated as a known oncom-
iRNA and represses PTEN signaling, resulting in promo-
tion of HCC development [35]. Although individual
miRNAs may be involved in hepatocarcinogenesis,
because miRNAs often function co-operatively, the extent
of their involvement remains to be determined.

As described above, miRNAs usually have multiple
mRNA targets. Thus, it is not practical to describe only a
few genes as being responsible for the phenotypes by
deregulation of specific miRNAs, while many studies
identify specific genes as targets of specific miRNAs.
Nonetheless, the identified targeted genes are generally
related to at least one of the hallmarks of cancer, such as
cell growth, apoptosis, invasion, and so on. These results
suggest that the deregulation of miRNA expression might
mediate hepatocarcinogenesis through deregulating the
expression of their target genes.

The miRNAs identified as deregulated in hepatocarci-
nogenesis may be useful as diagnostic and prognostic
markers [36], because miRNAs in the circulation are
reported to be relatively stable [37]. Also, deregulated
miRNAs may be candidate therapeutic and preventive
targets against HCC. However, to include the obtained
results in clinical interventional applications, it is necessary
to confirm if the deregulated miRNAs are truly drivers or
are simply passive in hepatocarcinogenesis. To this end,
genetically modified mice may provide some information.
In addition, to correctly interpret the data, a standard
method of normalizing the microRNAome data between
studies may also be crucial. Since there are multiple target
genes of miRNAs and, conversely, one transcript can be
targeted by multiple miRNAs, a more systematic compar-
ison using miRNA data, transcriptome data and proteome
data would increase our understanding of the consequences
of the deregulation of miRNAs during hepatocarcinogen-
esis. From this point of view, systematic and comprehen-
sive target gene analyses for in silico systems biology
models may be one option to resolve these issues.

miRNAs linked to inflammation-mediated
hepatocarcinogenesis

Inflammation is considered to be a major cause of cancer
[38, 39]. In the liver, hepatocarcinogenesis frequently
occurs in persistently inflamed liver tissues caused by
chronic hepatitis viral infection or non-alcoholic steato-
hepatitis. However, the molecular linkage between chronic
inflammation and carcinogenesis is not well characterized.
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Table 1 Upregulated miRNAs in hepatocarcinogenesis

miRNA Expression levels Targets Main tested samples References
miR-17-5p Upregulated p38 pathway Cultured cells, human tissues [52]
miR-18a Upregulated ER1a Human tissues, cultured cells [53]
miR-21 Upregulated C/EBPb Mouse CDAA model [54]
Upregulated PTEN Human tissues, cultured cells [35]
miR-22 Upregulated ERa, IL-1a Human tissues, cultured cells, DEN model [55]
miR-23a Upregulated PGC-1a,G6PC Human tissues, cultured cells [56]
miR-26a Upregulated Lin28B, Zcchell Human tissues, xenograft model [57]
Upregulated NF-xB, IL-6 pathways Human tissues [58]
miR-30d Upregulated GNAI2 Human tissues, cultured cells [59]
miR-100 Upregulated Human tissues [60]
miR-106b Upregulated APC Human tissues, cultured cells [61]
miR-122 Upregulated Human tissues [60]
miR-130b Upregulated TPS53INP1 Human tissues, xenograft model [62]
miR-135a Upregulated FOXMI1, MTSSI Human tissues, cultured cells, xenograft [63]
miR-143 Upregulated ENDC3B Human tissues, HBX transgenic mouse [64]
miR-146a Upregulated in endothelial cells BRCA, PDGFRA Cultured cells [65]
miR-151 Upregulated FAK Human tissues, cultured cells [66]
Upregulated FAK, RhoGDIA Human tissues, cultured cells [67]
miR-155 Upregulated SOCS1 Orthotropic transplant model [68]
Upregulated DKKI1, APC Human tissues, cultured cells [69]
Upregulated PTEN Mouse CDAA model [54]
miR-181 Upregulated TIMP3 Mouse CDAA model [70]
Upregulated CDX2, GATAG6, NLK Cultured cells [71]
miR-183 Upregulated AKAP12 Human tissues [72]
miR-186 Upregulated AKAPI12 Human tissues [72]
miR-200 Upregulated NRF2 pathway Rat HCC model, {731
miR-210 Upregulated VMP1 Human tissues, cultured cells [74]
miR-216a Upregulated TSLC1 Human tissues, cultured cells [75]
miR-216a/217 Upregulated PTEN, SMAD7 Cultured cells, Human tissues [76]
miR-221 Upregulated CDK inhibitors Transgenic mouse [77]
Upregulated p27, p57, Arnt Primary hepatocytes [78]
Upregulated Bmf Cultured cells, human tissues [79]
Upregulated p27, p57 Cultured cells, human tissues [80]
miR-221/222 Upregulated p27, DDIT4 Human tissues, mouse model [81)]
miR-224 Upregulated Human tissues [82]
Upregulated Atg5, Smad4, autophagy Human tissues, HBV X transgenic mice [83]
Upregulated API-5 Cultured cells, human tissues [84]
Upregulated Human tissues [85]
Upregulated APIL-5 Human tissues [86]
miR-423 Upregulated p21/wafl Human tissues, cultured cells [87]
miR-485-3p Upregulated MATI, LIN28B Human tissues, xenograft model [88]
miR-490-3p Upregulated ERCIC3 Human tissues, cultured cells [89]
miR-494 Upregulated MCC Human tissue, mouse liver cancer model [90]
miR-495 Upregulated MATI1, LIN28B Human tissues, xenograft model [88]
miR-517a Upregulated Human tissues, cultured cells [91]
miR-657 Upregulated TLE1, NF-xB Human tissues, cultured cells [92]
miR-664 Upregulated MATI1, LIN28B Human tissues, xenograft model [88]
miR-1323 Upregulated Human tissues [93]
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Table 2 Downregulated miRNAs in hepatocarcinogenesis
miRNA Expression levels Targets Main tested samples References
let-7a Downregulated STAT3 Cultured cells [94]
let-7c Downregulated Human tissues, cultured cells [95]
let-7g Downregulated COL12A Cultured cells, human tissues [96]
miR-7 Downregulated PIK3CD Cultured cells, human tissues [97]
miR-10a Downregulated EphA4 Cultured cells [98]
miR-10b Downregulated Human tissues [99]
miR-15a/16 Downregulated Cultured cells [100]
miR-21 Downregulated Human tissues [82]
miR-26a Downregulated IL-6 Human tissues, xenograft model [101]
Downregulated CyclinD2, E2 Cultured cells, mouse model [102]
miR-29 Downregulated Bcel2, Mcll Human tissues, cultured cells [103]
miR-29b Downregulated MMP-2 Human tissues, cultured cell [104]
miR-29¢ Downregulated SIRT1 Cultured cells [105]
miR-34a Downregulated CCL22 Human tissues, cultured cells [106]
miR-99a Downregulated PLK1 Human tissues, cultured cells [107]
Downregulated IGF-1R Human tissues, cultured cells [108]
miR-100 Downregulated PLK1 Human tissues, cultured cells [107]
miR-101 Downregulated EZH2, EED Human tissues, cultured cells [109]
Downregulated Human tissues, cultured cells [95]
Downregulated Mecli Cultured cells, human tissues [110]
Downregulated Fos Human tissues, cultured cells [111]
miR-122 Downregulated c-Myc Human tissues, cultured cells [112]
Downregulated Cultured cells [113]
Downregulated MTTP Knockout mice [32]
Downregulated IL6, TNF Knockout mice [31]
Downregulated IGF-1R Human tissues [114]
Downregulated Cyclin G1 Human tissues, cultured cells [115]
miR-124 Downregulated ROCK2, EZH2 Human tissues, cultured cells [116]
Downregulated CDK6, VIM, SMYD3, IQGAP1 Human tissues, cultured cells [117]
miR-125a/125b Downregulated Human tissues, cultured cells [118]
miR-125b Downregulated SUV39H Human tissues, cultured cells [119]
Downregulated Mcll, Belw, IL6R Human tissues, cultured cells [120]
Downregulated Human tissues, cultured cells [95]
Downregulated PIGF, MMP-2, MMP-9 Human tissues, cultured cells [121]
Downregulated Lin28B Human tissues, cultured cells [122]
miR-139 Downregulated ROCK2 Human tissues, cultured cells [123]
miR-139-5p Downregulated Human tissues, cultured cells [95]
miR-140-5p Downregulated TGFBR1, FGF9 Human tissues, cultured cells [124]
DNMT1 Knockout mice [125]
miR-141 Downregulated DLC-1 Human tissues [126]
miR-145 Downregulated Human tissues [60]
Downregulated IRS1, IRS2, IGF-1R, b-catenin Human tissues, cultured cells [127]
Downregulated Human tissues [85]
miR-148a Downregulated c-Met Human tissues, cultured cells [128]
Downregulated HRIP Mouse xenograft model, cultured cells [129]
Downregulated e-cadherin Human tissues, cultured cells [130]
Downregulated c-Myc Cultured cells [131]
miR-152 Downregulated DNMT1, GSTP1, CDH1 Human tissues [132]
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Table 2 continued

miRNA Expression levels Targets Main tested samples References
miR-195 Downregulated NFE-kB pathway Cultured cells [133]
Downregulated VEGE, VAV2, CDC42 Cultured cells, human tissues [134]
Downregulated Cyclin DI, CDKG6, E2F3 Cultured cells, human tissues [135]
miR-198 Downregulated Human tissues [60]
miR-199a/b-3p Downregulated PAK4 Human tissues, cultured cells [30]
miR-199b Downregulated Human tissues [85]
miR-200a Downregulated H3 acetylation Human tissues, cultured cells [136]
miR-200b Downregulated Human tissues, cultured cells [95]
miR-200c Downregulated Human tissues [82]
miR-200 Downregulated Human tissues [82]
miR-203 Downregulated ABCE1 Human tissues, cultured cells [117)]
miR-214 Downregulated HDGF Human tissues, cultured cells [137]
miR-222 Downregulated Human tissues [82]
miR-223 Downregulated STMNI Human tissues [138]
miR-224 Downregulated Human tissues [139]
miR-363-3p Downregulated c-Myc Cultured cells [131]
miR-375 Downregulated ATGT7 Human tissues, cultured cells [140]
Downregulated AEG-1 Human tissues, cultured cells [141]
miR-429 Downregulated Rab18 Cultured cells [142]
miR-449 Downregulated ¢-MET Kenograft, cultured cells [143]
miR-520¢ Downregulated NIK Human tissues, cultured cells [69]
miR-612 Downregulated AKT2 Cultured cells, human tissues [144]
miR-637 Downregulated STAT3 activation Human tissues, cultured cells [145]
miR-1271 Downregulated GLP3 Human tissues, cultured cells [99]

Initiation of inflammation

LIN28B

Fig. 2 A model bridging chronic inflammation and transformation by
miRNA. Inflammation triggers activation of NF-xB, which leads to
transcription of LIN28B. LIN28B inhibits the production of Let-7.
Let-7 normally inhibits IL-6 expression, resulting in higher levels of

miRNAs, as a new class of gene expression regulators, may
be involved in chronic inflammation-induced carcinogen-
esis and, in fact, several studies have clarified one such
linkage, in which miRNAs may serve as a bridge between
continuous inflammation and carcinogenesis.

A flagship report addresses a positive feedback loop of
an inflammatory response mediated by NF-xB that acti-
vates Lin28B transcription (Fig. 2) [40]. LIN28B, which is
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IL-6 than are achieved by NF-xB activation. IL-6 mediated STAT3
activation is necessary for transformation and IL-6 activates NF-xB,
completing a positive feedback loop

an inhibitor of miRNA processing, reduces let-7 levels.
Let-7 inhibits IL-6 expression, resulting in higher levels of
IL-6 than achieved by NF-xB activation. IL-6-mediated
STATS3 activation is necessary for transformation and IL-6
activates NF-xB, completing a positive feedback loop.
Although the experiments mainly used MCF10A cells
(breast cancer cells), a similar feedback loop was observed
in HCC tissues. The authors termed these mechanisms an
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Fig. 3 A model describing a positive feedback loop mediated by
miRNAs from transient HNF4o inhibition to transformation. Tran-
sient silencing of HNF4a is mediated by miR-24 and miR-629, both
of which are induced by STAT3 activation following IL-6 stimula-
tion. miR-124, whose promoter region contains HNF4o-binding sites,
targets IL-6R and, thus, HNF4o silencing results in reduced
expression of miR-124 and enhanced expression of IL-6R and
activation of STAT3, which induces miR-24 and miR-629. This
microRNA feedback-inflammatory loop is thought to be crucial in IL-
6-mediated liver cancer

“epigenetic switch” because the loop maintains the epi-
genetic transformed state even in the absence of induction
by inflammation (Fig. 2).

Another report addressed hepatocarcinogenesis induced
by transient inhibition of HNF4o (Fig. 3) [41]. HNF4a
was reported to be involved in liver oncogenesis, although
discrepant reports have also been published [42—44]. In
that report, transient HNF4a silencing was sufficient to
maintain cell transformation. Through a miRNA library
screen, miR-24 and miR-629 were identified to target

Fig. 4 A model bridging the
malignant transformation of
precursor cells and autocrine-
mediated inflammation by
microRNA. LIN28-expressing
cells exist in the foci of altered
hepatocytes, in which let-7 is
downregulated, resulting in
enhanced IT.-6 expression,
which mediates the progression
of malignancies from progenitor
cells

Foci of altered hepatocytes

HNF4a. Interestingly, both miRNAs were induced fol-
lowing HNF4a silencing, supporting their involvement in
the HNF4a-dependent feedback loop. miR-24 and miR-
629 contain the STAT3-binding motif in their promoter
region. The authors showed that in response to IL-6,
STAT3 binding to their promoters increased, resulting in
miRNA expression. They also identified miR-124, whose
promoter region contains HNF4o binding sites. miR-124
targets IL-6R and, thus, HNF4o silencing results in
reduced expression of miR-124 and enhanced expression
of IL-6R and activation of STAT3. The importance of
these feedback loops was confirmed in vivo using a mouse
HCC model induced by diethylnitrosamine. miR-124
delivery by cationic liposomes prevented tumor develop-
ment. Thus, these microRNA feedback-inflammatory
loops are important and can be a therapeutic target for
liver cancer (Fig. 3) [41].

A recent paper reported a similar but distinct observa-
tion (Fig. 4). The authors found that when using DEN-
induced foci of altered hepatocytes (FAH), LIN28-
expressing cells are present in FAH, in which let-7 is
down-regulated, resulting in the enhanced expression of
JL-6, mediating the progression of malignancies from
progenitors. An important difference between the cells in
FAH and those in early hepatocarcinogenesis is that IL-6
signaling is autocrine, being mediated by reduced let-7 due
to upregulation of LIN28B in FAH cells. This mechanism
may contribute to malignant progression from HCC pro-
genitor cells (Fig. 4) [45].

These three reports are from related research groups,
and rely on the hypothesis that the IL-6-STAT3 pathway is
crucial for hepatocarcinogenesis. Although IL-6 has been
implicated as a growth factor in various epithelial cancers
[46, 47], its relevance in hepatocarcinogenesis needs to be
confirmed to determine the applicability and reproducibil-
ity of these findings to the clinical setting.
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miRNAs as therapeutic targets in the liver

Recently, miravirsen, a LNA-modified DNA phosphoro-
thioate antisense oligonucleotide against miR-122, became
the first miRNA-targeting drug for clinical use [48]. It was
developed to target HCV, as the stability and propagation
of this virus is dependent on a functional interaction
between the HCV genome and miR-122 [49, 50]. No
harmful events were observed in Phase I studies in healthy
volunteers, and Phase 1I studies proceeded to evaluate the
safety and efficacy of miravirsen in 36 patients with
chronic HCV genotype 1 infection. The patients were
randomly assigned to receive 5 weeks of subcutaneous
miravirsen injections at 3, 5 or 7 mg per kg body weight or
a placebo over a 29-day period. Miravirsen resulted in a
dose-dependent reduction in HCV levels, without major
adverse events and with no escape mutations in the miR-
122 binding sites of the HCV genome [48]. The success of
miravirsen is promising, not only as a novel anti-HCV
drug, but also as the first trial of miRNA-targeting therapy.

In addition to miravirsen, a clinical trial of MRX34 as a
mimic of miR-34 is underway. MRX34 is a liposome-
formulated mimic of the tumor suppressor miR-34 (Mirna
Therapeutics, Austin, TX, USA). Further study of MRX34
is being conducted by Mirna Therapeutics, which initiated
a Phase I study in May 2013 to examine the effects of
MRX34 on unresectable primary liver cancer or advanced
or metastatic cancer with liver involvement (ClinicalTri-
als.gov Identifier: NCT01829971). If these oligonucleotide
therapies are successful, therapeutic options based on the
numerous miRNAs deregulated during hepatocarcinogen-
esis appear promising [51].

Issues to be resolved in miRNA involvement
in hepatocarcinogenesis

As described above, along with recent discoveries of the
diverse effects of miRNAs in hepatocarcinogenesis,
miRNA-mediated intervention is promising for the devel-
opment of new diagnostic, preventive and therapeutic
tools. However, the data obtained to date are far from
complete. The following are some of the critical issues that
we believe need to be resolved.

1. The reason for the non-reproducible results among
studies should be determined to utilize the available
data more reasonably and efficiently.

2. Identification of crucial driver miRNAs among the
diverse deregulated miRNAs is critical to develop
useful therapeutics in clinics, although even passive
miRNAs may be utilized as markers for diagnosis or
prediction of prognosis.

@ Springer

3. Comprehensive target gene analyses using in silico
systems biology models should be applied.

4. For effective interventions using miRNA, the delivery
method, improved oligonucleotide modification and
safety must be further considered. Since miRNAs
generally have diverse effects due to targeting multiple
mRNAs, undesired outcomes, so called off-target
effects, may be encountered, even when a specific
miRNA is targeted.

Finding solutions to these issues should be considered as
critically important for the near future in order to under-
stand more fully the physiological function of miRNAs in
hepatocarcinogenesis and utilize this knowledge in trans-
lational research.

Conclusions

The discovery of miRNA has, without doubt, opened up
new possibilities for understanding the molecular mecha-
nisms of gene regulation. As numerous findings regarding
miRNA, from diverse perspectives, have been reported, the
speed of discovery in this field is astonishing. In fact, novel
therapeutics targeting miRNAs have already been suc-
cessfully applied in clinical trials. Some miRNAs may be
useful as novel biomarkers. Additionally, the discovery of
novel concepts in the pathogenesis of hepatocarcinogenesis
frequently involves miRNA. On the other hand, several
important issues remain to be resolved in this field. Thus,
continuous research in this field is still necessary to
develop truly innovative concepts in our understanding of
pathogenesis related to miRNA and to transform the
obtained knowledge into real clinical applications.
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ABSTRACT

Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular
carcinoma (HCC). To date, the lack of efficient in vitro systems supporting HBV
infection and replication has been a major limitation of HBV research. Although primary
human hepatocytes support the complete HBV life cycle, their limited availability
and difficulties with gene transduction remain problematic. Here, we used human
primary hepatocytes isolated from humanized chimeric uPA/SCID mice as efficient
sources. These hepatocytes supported HBV replication in vitro. Based on analyses
of mMRNA and microRNA (miRNA) expression levels in HBV-infected hepatocytes,
miRNA93 was significantly downregulated during HBV infection. MiRNA93 is critical
for regulating the expression levels of MICA protein, which is a determinant for
HBV-induced HCC susceptibility. Exogenous addition of miRNA93 in HBV-infected
hepatocytes using bionanocapsules consisted of HBV envelope L proteins restored
MICA protein expression levels in the supernatant. These results suggest that the
rescued suppression of soluble MICA protein levels by miRNA93 targeted to HBV-
infected hepatocytes using bionanocapsules may be useful for the prevention of HBV-

induced HCC by altering deregulated miRNA93 expression.

INTRODUCTION

Hepatitis B virus (HBV) infection is a major
global health problem, and more than 350 million people
globally are chronic carriers of the virus [1]. A significant
number of these carriers suffer from either liver failure
or hepatocellular carcinoma (HCC) during the late stages
of the disease [2]. In fact, chronic infection with HBV is
responsible for 60% of HCC cases in Asia and Africa and
at least 20% those in Europe, Japan, and the United States
[31

While nucleoside and nucleotide analogs have been
applied in the attempts to suppress HBV replication [4,

5], complete elimination of HBV (including cccDNA)
remains difficult [6, 7], and an increased understanding
of HBV replication and pathogenesis at the molecular
level is essential for clinical management of chronic HBV
infection. However, the lack of appropriate cell culture
systems supporting stable and efficient HBV infection has
been a major limitation. Although transient transfection
or viral transfer of HBV genes or genomes are used in the
study of specific steps of the HBV cell cycle [8-12], they
do not accurately reflect the biology of HBV infection and
replication. Thus, humanized mice are used for hepatitis
virus research [13-18]. Although these mice are useful,
immune deficient, chimeric mice are difficult to handle
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