Polymorphisms of genes involved in innate immunity are likely to influence the strength and nature of this defense system [24]. Moreover, IL28B polymorphisms were shown to be associated with lipid metabolism [25]. Thus, this genetic factor is thought to influence the natural course of HCV infection including liver fibrosis, inflammation activity, or steatosis. However, associations between IL28B polymorphisms and the state of background liver disease (fibrosis, inflammation activity, or steatosis) in patients with CHC remain controversial. Single studies may have limited statistical power to detect the modest effects of IL28B polymorphisms on disease progression. Thus, we conducted the present meta-analysis to integrate the results of eligible studies and provide statistically reliable evidence of the role of IL28B polymorphisms in patients with CHC. #### **Materials and Methods** ### 2.1 Search strategy An electronic search was conducted in MEDLINE, EMBASE, and the Cochrane Library for articles published prior to 30 April, 2012. Search terms included *IL28B*, *IL28*, *IL-28B*, *interleukin-28B*, *interleukin-28B*, *rs12979860*, and *rs8099917*. The search was limited to the English language. ### 2.2 Inclusion criteria A study was included in the current analysis if it satisfied the following criteria: (1) It evaluated the associations between IL28B polymorphisms (rs12979860 or rs8099917) and liver fibrosis, inflammation activity, or steatosis. We also included studies that evaluated fibrosis or inflammation activity using the aminotransferase platelet ratio index or ALT. (2) It provided sufficient published data for estimating odds ratios (OR) with 95% confidence intervals (CIs). In case of multiple studies based on the same population, we selected the study with the largest number of participants. A study was excluded if (1) it dealt only with coinfection of HCV and human immunodeficiency virus, (2) it dealt only with patients with a specific condition such as a comorbid disease (e.g., thalassemia) or status after liver transplantation, or (3) it only used a recessive hereditary model (rs12979860 CC + CT vs. TT, or rs8099917 TT +TG vs. GG). ### 2.3 Data extraction Two authors (M.S. and M.K.) independently screened titles and abstracts for potential eligibility and full texts for final eligibility. Disagreements were resolved by consultation with a third author (R.T.). The following information was extracted or calculated from each study: first author, year of publication, country of origin, ethnicity, sex, HCV genotype, and background liver information (fibrosis, inflammation activity, or steatosis) for each genotype. The analysis was based on the dominant model (CC vs. CT and TT in rs12979860; TT vs. TG and GG in rs8099917). ### 2.4 Definition In some studies, mild or severe fibrosis or inflammation activity was not defined. To compare results among studies on these outcomes, we defined Ishak level F4 to F6; METAVIR, Ludwig Batts, and Inuyama level F3 to F4; and Knodell histology activity index as severe fibrosis. We also defined METAVIR A2 to A3 as severe inflammation activity. ### 2.5 Statistical analysis The association of liver fibrosis, inflammation activity, or steatosis with the IL28B genotype in patients with CHC was assessed by summary ORs and corresponding 95% CIs. Hetero- geneity among studies was examined with I2 statistics interpreted as the proportion of total variation contributed by between-study variation [26]. If there was no or low statistical heterogeneity among studies ($I^2 < 50\%$ and P > 0.05), the ORs and 95% CIs were calculated by the fixed-effects model. Otherwise, the randomeffects model was adopted. When significant heterogeneity was observed, we performed a meta-regression analysis to investigate relationships between the effect of IL28B polymorphisms on liver fibrosis, inflammation activity, or steatosis; and continuous variables (proportion of patients with genotype 1 or 4 virus infection, proportion of males; and proportion of Caucasian, African-American, and Asian patients) to explore the possible reason for heterogeneity between studies [27,28]. To check for publication bias, we used the linear regression approach described by Egger et al. [29]. All calculations were performed using Comprehensive Meta-Analysis software (Biostat, Englewood, NJ). ### Results ### 3.1 Characteristics of articles Figure 1 shows the literature search and study selection procedures. A total of 471 potentially relevant publications up to 30 April, 2012, were initially identified through MEDLINE, EMBASE, and the Cochrane Library, 443 of which were excluded because they did not meet our inclusion criteria. Therefore, 28 studies involving a total number of 10,024 patients were included in the meta-analysis. Study characteristics are shown in Table 1. There were 5616 males and 3974 females, and the sex was not reported in the remaining 434 patients (1 study). Nineteen studies (7542 patients) evaluated liver fibrosis according to rs12979860 polymorphism and 16 studies (5052 patients) according to rs8099917 polymorphism; four studies (2301 patients) evaluated inflammation activity according to rs12979860 polymorphism and eight studies (2904 patients) according to rs8099917 polymorphism; and four studies (962 patients) evaluated steatosis according to rs12979860 polymorphism and five studies (1308 patients) according to rs8099917 polymorphism. ### 3.2 Fibrosis For rs12979860, the between-study heterogeneity was not significant ($I^2 = 25\%$, P = 0.147); thus, the fixed-effects model was applied. The pooled results indicated that IL28B rs12979860 genotype CC was associated with an increased possibility of severe fibrosis (OR, 1.122; 95%CI, 1.003-1.254; P=0.044) (Fig. 2-a). For rs8099917, there was no or low heterogeneity ($I^2 = 31\%$, P=0.111), and IL28B rs8099917 genotype TT tended to be associated with a higher possibility of severe fibrosis; however, the difference did not reach statistical significance (OR, 1.126; 95%CI, 0.988-1.284; P = 0.076) (Fig. 2-b). Egger's test showed no evidence for publication biases for either rs12979860 (P = 0.839) or rs8099917 (P = 0.342). When restricted to studies in which only treatment-naïve patients were included, 12 studies (5865 patients) according to rs12979860 polymorphism and eight studies (3333 patients) according to rs8099917 polymorphism were extracted. The between-study heterogeneities were not significant for rs12979860 ($I^2 = 0\%$, P = 0.615) and rs8099917 ($I^2 = 16\%$, P=0.304). For rs12979860, fixed-effect model analyses showed a higher probability of severe fibrosis in genotype CC (OR, 1.184; 95%CI, 1.040-1.348; P = 0.010) (Fig. 2-c), and for rs8099917, genotype TT tended to be associated with a higher possibility of severe fibrosis; however, the difference was not statistically significant (OR, 1.154; 95%CI, 0.985-1.351; P=0.076) (Fig. 2d). Egger's test showed no evidence of publication bias (P = 0.394for rs12979860 and P = 0.295 for rs8099917). **Figure 1. Literature search and study selection process.** Twenty-eight individual studies that met all of the inclusion and exclusion criteria. doi:10.1371/journal.pone.0091822.g001 ### 3.3 Inflammation activity The between-study heterogeneity was not significant ($I^2 = 35\%$, P = 0.204) for rs12979860. In the fixed-effects model, the pooled results indicated that IL28B rs12979860 genotype CC was associated with a higher possibility of severe inflammation activity (OR, 1.288; 95%CI, 1.050-1.581; P=0.015) (Fig. 3-a). For rs8099917, there was no or low heterogeneity ($I^2 = 0\%$, P = 0.598), and IL28B rs8099917 genotype TT was also associated with a higher possibility of severe inflammation activity (OR, 1.324; 95%CI, 1.110-1.579; P = 0.002) (Fig. 3-b). Egger's test showed no evidence of publication biases for rs12979860 (P = 0.448) and rs8099917 (P = 0.531). When restricted to studies in which only treatment-naïve patients were included, three studies (2192 patients) according to rs12979860 polymorphism and two studies (1769 patients) according to rs8099917 polymorphism were extracted. Significant heterogeneities were found for rs12979860 $(I^2 = 53\%, P = 0.120)$; thus, the random-effect model was applied. The pooled results indicated that IL28B rs12979860 genotype was not associated with inflammatory activity (OR, 1.340; 95%CI, 0.938-1.916; P = 0.108) (Fig. 3-c). For rs8099917, the betweenstudy heterogeneity was not significant ($I^2 = 0\%$, P = 0.585). In the fixed-effects model, genotype TT tended to be associated with a higher possibility of severe inflammation activity (OR, 1.217; 95%CI, 0.978-1.515; P = 0.079) (Fig. 3-d). Egger's test showed no evidence of publication bias in rs12979860 (P=0.646). For rs8099917, Egger's test was not applicable because only 2 studies were included. We also performed a meta-regression analysis for rs12979860 because significant heterogeneities were observed. Table 2 shows the results of these meta-regression analyses. Significant correlation was observed between rs12979860 polymorphisms and the proportion of patients with genotype 1 or 4 virus (slope, 2.992 ± 1.497 ; P=0.046). #### 3.4 Steatosis Significant heterogeneities were found for rs12979860 $(I^2 = 86\%, P < 0.001)$ and rs8099917 $(I^2 = 52\%, P = 0.082)$; thus, we applied the random-effects model for this outcome. The pooled results indicated that IL28B rs12979860 genotype CC was not associated with hepatic steatosis (OR, 1.062; 95%CI, 0.415-2.717, P = 0.901) (Fig. 4-a), whereas rs8099917 TT was significantly associated with a lower possibility of severe steatosis (OR, 0.580; 95%CI, 0.351-0.959; P = 0.034) (Fig. 4-b). Egger's test showed no evidence of publication biases for rs12979860 (P=0.238) or rs8099917 (P=0.182). We also performed a meta-regression analysis because significant heterogeneities were observed. Table 3 shows the results of these meta-regression analyses. In terms of
the effect of rs12979860 on steatosis, significant correlations were observed between the proportion of patients with genotype 1 or 4 virus (slope, -4.947 ± 1.086 ; P<0.001), the proportion of Caucasian patients (slope, 7.361±1.569; P<0.001), and the proportion of African-American patients (slope, -8.996 ± 1.918 ; P<0.001). We also observed a significant correlation between the effect of rs8099917 polymorphism on steatosis and the proportion of male patients (slope, 6.225 ± 2.530 ; P = 0.014) (Fig. 5). Finally, we observed significant correlations between rs8099917 polymorphisms and the proportion of patients with genotype 1 or 4 virus (slope, -2.704 ± 1.277 ; P=0.034), the proportion of Caucasian patients (slope, 1.168 ± 0.422 ; P=0.006), and the proportion of Asian patients (slope, -1.049 ± 0.398 ; P = 0.008). When restricted to studies in which only treatment-naïve patients were included, two studies (495 patients) according to rs12979860 polymorphism and four studies (812 patients) according to rs8099917 polymorphism were extracted. The between-study heterogeneities were not significant for rs12979860 ($I^2 = 0\%$, P = 0.823) and rs8099917 $(I^2 = 41\%, P = 0.166)$. For rs12979860, fixed-effect model analyses showed that rs12979860 genotype CC was significantly associated with a higher possibility of severe steatosis (OR, 1.708; 95%CI, 1.047-2.787; P = 0.032) (Fig. 4-c), whereas rs8099917 TT was significantly associated with a lower possibility of severe steatosis (OR, 0.675; 95%CI, 0.474-0.960; P=0.026) (Fig. 4-d). Egger's test showed no evidence of publication bias in rs8099917 (P = 0.554). For rs12979860, Egger's test was not applicable because only 2 studies were included. ### Discussion In the present study, we evaluated the association between IL28B polymorphisms and the background liver disease (fibrosis, inflammation activity, or steatosis) in patients with CHC. The rs12979860 CC genotype was significantly associated with a higher probability of severe fibrosis (Fig. 2-c), and the rs8099917 TT genotype tended to be associated with a higher possibility of severe fibrosis (Fig. 2-d). The accumulation of liver inflammation promotes liver fibrosis, and these polymorphisms are associated with the effect of IFN-based treatment; therefore, past treatment might alter the results. Thus, we also analyzed studies involving only patients without a history of IFN-based treatment; however, the results were not changed. The rs12979860 CC and rs8099917 TT genotypes were also associated with a higher possibility of severe inflammation activity. Genetic variations near the IL28B gene were originally reported as **Table 1.** Main characteristics of all studies included in the meta-analysis. | First author (year) | Ref. | Population ethnicity, region | IL-28B SNP
rsID, Allele | 3(3teatosis) | Patients* | | | HCV
genotype | Genotype for patients rs12979860 | | Genotype for patients rs8099917 | | |---------------------|------|--|---------------------------------|---|-----------|--------|-------|-----------------|----------------------------------|-------|---------------------------------|-------| | | | | | | Male | Female | Total | | cc | CT/TT | TT | TG/GG | | Abe (2010) | [48] | Asian, Japan | rs8099917 T/G | F, A: Inuyama | 212 | 152 . | 364 | 1/2 | | | 265 | 99 | | Honda (2010) | [49] | Asian, Japan | rs8099917 T/G | F, A: Inuyama | 58 | 33 | 91 | 1 | | | 60 | 31 | | Lotrich (2010) | [50] | Mixed (African-American/Caucasian), USA | rs12979860 C/T | F: Ishak | 101 | 32 | 133 | 1/2 | 57 | 76 | | | | Monte (2010) | [51] | Caucasian, Spain | rs12979860 C/T | F: Scheuer | 166 | 117 | 283 | 1–4 | 129 | 154 | | | | Thompson (2010) | [52] | Mixed (African-American/Caucasian/Asian/Hispanic), USA | rs12979860 C/T | F: METAVIR | 986 | 642 | 1628 | 1 | 538 | 1090 | | | | Bochud (2011) | [53] | Caucasian, Switzerland | rs12979860 C/T
rs8099917 T/G | F: Ishak, A: ALT S
Histological
finding | :: 163 | 79 | 242 | 1-3 | 90 | 150 | 150 | 92 | | Dill MT (2011) | [54] | Caucasian, Switzerland | rs12979860 C/T
rs8099917 T/G | F, A: METAVIR | 30 | 79 | 109 | 1–4 | 33 | 96 | 52 | 57 | | Fabris (2011) | [44] | Caucasian, Italy | rs12979860 C/T | F: Ishak | N.A | N.A | 434 | 1–4 | 133 | 301 | | | | Falleti (2011) | [55] | Caucasian, Italy | rs12979860 C/T | F: Ishak | 357 | 272 | 629 | 1-4 | 205 | 424 | | | | Kurosaki (2011) | [56] | Asian, Japan | rs8099917 T/G | F: METAVIR S:
Histological
finding | 250 | 246 | 496 | 1 | | | 269 | 106 | | Lagging (2011) | [57] | Caucasian, Sweden | rs12979860 C/T
rs8099917 T/G | F: Ishak S:
Histological
finding | 169 | 83 | 252 | 1–4 | 93 | 159 | 153 | 99 | | Lin (2011) | [58] | Asian, Taiwan | rs12979860 C/T
rs8099917 T/G | F: METAVIR | 123 | 68 | 191 | 1 | 171 | 20 | 170 | 21 | | Lindh (2011)-1 | [59] | Mixed (Caucasian/Asian), Sweden | rs12979860 C/T
rs8099917 T/G | F: Batts Ludwig | 67 | 43 | 110 | 1 | 38 | 72 | 66 | 44 | | Lindh (2011)-2 | [60] | Caucasian, Sweden | rs12979860 C/T | F: Ishak | 204 | 137 | 341 | 2/3 | 150 | 191 | | | | Marabita (2011) | [61] | Caucasian, Italy | rs12979860 C/T
rs8099917 T/G | F: Ishak | 129 | 118 | 247 | 1–4 | 88 | 159 | 131 | 116 | | Miyamura (2011) | [62] | Asian, Japan | rs8099917 T/G | F, A: Inuyama | 37 | 42 | 79 | 1 | | | 53 | 26 | | Moghaddam (2011) | [63] | Caucasian, Norway | rs12979860 C/T
rs8099917 T/G | F: APRI score | 166 | 115 | 281 | 3 | 129 | 152 | 201 | 80 | | Rueda (2011) | [64] | Caucasian, Spain | rs12979860 C/T | F, A: Scheuer | 246 | 177 | 423 | 1-4 | 83 | 184 | | | | Tillman (2011) | [35] | Mixed (African-American/Caucasian/Asian), USA | rs12979860 C/T
rs8099917 T/G | S: Histological finding | 215 | 110 | 325 | 1 | 88 | 237 | 97 | 67 | | Yu (2011) | [65] | Asian, Taiwan | rs8099917 T/G | F: Knodell and
Scheuer | 264 | 218 | 482 | 2 | | | 315 | 34 | | Asahina (2011) | [66] | Asian, Japan | rs12979860 C/T
rs8099917 T/G | F: Inuyama | 28 | 60 | 88 | 1 | 54 | 34 | 54 | 34 | Table 1. Cont. | First author (year) | Ref. | | IL-28B SNP
rsID, Allele | Outcome
measure
F(Fibrosis)
A(Activity)
S(Steatosis) | Patients* | | | HCV
genotype | Genotype for
patients
rs12979860 | | Genotype for patients rs8099917 | | |---------------------|------|------------------------|---------------------------------|---|-----------|--------|-------|-----------------|--|--|---------------------------------|-------| | | | | | | Male | Female | Total | | cc | CT/TT | TT | TG/GG | | Bochud (2012) | [47] | Caucasian, Switzerland | rs12979860 C/T
rs8099917 T/G | F, A: METAVIR | 870 | 657 | 1527 | 1-4 | 534 | 993 | 855 | 672 | | Mach (2012) | [67] | Slav: Poland | rs12979860 C/T | F: Batts Ludwig | 82 | 60 | 142 | 1. | 38 | 104 | | | | Miyashita (2012) | [68] | Asian, Japan | rs8099917 T/G | F, A: Desmet | 88 | 132 | 220 | 1/2 | | | 155 | 63 | | Ohnishi (2012) | [69] | Asian, Japan | rs8099917 T/G | S: Histological finding | 83 | 70 | 153 | 1 | | | 116 | 37 | | Rembeck (2012) | [70] | Caucasian, Sweden | rs12979860 C/T | F: Ishak | 199 | 140 | 339 | 2/3 | 144 | 179 | | | | Tolmane (2012) | [71] | Caucasian, Latvia | rs12979860 C/T | F: Knodell
histology activity
index S:
Histological
finding | 84 | 58 | 142 | 1-3 | 41 | 80 | | | | Toyoda (2012) | [72] | Asian, Japan | rs8099917 T/G | F, A: METAVIR | 139 | 133 | 272 | 1 | 1-1 to represent the second | and the second s | 187 | 59 | ^{*}Patients included in the original study. Thus, patients without information regarding IL28B polymorphism were also included. APRI, aminotransferase platelet ratio index. doi:10.1371/journal.pone.0091822.t001 Figure 2. Forest plot of the IL28B genotypes and the risk of severe fibrosis. (a)
rs12979860 in all patients, (b) rs8099917 in all patients, (c) rs12979860 in treatment-naïve patients, and (d) rs8099917 in treatment-naïve patients. doi:10.1371/journal.pone.0091822.g002 b strong predictors of a sustained viral response [17-20] or spontaneous clearance of HCV [21]. The level of IL28B gene transcripts is reportedly higher in patients homozygous for the IFN responsive allele [18,19]. Therefore, in patients with the rs12979860 CC and rs8099917 TT genotype, IL28B production, which induces expression of interferon-stimulated genes, including some inflammatory cytokines, was thought to be increased. This may be the underlying cause of the higher inflammation activity and progressed fibrosis in patients with the IFN responsive allele. In analysis with the studies involving only patients without a history of IFN-based treatment, rs12979860 CC and rs8099917 TT genotypes were associated with higher possibility of having severe inflammation activity; however, the differences did not reach to the significant level. Only three studies according to rs12979860 polymorphism and two studies according to rs8099917 polymorphism were included when restricted to studies with only treatment-naïve patients, and may be underpowered to detect the effects of IL28B polymorphisms on inflammation activity. The further analyses with larger sample are needed to confirm this association. Additionally, meta-regression analysis showed that the effect of the rs12979860 polymorphism was influenced by viral genotype distribution. This result may imply a different influence of rs12979860 polymorphism on immune response according to viral genotype in treatment-naïve patients. IL28B polymorphisms were also shown to be associated with lipid metabolism [25]. In the present study, the rs8099917 TT genotype was significantly associated with a lower possibility of severe steatosis. This association still remained statistically significant after we restricted to studies in which only treatmentnaïve patients were included. The lower hepatic steatosis in patients with the IFN responsive allele could be explained by a more efficient export of lipids from hepatocytes. Higher interferon expression was shown to lead to suppression of lipoprotein lipase, which would result in decreased conversion of VLDL to LDL and subsequent higher steatosis [30-33]. The difference in IL28B expression might cause an aberration of lipid metabolism in patients with CHC. We found no significant association of rs12979860 with steatosis. And when we restricted to treatmentnaïve patients, rs12979860 CC genotype was significantly associated with a higher possibility of severe steatosis. Previous studies have shown that racial differences or viral genotypes make a difference in the effects of rs12979860 and rs8099917 polymorphisms [34,35]. This may explain the discrepancy between the effect of rs12979860 and rs8099917 on hepatic steatosis. However, only four studies (962 patients) were included in the analysis of rs12979860; or when it comes to the studies with only treatment-naïve patients, only two studies (495 patients) were extracted. Thus, we should not make any definite conclusion on this matter right now. Further studies with larger sample sizes are needed to identify their exact correlation. According to the meta-regression analysis, the effect of rs8099917 polymorphisms on steatosis became smaller with the а b **Figure 3.** Forest plot of the **IL28B** genotypes and the risk of severe inflammation activity. (a) rs12979860 and (b) rs8099917. (c) rs12979860 in treatment-naïve patients, and (d) rs8099917 in treatment-naïve patients. doi:10.1371/journal.pone.0091822.g003 increase in the male proportion (Fig. 5), suggesting that a sexual dimorphism might be involved in the effect of rs8099917 polymorphisms on the liver fat content. Although the present study cannot explain the interaction between the polymorphism and sex, immune systems responding to IFN are reportedly controlled by estrogenic sex hormones [36,37]. Differences in IL28B expression mediated by sex hormones could be a possible mechanism for the sexual dimorphism in the effect of rs8099917 polymorphisms on liver steatosis. The rs738409 genotype within the patatin-like phospholipase domain containing 3 locus was also reported to be associated with hepatic steatosis in patients with CHC [38–40]. Notably, previous meta-analysis evaluating the effect of patatin-like phospholipase domain containing 3 polymorphisms on steatosis also reported a **Table 2.** Meta-regression analysis between each continuous variable among the studies (only treatment- naïve patients were included) and the effect (log odds ratio) of IL28B polymorphisms on inflammation activity. | Variables | Slope* | Standard error | P-value | |--|--------|----------------|--| | Proportion of patients with genotype 1 or 4 virus, per 1% increase | | | | | rs12979860 | 2.992 | 1.497 | 0.046 | | Proportion of male patients, per 1% increase | | | | | rs12979860 | -2.963 | 5.802 | 0.610 | | Proportion of Caucasian patients, per 1% increase | | | | | rs12979860† | _ | _ | | | Proportion of African-American patients, per 1% increase | | | | | rs12979860† | _ | | _ | | Proportion of Asian patients, per 1% increase | | | | | rs12979860† | | | and the second s | *Positive (negative) slope values indicate that the proportions of patients with the rs12979860 CC genotype with severe inflammation activity are increasing (decreasing) as the values of each contentious variable (proportions of genotype 1 or 4 virus, male, or each race) is increasing. [†]We could not perform meta-regression analyses for these outcomes because only caucasian patients were included in all 3 studies included in this analysis. doi:10.1371/journal.pone.0091822.t002 а C b d Statistics for each study Odds ratio and 95% CI Odds Lower Upper ratio limit limit Z-Valuep-Value Bochud2011 1.798 0.925 3.498 1.729 Lagging2011 1.608 0.781 3.310 1.289 0.084 Fixed 1.708 1.047 2.787 2,145 0.032 0.01 10 100 0,1 CT/TT cc Figure 4. Forest plot of the IL28B genotypes and the risk of hepatic steatosis. (a) rs12979860 and (b) rs8099917. (c) rs12979860 in treatment-naïve patients, and (d) rs8099917 in treatment-naïve patients. doi:10.1371/journal.pone.0091822.g004 Table 3. Meta-regression analysis between each continuous variable among the studies and the effect (log odds ratio) of IL28B polymorphisms on steatosis. | Variables | Slope* | Standard error | P-value | |--|--------|----------------|---------| | Proportion of patients with genotype 1 or 4 virus, per 1% increase | | | | | rs12979860 | -4.947 | 1.086 | <0.001 | | rs8099917 | -2.704 | 1.277 | 0.034 | | Proportion of male patients, per 1% increase | | | | | rs12979860 | -2.899 | 16.577 | 0.861 | | rs8099917 | 6.225 | 2.530 | 0.014 | | Proportion of Caucasian patients, per 1% increase | | | | | rs12979860 | 7.361 | 1.569 | <0.001 | | rs8099917 | 1.168 | 0.422 | 0.006 | | Proportion of African-American patients, per 1% increase | | | | | rs12979860 | -8.996 | 1.918 | < 0.001 | | rs8099917 | 0.142 | 2.147 | 0.947 | | Proportion of Asian patients, per 1% increase | | | | | rs12979860† | - | | - | | rs8099917 | -1.049 | 0.398 | 800.0 | Positive (negative) slope values indicate that the proportions of patients with the rs12979860 CC or rs8099917 TT genotypes with severe steatosis are increasing (decreasing) as the values of each contentious variable (proportions of genotype 1 or 4 virus, male, or each race) is increasing. -63- doi:10.1371/journal.pone.0091822.t003 We could not perform a meta-regression analysis for this outcome because only one patient was included in the corresponding studies. Figure 5. Meta-regression plot for log odds ratios in rates of patients with severe hepatic steatosis by proportion of males
(%) in rs8099917. doi:10.1371/journal.pone.0091822.g005 negative correlation between the male proportion and the effect of rs738409 on the liver fat content in nonalcoholic fatty liver disease [41]. Interestingly, the meta-regression analysis in the present study showed that the effect of the IL28B (rs12979860 and rs8099917) polymorphisms on steatosis was also influenced by racial and viral genotype distributions. In the present study, we included studies that did not report the associations between IL28B genotypes and background liver diseases as study outcomes, but provided raw data that allowed us to calculate the OR for each outcome, which may have minimized potential publication bias. In fact, no publication bias was observed in the present study. The Human Genome Epidemiology Network highlighted the necessity of meta-analysis before evidence for a particular association can be regarded as strong [42]. The impact of IL28B genotypes on the disease progression found in the present meta-analysis may provide clinically important information in the follow-up of patients with CHC. The effect of IL28B polymorphisms on hepatocarcinogenesis, which is also crucial information in the HCC screening of patients with CHC, remains controversial [43-47]. Further analysis with larger sample sizes may be needed to elucidate the exact effect of IL28B polymorphisms on hepatocarcinogenesis. A potential limitation of this study is inter-study variability in the outcome measure and the definition of "severe" among studies, where some discrepancies among studies exist. The studies without a pathological diagnosis, using laboratory data as surrogates, were also included. These studies may have diminished the accuracy of our research results concerning liver disease severity. In conclusion, the present study highlighted the impact of IL28B polymorphisms on liver fibrosis, inflammation activity, and steatosis in patients with CHC. Disease progression appeared to be promoted in patients with rs12979860 CC or rs8099917 TT genotypes. The current findings may provide clinically important information in the follow-up of patients with CHC. ### **Supporting Information** Checklist S1 PRISMA 2009 Checklist. (DOC) ### **Acknowledgments** The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/IWcYpT. ### **Author Contributions** Conceived and designed the experiments: MS RT NK. Performed the experiments: MS MK RT. Analyzed the data: MS RT. Contributed reagents/materials/analysis tools: MS. Wrote the paper: MS RT HY. Critical revision of manuscript: NF MT KK. ### References - Barrera JM, Bruguera M, Ercilla MG, Gil C, Celis R, et al. (1995) Persistent hepatitis C viremia after acute self-limiting posttransfusion hepatitis C. Hepatology 21: 639–644. - Poynard T, Bedossa P, Opolon P (1997) Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet 349: 825–832. - Hourigan LF, Macdonald GA, Purdie D, Whitehall VH, Shorthouse C, et al. (1999) Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology 29: 1215–1219. - Powell EE, Edwards-Smith CJ, Hay JL, Clouston AD, Crawford DH, et al. (2000)Host genetic factors influence disease progression in chronic hepatitis C. Hepatology 31: 828–833. - Massard J, Ratziu V, Thabut D, Moussalli J, Lebray P, et al. (2006) Natural history and predictors of disease severity in chronic hepatitis C. J Hepatol 44: S19-94 - Bochud PY, Cai T, Overbeck K, Bochud M, Dufour JF, et al. (2009) Genotype 3 is associated with accelerated fibrosis progression in chronic hepatitis C. J Hepatol 51: 655–666. - De Nicola S, Aghemo A, Rumi MG, Colombo M (2009) HGV genotype 3: an independent predictor of fibrosis progression in chronic hepatitis C. J Hepatol 51: 964–966. - Thursz M, Yallop R, Goldin R, Trepo C, Thomas HC (1999) Influence of MHC class II genotype on outcome of infection with hepatitis C virus. The HENCORE group. Hepatitis C European Network for Cooperative Research. Lancet 354: 2119–2124. - Pradat P, Tillmann HL, Sauleda S, Braconier JH, Saracco G, et al. (2007) Longterm follow-up of the hepatitis C HENCORE cohort: response to therapy and occurrence of liver-related complications. J Viral Hepat 14: 556–563. - Kato N, Ji G, Wang Y, Baba M, Hoshida Y, et al. (2005) Large-scale search of single nucleotide polymorphisms for hepatocellular carcinoma susceptibility genes in patients with hepatitis C. Hepatology 42: 846–853. - Urabe Y, Ochi H, Kato N, Kumar V, Takahashi A, et al. (2013) A genome-wide association study of HCV-induced liver cirrhosis in the Japanese population identifies novel susceptibility loci at the MHC region. J Hepatol; 58 (5): 875–82 - Patin E, Kutalik Z, Guergnon J, Bibert S, Nalpas B, et al. (2012) Genome-Wide Association Study Identifies Variants Associated with Progression of Liver Fibrosis from HCV Infection. Gastroenterology; 143 (5): 1244–52 - Hadziyannis SJ, Sette H Jr, Morgan TR, Balan V, Diago M, et al. (2004) Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med 140: 346–355. - Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, et al. (2001) Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358: 958–965. - McHutchison JG, Everson GT, Gordon SC, Jacobson IM, Sulkowski M, et al. (2009) Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med 360: 1827–1838. - Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, et al. (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364: 1195–1206. - Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, et al. (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461: 399–401. - Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, et al. (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41: 1105–1109. - Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, et al. (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41: 1100–1104. - Rauch A, Kutalik Z, Descombes P, Cai T, Di Iulio J, et al. (2010) Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138: 1338–1345, 1345 e1331– 1337 - Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, et al. (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461: 798–801. - Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, et al. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5: 730–737. - Moriyama M, Kato N, Otsuka M, Shao RX, Taniguchi H, et al. (2007) Interferon-beta is activated by hepatitis C virus NS5B and inhibited by NS4A, NS4B, and NS5A. Hepatol Int 1: 302–310. - Li CZ, Kato N, Chang JH, Muroyama R, Shao RX, et al. (2009) Polymorphism of OAS-1 determines liver fibrosis progression in hepatitis C by reduced ability to inhibit viral replication. Liver Int 29: 1413–1421. - Li JH, Lao XQ, Tillmann HL, Rowell J, Patel K, et al. (2010) Interferon-lambda genotype and low serum low-density lipoprotein cholesterol levels in patients with chronic hepatitis C infection. Hepatology 51: 1904–1911. - Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2009) Introduction to Meta-analysis. West Sussex: John Wiley & Sons Ltd. - Baker WL, White CM, Cappelleri JC, Kluger J, Coleman CI (2009) Understanding heterogeneity in meta-analysis: the role of meta-regression. Int J Clin Pract 63: 1426–1434. - Thompson SG, Sharp SJ (1999) Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 18: 2693–2708. - Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634. - Schectman G, Kaul S, Mueller RA, Borden EC, Kissebah AH (1992) The effect of interferon on the metabolism of LDLs. Arterioscler Thromb 12: 1053–1062. - Ehnholm C, Aho K, Huttunen JK, Kostiainen E, Mattila K, et al. (1982) Effect of interferon on plasma lipoproteins and on the activity of postheparin plasma lipases. Arteriosclerosis 2: 68–73. - Shinohara E, Yamashita S, Kihara S, Hirano K, Ishigami M, et al. (1997) Interferon alpha induces disorder of lipid metabolism by lowering postheparin lipases and cholesteryl ester transfer protein activities in patients with chronic hepatitis C. Hepatology 25: 1502–1506. - Andrade RJ, Garcia-Escano MD, Valdivielso P, Alcantara R, Sanchez-Chaparro MA, et al. (2000) Effects of interferon-beta on plasma lipid and lipoprotein composition and post-heparin lipase activities in patients with chronic hepatitis C. Aliment Pharmacol Ther 14: 929–935. - Sarrazin C, Susser S, Doehring A, Lange CM, Muller T, et al. (2011) Importance of IL28B gene polymorphisms in hepatitis C virus genotype 2 and 3 infected patients. J Hepatol 54: 415–421. - Tillmann HL, Patel K, Muir AJ, Guy CD, Li JH, et al. (2011) Beneficial IL28B genotype associated with lower frequency of hepatic steatosis in patients with chronic hepatitis C. J Hepatol; 55 (6): 1195–200 Nakaya M, Tachibana H, Yamada K (2006) Effect of estrogens on the - Nakaya M, Tachibana H, Yamada K (2006) Effect of estrogens on the interferon-gamma producing cell population of mouse splenocytes. Biosci Biotechnol Biochem 70: 47–53. - Siracusa MC, Overstreet MG, Housseau F, Scott AL, Klein SL (2008) 17betaestradiol alters the activity of conventional and IFN-producing killer dendritic cells. J
Immunol 180: 1423–1431. - Cai T, Dufour JF, Muellhaupt B, Gerlach T, Heim M, et al. (2011) Viral Genotype-Specific Role of PNPLA3, PPARG, MTTP and IL28B in Hepatitis C Virus-Associated Steatosis. J Hepatol. - Trepo E, Pradat P, Potthoff A, Momozawa Y, Quertinmont E, et al. (2011) Impact of patatin-like phospholipase-3 (rs738409 C>G) polymorphism on fibrosis progression and steatosis in chronic hepatitis C. Hepatology 54: 60–69. - Valenti L, Rumi M, Galmozzi E, Aghemo A, Del Menico B, et al. (2011) Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C. Hepatology 53: 791–799. - 41. Sookoian S, Pirola CJ (2011) Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 53: 1883–1894. - Ioannidis JP, Boffetta P, Little J, O'Brien TR, Uitterlinden AG, et al. (2008) Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 37: 120–132. - 43. Asahina Y, Tanaka K, Suzuki Y, Tamaki N, Hoshioka T, et al. (2011) Association between IL28B gene variation and development of hepatocellular carcinoma after interferon therapy in patients with chronic hepatitis c. Journal of Hepatology 54: S37. - 44. Fabris C, Falleti E, Cussigh A, Bitetto D, Fontanini E, et al. (2011) IL-28B rs12979860 C/T allele distribution in patients with liver cirrhosis: role in the course of chronic viral hepatitis and the development of HCC. J Hepatol 54: 716–722. - Joshita S, Umemura T, Katsuyama Y, Ichikawa Y, Kimura T, et al. (2011) Association of IL28B gene polymorphism with development of hepatocellular carcinoma in Japanese patients with chronic hepatitis C virus infection. Hum Immunol; 73 (3): 298–300 - Miura M, Mackawa S, Kadokura M, Sueki R, Komase K, et al. (2011) Analysis of viral amino acids sequences and the IL28B SNP influencing the development of hepatocellular carcinoma in chronic hepatitis C. Hepatol Int; Aug 17 [Epub ahead of print]. - Bochud PY, Bibert S, Kutalik Z, Patin E, Guergnon J, et al. (2011) IL28B alleles associated with poor hepatitis C virus (HCV) clearance protect against inflammation and fibrosis in patients infected with non-1 HCV genotypes. Hepatology; 55 (2): 384–94 - Abe H, Ochi H, Maekawa T, Hayes CN, Tsuge M, et al. (2010) Common variation of IL28 affects gamma-GTP levels and inflammation of the liver in chronically infected hepatitis C virus patients. J Hepatol 53: 439–443. - Honda M, Sakai A, Yamashita T, Nakamoto Y, Mizukoshi E, et al. (2010) Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C. Gastroenterology 139: 499–509. - Lotrich FE, Loftis JM, Ferrell RE, Rabinovitz M, Hauser P (2010) IL28B Polymorphism Is Associated with Both Side Effects and Clearance of Hepatitis C During Interferon-Alpha Therapy. J Interferon Cytokine Res; Dec 6 [Epub ahead of print]. - Montes-Cano MA, Garcia-Lozano JR, Abad-Molina C, Romero-Gomez M, Barroso N, et al. (2010) Interleukin-28B genetic variants and hepatitis virus infection by different viral genotypes. Hepatology 52: 33–37. - 52. Thompson AJ, Muir AJ, Sulkowski MS, Ge D, Fellay J, et al. (2010) Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus. Gastroenterology 139: 120–129 e118. - Bochud PY, Bibert S, Negro F, Haagmans B, Soulier A, et al. (2011) IL28B polymorphisms predict reduction of HCV RNA from the first day of therapy in chronic hepatitis C. J Hepatol; 55 (5): 980–8. - Dill MT, Duong FH, Vogt JE, Bibert S, Bochud PY, et al. (2011) Interferoninduced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C. Gastroenterology 140: 1021–1031. - Falleti E, Bitetto D, Fabris C, Cussigh A, Fornasiere E, et al. (2011) Role of Interleukin 28B rs12979860 C/T Polymorphism on the Histological Outcome of Chronic Hepatitis C: Relationship with Gender and Viral Genotype. J Clin Immunol; 31 (5): 891–9. - Kurosaki M, Tanaka Y, Nishida N, Sakamoto N, Enomoto N, et al. (2011) Pretreatment prediction of response to pegylated-interferon plus ribavirin for chronic hepatitis C using genetic polymorphism in IL28B and viral factors. J Hepatol 54: 439–448. - Lagging M, Askarich G, Negro F, Bibert S, Soderholm J, et al. (2011) Response prediction in chronic hepatitis C by assessment of IP-10 and IL28B-related single nucleotide polymorphisms. PLoS One 6: e17232. - 58. Lin CY, Chen JY, Lin TN, Jeng WJ, Huang CH, et al. (2011) IL28B SNP rs12979860 is a critical predictor for on-treatment and sustained virologic response in patients with hepatitis C virus genotype-1 infection. PLoS One 6: - 59. Lindh M, Lagging M, Arnholm B, Eilard A, Nilsson S, et al. (2011) IL28B polymorphisms determine early viral kinetics and treatment outcome in patients receiving peginterferon/ribavirin for chronic hepatitis C genotype 1. J Viral Hepat 18: e325-331. - Lindh M, Lagging M, Farkkila M, Langeland N, Morch K, et al. (2011) Interleukin 28B gene variation at rs12979860 determines early viral kinetics during treatment in patients carrying genotypes 2 or 3 of hepatitis C virus. J Infect Dis 203: 1748-1752. - 61. Marabita F, Aghemo A, De Nicola S, Rumi MG, Cheroni C, et al. (2011) Genetic variation in the interleukin-28B gene is not associated with fibrosis progression in patients with chronic hepatitis C and known date of infection. Hepatology 54: 1127-1134. - 62. Miyamura T, Kanda T, Nakamoto S, Wu S, Fujiwara K, et al. (2011) Hepatic STAT1-nuclear translocation and interleukin 28B polymorphisms predict treatment outcomes in hepatitis C virus genotype 1-infected patients. PLoS ONE; 6 (12): e28617. - Moghaddam A, Melum E, Reinton N, Ring-Larsen H, Verbaan H, et al. (2011) Hugas genetic variation and treatment response in patients with hepatitis C virus genotype 3 infection. Hepatology 53: 746–754. de Rueda PM, Lopez-Nevot MA, Saenz-Lopez P, Casado J, Martin-Casares A, et al. (2011) Importance of Host Genetic Factors HLA and IL28B as Predictors - of Response to Pegylated Interferon and Ribavirin. Am J Gastroenterol. - 65. Yu ML, Huang CF, Huang JF, Chang NC, Yang JF, et al. (2011) Role of interleukin-28B polymorphisms in the treatment of hepatitis C virus genotype 2 infection in Asian patients. Hepatology 53: 7–13. Asahina Y, Tsuchiya K, Muraoka M, Tanaka K, Suzuki Y, et al. (2011) - Association of gene expression involving innate immunity and genetic variation in IL28B with antiviral response. Hepatology - Mach T, Ciesla A, Sanak M, Golwacki M, Warunek W, et al. (2012) The importance of IL28B polymorphism in response to pegylated interferon (alpha) and ribavirin in chronic hepatitis caused by HCV genotype 1b. Przeglad Gastroenterologiczny 7: 38-42. - Miyashita M, Ito T, Sakaki M, Kajiwara A, Nozawa H, et al. (2012) Genetic polymorphism in cyclooxygenase-2 promoter affects hepatic inflammation and fibrosis in patients with chronic hepatitis C. J. Viral Hepat 19: 608–614. Ohnishi M, Tsuge M, Kohno T, Zhang Y, Abe H, et al. (2012) IL28B polymorphism is associated with fatty change in the liver of chronic hepatitis C - patients. J Gastroenterol 47: 834–844. - Rembeck K, Alsio A, Christensen PB, Farkkila M, Langeland N, et al. (2012) Impact of IL28B-related single nucleotide polymorphisms on liver histopathology in chronic hepatitis C genotype 2 and 3. PLoS Onc 7: c29370. Tolmane I, Rozentale B, Keiss J, Ivancenko L, Subnikova N, et al. (2012) - Interleukin 28B Gene Polymorphism and Association with Chronic Hepatitis C - Therapy Results in Latvia. Hepat Res Treat: 324090. Toyoda H, Kumada T, Tada T, Hayashi K, Honda T, et al. (2012) Predictive value of early viral dynamics during peginterferon and ribavirin combination therapy based on genetic polymorphisms near the IL28B gene in patients infected with HCV genotype 1b. J Med Virol 84: 61–70. # Specific delivery of microRNA93 into HBV-replicating hepatocytes downregulates protein expression of liver cancer susceptible gene MICA Motoko Ohno^{1,*}, Motoyuki Otsuka^{1,2,*}, Takahiro Kishikawa¹, Chikako Shibata¹, Takeshi Yoshikawa¹, Akemi Takata¹, Ryosuke Muroyama³, Norie Kowatari³, Masaya Sato¹, Naoya Kato³, Shun'ichi Kuroda⁴ and Kazuhiko Koike¹ Correspondence to: Motoyuki Otsuka, email: otsukamo-tky@umin.ac.jp Keywords: Hepatitis; Bionanocapsules; Drug delivery; Primary hepatocyte Received: June 13, 2014 Accepted: June 24, 2014 Published: June 26, 2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ### **ABSTRACT** Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC). To date, the lack of efficient in vitro systems supporting HBV infection and replication has been a major limitation of HBV research. Although primary human hepatocytes support the complete HBV life cycle, their limited availability and difficulties with gene transduction remain problematic. Here, we used human primary hepatocytes isolated from humanized chimeric uPA/SCID mice as efficient sources. These hepatocytes supported HBV replication in vitro. Based on analyses of mRNA and microRNA (miRNA) expression levels in HBV-infected hepatocytes, miRNA93 was significantly downregulated during HBV infection. MiRNA93 is critical for regulating the expression levels of MICA protein, which is a determinant for HBV-induced HCC susceptibility. Exogenous addition of miRNA93 in HBV-infected hepatocytes using bionanocapsules consisted of HBV envelope L proteins restored MICA protein expression levels in the supernatant. These results suggest that the rescued suppression of soluble MICA protein levels by
miRNA93 targeted to HBVinfected hepatocytes using bionanocapsules may be useful for the prevention of HBVinduced HCC by altering deregulated miRNA93 expression. ### INTRODUCTION Hepatitis B virus (HBV) infection is a major global health problem, and more than 350 million people globally are chronic carriers of the virus [1]. A significant number of these carriers suffer from either liver failure or hepatocellular carcinoma (HCC) during the late stages of the disease [2]. In fact, chronic infection with HBV is responsible for 60% of HCC cases in Asia and Africa and at least 20% those in Europe, Japan, and the United States [3]. While nucleoside and nucleotide analogs have been applied in the attempts to suppress HBV replication [4, 5], complete elimination of HBV (including cccDNA) remains difficult [6, 7], and an increased understanding of HBV replication and pathogenesis at the molecular level is essential for clinical management of chronic HBV infection. However, the lack of appropriate cell culture systems supporting stable and efficient HBV infection has been a major limitation. Although transient transfection or viral transfer of HBV genes or genomes are used in the study of specific steps of the HBV cell cycle [8-12], they do not accurately reflect the biology of HBV infection and replication. Thus, humanized mice are used for hepatitis virus research [13-18]. Although these mice are useful, immune deficient, chimeric mice are difficult to handle ¹ Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ² Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan ³ Unit of Disease Control Genome Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan ⁴ Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan ^{*}These authors contributed equally to this work and maintain. Therefore, a more convenient *in vitro* system is required for HBV research. Primary human hepatocytes can support the complete HBV life cycle *in vitro* [7, 19], but a major drawback is their limited availability. To overcome difficulties regarding availability, we used chimeric mice as sources of primary human hepatocytes, which grow robustly during the establishment of chimeric mice, due to continual liver damage induced by urokinase-type plasminogen activator (uPA) [14, 15]. Another shortcoming of utilizing primary human hepatocytes is their difficulty with gene transduction due to the low transfection efficiency of their primary cell-like nature. Efficient gene delivery methods will significantly improve studies on primary hepatocytes for HBV replication. In addition, cell-specific targeting is required for efficient drug delivery *in vivo*. As a specific gene delivery method to liver-derived cells, bionanocapsules (BNCs) consisted of HBV envelope L particles have been tested for the selective delivery of genes, drugs, or siRNAs into liver-derived cells [20, 21]. Because these BNCs are consisted of HBV L protein, they may be applicable for drug delivery to HBV-infected primary human hepatocytes. MicroRNAs (miRNAs) endogenous are ~22-nucleotide RNAs that mediate important generegulatory events by base-pairing with mRNAs and activating their repression [22]. We previously reported that modifying the expression of miRNAs in liver cells can efficiently regulate the expression levels of the MHC class I polypeptide-related sequence A (MICA) protein [23], which we previously identified as a crucial factor for the susceptibility of hepatitis virus-induced HCC and possibly hepatitis virus clearance [24, 25]. While emerging evidence suggests that miRNAs play crucial roles in chronic HBV infection [26], the comprehensive changes in miRNA expression levels induced by HBV infection in human hepatocytes or in alternative systems reflecting HBV-infected hepatocytes have not been explored. In this study, we infected primary human hepatocytes isolated from chimeric mice with HBV and identified the transcripts and miRNAs whose expression levels changed. We explored whether BNCs carrying synthesized miRNAs could successfully deliver miRNAs into primary hepatocytes and rescue the modulated miRNA expression due to HBV replication. We found that BNCs carrying synthesized miRNA93 could efficiently restore deregulated soluble MICA protein levels in the supernatant of HBV-replicating primary hepatocytes. These results suggest that miRNA93 delivery into HBV-replicating hepatocytes using BNC methods may enhance HBV immune clearance or suppress HCC by altering miRNA93 levels in HBV-infected cells. ### RESULTS ## Changes in expression levels of transcripts and miRNAs during HBV replication in human primary hepatocytes We examined changes in transcript and miRNA expression levels during HBV infection and replication in hepatocytes. Primary human hepatocytes were used for maintaining HBV replication in vitro. We first isolated primary hepatocytes from humanized chimeric mice. To examine the infectivity of HBV into the primary hepatocytes in vitro, HBsAg and HBV-DNA levels in the cell culture supernatant were measured after the cells were infected with approximately 1.5×10^7 copies of HBV/well in a 24-well plate at day 0. Although both HBsAg and HBV-DNA levels transiently decreased at approximately day 3, levels of both started to increase and were maintained until after day 23 post-infection (Figure 1a and b). These results suggested that human primary hepatocytes isolated from chimeric mice can efficiently support HBV replication in vitro, which can be used as an efficient in vitro HBV replication system. To examine comprehensive changes in mRNA and miRNA expression levels in HBV-infected hepatocytes. cells at day 7 post-infection were collected and subjected to cDNA as well as miRNA microarrays. Among 24,460 genes examined, 65 were significantly upregulated by more than 4-fold, and 29 were downregulated to less than 25% (Supplementary Table 1 and 2); however, more than 800 total genes were upregulated or downregulated if the thresholds of the changes were set at 2-fold and 1.5-fold, respectively (Figure 1c; complete datasets have been deposited as GEO accession number: GSE55928). Among the upregulated genes, those associated with the cytochrome family, such as CYP2A7, CYP2C8, CYP2A6, CYP3A4, changed significantly, which was consistent with previous reports [27, 28]. However, few inflammatory cytokines or genes associated with cell growth changed significantly. Based on these results, host factors related to innate immunity may not sense HBV (at least under these replicating conditions), suggesting that this system may mimic the status of hepatitis B patients before seroconversion, in whom inflammation seldom occurs regardless of the high viral load. Regarding changes in miRNA expression levels during HBV replication, among 2,019 mature miRNAs, 35 were upregulated and 14 downregulated by an increase or decrease of more than two-fold (Figure 1d and Supplementary Tables 3 and 4; complete datasets have been deposited as GEO accession number: GSE55929). Among these miRNAs, miR93-5p was significantly downregulated during HBV replication by more than 50%. Since miRNA93 regulates the expression levels of the MICA protein [23, 29], which is involved in the susceptibility to hepatocellular carcinoma in chronic hepatitis patients [24, 25], we focused on this miRNA in further analyses. ### Efficient delivery of miRNAs into liver cell lines using bionanocapsules Efficient delivery methods of genes or compounds into targeted tissues or cells are essential to translate the *in vitro* results into clinical settings. Here, we utilized BNCs [21, 30, 31], which were originally developed to deliver genes and drugs with high efficiency and specificity to human liver-derived cells, as an efficient delivery method for miRNAs into human liver cells, including primary hepatocytes. Since BNCs are composed of HBV L proteins, the distribution of these BNCs and infected HBV should be similar. To confirm the efficiency of delivery of miRNAs into liver-derived cells by BNCs, we delivered BNCs carrying let-7g or miRNA93 to the human hepatocellular carcinoma cell lines, Huh7 and HepG2 cells, and to human normal hepatocytes immortalized with SV40 large T antigen, Fa2N4 cells [28]. The day after delivery of the BNCs, cells were collected and subjected to Northern blotting against let-7g, miRNA93, and U6, the loading control, and the results showed successful delivery of miRNAs into all cell lines tested (Figure 2a). The biological function of the delivered miRNAs was confirmed using luciferase-based reporters, which measured let-7g and miRNA93 functions [23]. Huh7 and Hep3B cells transfected with reporter constructs were delivered with let-7g or miRNA93 using BNCs, followed by a luciferase assay at the next day. Delivered miRNAs significantly decreased the corresponding luciferase activity, suggesting that the delivered miRNAs were functioning within the cells (Figure 2b). We next examined the delivery of miRNAs into 293T cells (human embryonic kidney cell lines) to explore cell-specificity. Only a small increase in miRNA93 expression levels was observed 24 hours after transfer into 293T cells, based on Northern blots (Figure 2c), indicating that the BNCs had high specificity for hepatocyte-derived cells. The expression of transferred miRNA into Huh7 cells could be observed even 3 days after delivery (Figure 2d), suggesting that the delivered miRNAs are expressed Figure 1: Comprehensive transcriptome and miRNA analyses in HBV-replicating human primary hepatocytes. a, b, Efficient HBV replication in human primary hepatocytes isolated from chimeric mice. Primary human hepatocytes isolated from chimeric mice were seeded into the wells of a 24-well plate. Serum from HBV-infected patients was added to infect the cells with HBV. Media was changed at the indicated days (▼). The supernatant was
collected when the media was changed for the analyses of HBsAg levels (a) and HBV-DNA levels (b). Data represent the means ± s.d. of three independent experiments. c, Scatter plot reflecting the transcriptomic results comparing the control and HBV-replicating primary human hepatocytes. Cells at day 7 after HBV infection were used for the analyses. Intensity normalization was performed using global normalization based on the expression levels of all genes analyzed. Dashed lines indicate the thresholds: two-fold increase or 50% decrease in expression levels. The full data are deposited in NCBI GEO database accession: GSE55928. d, A scatter plot of the miRNA microarray results was used to determine the expression levels of comprehensive mature miRNAs. Total RNA from control and HBV-replicating primary hepatocytes at day 7 after infection was used. Dashed lines indicate the thresholds: two-fold increase or 50% decrease in expression levels. Intensity normalization was performed using global normalization based on the expression levels of all miRNAs. The arrow indicates the result for miRNA93. The full data are deposited in NCBI GEO database accession: GSE55929. for several days. ### miRNA delivery into human primary hepatocytes using bionanocapsules Based on the efficient delivery of miRNA via BNCs into human liver-derived cell lines, we examined the BNC-mediated delivery of miRNAs into non-dividing human primary hepatocytes isolated from chimeric mice, as described above. BNCs could deliver miRNAs efficiently, even into non-dividing human primary hepatocytes, based on Northern blots (Figure 3a), irrespectively of the use of Polybren (Figure 3a). Since the expression levels of miRNA93 were downregulated by HBV replication (Figure 1d and Supplementary Table 4), we delivered miRNA93 via BNCs into HBV replicating human hepatocytes to rescue the downregulation of miRNA93 levels and examine the effects of decreased miRNA93 on transcript levels (Figure 3b). The rescue of miRNA93 expression, recovered the baseline-level expression of some genes, such as 17-beta-hydroxysteroid dehydrogenase 14 (HSD17B14) and tripartite motif-containing protein 31 (TRIM 31), which Day 0 Day 1 Day 2 Day 3 Figure 2: Efficient delivery of miRNAs into liver cell lines using BNCs. a, Northern blotting of miRNAs delivered into liver cells by BNCs. Liver cancer cell lines, Huh7 and Hep3B, and primary hepatocytes immortalized by SV40, Fa2N4, were incubated with BNCs harboring the indicated miRNAs (miRNA93 or let7g) or BNCs without miRNAs (NC). After 24 hours, cells were harvested and subjected to analysis. Membranes were re-probed for let7g, miRNA93, and U6 as a loading control. The results shown are representative of three independent experiments. b, miRNAs delivered using BNCs were biologically functional. Huh7 and Hep3B cells were transfected with the indicated reporter constructs, which indicate the activity of each miRNA function. Twenty-four hours after transfection, cells were mixed with BNCs containing let7g (black bar), miRNA93 (gray bar), or negative control (white bar). Forty-eight hours after transfection, cells were subjected to a dual luciferase assay. Data shown represent the means \pm s.d. of the raw ratios (FL/RL), obtained by dividing the firefly luciferase values by the renilla luciferase values, of three independent experiments. *p < 0.05. c, Delivery of miRNA9 via BNCs were liver cell-specific. The 293T cells (human embryonic kidney cells) were incubated with BNCs containing let7g, miRNA93, or negative control (NC). After 24 hours, cells were subjected to Northern blotting for miRNA93. U6 was used as a loading control. The results shown are representative of two independent experiments. d, miRNA93 expression in Huh7 cells after the delivery of miRNA93 via BNCs. Cells were sequentially collected after incubation with BNCs containing miRNA93 and subjected to Northern blotting. U6 was used as a loading control. The results shown are representative of three independent experiments. NC let7g miR93 were increased by HBV replication (Supplementary Table 1), suggesting that the mRNA levels of these genes may be directly or indirectly regulated by miRNA93. Although the enhanced decay of target transcripts by miRNAs has been reported [22, 32], miRNAs generally function as translational repressors [33]. However, these miRNA93 delivery results may not be accurate due to direct or indirect effects of miRNA93. In addition, changes in protein levels may differ from our transcript expression results. ### Modulation of MICA protein expression levels by delivery of miRNA93 using BNCs We previously identified miRNA93 as a critical regulator of MICA protein expression [23], which plays a role in the susceptibility to HBV-induced HCC [25]. MiRNA93 regulates MICA protein levels, but not transcript levels [23, 29]. Although it was found that miRNA93 expression levels decreased during HBV replication in primary hepatocytes (Figure 1d and Supplementary Table 4), MICA transcript levels were not affected (GEO accession number: GSE55928), suggesting that the effects of miRNA93 on MICA may be mediated by translational repression and not by mRNA decay, as we reported previously [23]. To confirm changes in the expression level of the MICA protein on the cell surface of primary hepatocytes induced by HBV infection, cells were subjected to FACS analyses. However, the protein expression levels on the cell surface did not change significantly (Figure 4a). MICA is a soluble protein released into the supernatant after shedding by ADAM10 and ADAM17[34]. Our results suggested that the Figure 3: Efficient delivery of functional miRNAs into human primary hepatocytes using BNCs. a, Northern blotting for miRNAs delivered into cells using BNCs. Human primary hepatocytes isolated from chimeric mice were incubated with BNCs containing the indicated miRNAs (miRNA93 or let7g) or BNCs without miRNAs (NC), with or without Polybren. After 24 hours, cells were harvested and subjected to analysis. Membranes were re-probed for let7g, miRNA93, and U6 as a loading control. The results shown are representative of three independent experiments. b, A scatter plot reflecting the transcriptome results between the control and primary human hepatocytes treated with BNCs containing miRNA93. Cells were harvested 24 hours after BNC treatment. Intensity normalization was performed using global normalization based on the expression levels of all genes analyzed. Dashed lines indicate the thresholds: a two-fold increase or 50% decrease in expression levels. The full data are deposited in GEO database accession: GSE55928. Figure 4: Soluble MICA protein levels were regulated by miRNA93 in human primary hepatocytes. a, Membrane-bound MICA protein expression was not affected by miRNA delivery into human primary hepatocytes. Flow cytometric analysis of membrane-bound MICA protein expression in cells delivered BNC-mediated control (green line), let7g (blue line), or miRNA93 (red line). Gray-shaded histograms represent background staining, assessed using isotype IgG. Representative results from three independent experiments are shown. b, Soluble MICA protein levels in the supernatants of primary hepatocytes after delivery of the indicated miRNAs (let7g or miRNA93) or negative control (NC) with or without HBV replication. Data represent the means \pm s.d. of three independent experiments. *p<0.05. modulated expression of MICA in primary hepatocytes during HBV replication affects this shedding process. To explore this possibility, we examined MICA protein levels in the supernatant using ELISA. As predicted, HBV infection significantly increased the protein concentration of MICA in the supernatant (Figure 4b). Because an increase in soluble MICA levels in the serum of chronic hepatitis B patients is significantly associated with increased susceptibility to HCC [25], this increase during HBV replication needs to be prevented. Thus, we examined the effects of delivery of BNCs carrying miRNA93 into HBV-infected hepatocytes. Even though the MICA mRNA levels were not significantly affected by miRNA93 delivery based on microarray results (GEO accession: GSE55928), soluble MICA protein in the supernatant significantly decreased according to ELISA (Figure 4b). These results suggested that miRNA93 delivery into the liver decreases soluble MICA levels in the serum, which may be used to prevent HCC in chronic hepatitis B patients. ### DISCUSSION We report that HBV replication in human hepatocytes decreases miRNA93 expression and increases soluble MICA levels. Increased soluble MICA levels in the serum are strongly associated with HBV-related HCC [25], and the increased soluble MICA levels could be antagonized by the delivery of miRNA93 into hepatocytes using BNCs. Thus, BNCs carrying miRNA93 may be used to prevent HCC in patients with chronic HBV infection. Methods of efficient long-term HBV replication in vitro are not commonly available. Although transient transfection assays using fragments or tandem-units of the HBV genome or the full-length HBV genome without vector backbone have been applied [8-12], these models can be analyzed only for short-term replication after transfection. Although stable cell lines carrying HBV genomes are also used, HBV particles are derived from the HBV genome and integrate into the host genome, which differs from natural infection, in which HBV replication mainly relies on HBV cccDNA [6, 7]. Although the most ideal system for HBV infection and replication studies in vitro are primary human hepatocytes, they are difficult to obtain. Freshly isolated human hepatocytes from chimeric mice used in this report are relatively easily to obtain, since they proliferate under immune-deficient and liver-damaging conditions. These cells could support HBV replication for a substantial period and are valuable resources for studies on HBV infection and replication. Another essential tool used
in this study is that of BNCs. Primary hepatocytes are generally difficult to transduce with exogenous genes via transfection. Although viral-mediated gene transfer is useful even for primary cells, we chose BNCs as the miRNA delivery method for several reasons. First, since BNCs are composed of HBV L particles, these BNCs preferentially target primary hepatocytes and theoretically target similar cells as does HBV. Second, since we want to develop future therapeutics based on our experimental results, we avoided using viral materials such as lentiviruses or retroviruses to improve biosafety. Third, although BNCs have been established to transfer genes or drugs [21, 31, 35], transfer of miRNAs has not yet been examined, which prompted us to investigate delivery of miRNAs. We found that BNCs could efficiently deliver miRNAs into primary hepatocytes. Although further studies are required, delivery of miRNAs into hepatocytes via BNCs may be a promising approach to target hepatocytes *in vivo*, as BNCs are efficient delivery vehicles in xenograft models using human liver-derived cells [21]. The present results regarding comprehensive transcriptome analyses using HBV replicating hepatocytes may be applicable for future HBV research. While similar experiments are typically performed using transfection in HBV protein-expressing cells, or other relatively artificial experimental settings, the results here may better reflect the in vivo situation for HBV-infected hepatocytes. The expression of approximately 0.3% of genes changed during HBV replication when the threshold was set to a greater than 4-fold increase or to less than a 25% decrease. Although some of these genes were consistent with previous transcriptomic studies [36-38], we observed several novel characteristics. First, few inflammation-related genes were included among genes whose expression levels were significantly changed. The reason for this discrepancy remains unclear, but the results were considered accurate, since inflammation is rare when HBV replicates prior to seroconversion in chronic HBVinfected patients. Thus, HBV may be able to evade the sensing system related to innate immunity [39-41]. It should be explored whether changes in HBV sequences or the presence of host cells other than hepatocytes affect gene expression in hepatocytes in vivo. Second, based on comprehensive analysis of transcript changes, many CYP-related genes were upregulated during HBV replication, which is consistent with previous reports [27, 28]. Since the biological significance of these changes remain unclear, further studies are required to explore the biological significance during HBV replication. Microarray analyses of changes in miRNA expression levels in HBV-replicating cells revealed that miRNA expression levels were not affected by HBV replication (2.4% among 2,000 miRNAs when the threshold was set to more than a two-fold increase or less than a 50% decrease). However, the miRNAs whose expression levels changed may play crucial roles in the regulation of target gene expression without affecting transcript expression levels, for example, targeting of the MICA protein by miRNA93, whose expression levels were downregulated by HBV replication. The results of comprehensive miRNA expression level analysis in HBV-replicating cells may increase our understanding of deregulated gene expression induced by HBV replication in hepatocytes. MiRNA93 is a critical regulator of MICA protein expression [23, 29]. Thus, the decreased expression of miRNA93 by HBV suggested that the regulation of MICA expression by miRNA93 has biological significance. Polymorphisms in the MICA gene are associated with HBV and HCV-induced HCC [25, 42], and the increase in soluble MICA in the serum can be used as a susceptibility marker for HBV-induced HCC [25]. The increased levels of MICA protein expression agreed with the decreased miRNA93 expression. However, this increase was observed for soluble MICA protein levels and not membrane-bound MICA. While MICA is posttranslationally dependent on the cell context or the status of viral infection [34], MICA may be readily processed from the cell surface in HBV-replicating primary hepatocytes and mainly released as soluble protein. Soluble MICA protein may function as a decoy for the NKG2D receptor in immune cells and as an evasion or immune surveillance system during chronic HBV infection. It may also be associated with HBV-induced HCC since HBV-infected hepatocytes may evade from the immune surveillance. Based on these results, BNCs carrying miRNA93 can be used to eliminate HBV-infected hepatocytes, which may be a novel approach for the prevention of subsequent virus-induced HCC. ### MATERIALS AND METHODS ### Cells Primary human hepatocytes isolated fresh using the collagenase perfusion method from chimeric uPA/SCID mice with humanized livers [14, 17] were obtained from Phoenix Bio (Hiroshima, Japan). The purity of human hepatocytes was greater than 95%. A total of 3.0×10^5 cells/well were seeded on a type I collagen coated-24-well plate and maintained in DMEM with 10% FBS, 5 ng/ml EGF, 0.25 µg/ml insulin, 0.1 mM ascorbic acid, and 2% DMSO [43]. These cells were able be maintained at a high density for more than 3 weeks, supporting the long-term replication of HBV infection *in vitro*. ### HBV infection in vitro Serum from chronically HBV-infected patients with no HBe antibody before seroconversion was used for *in vitro* infection. Serum containing 9.0 log IU/ml of HBV genotype C in a volume of 3 μ l, which is approximately 1.5×10^7 copies of HBV, was added to the 3.0×10^5 cells/well, followed by the addition of 4% PEG 8000 at day 0. Cells were washed, and the media was changed at days 1 and 2 and every 5 days thereafter. The media was collected to measure HBsAg and HBV-DNA at days 1, 2, 3, 7, 10, 15, 20 and 23 to confirm HBV replication. Measurements were performed at the clinical laboratory testing company SRL. Inc. (Tokyo, Japan). ### cDNA array and miRNA microarray Human 25K cDNA microarray and human 2K miRNA microarray analyses were performed using miRNA oligo chips according to the standard protocols (Toray Industries, Tokyo, Japan). The data and the experimental conditions were deposited in a public database (GEO: accession numbers: GSE55928 and GSE55929). ### Bionanocapsules for miRNA delivery Hollow particles consisting of HBV L proteins (pre-S1, pre-S2, and S regions) were used as the BNCs, as described previously [20, 21, 30]. The incorporation of miRNAs (miRNA93 or let-7g) into the hollow space and the delivery of miRNAs into human liver cells were performed as described previously [31]. Briefly, 32 μ l BNC was added to 1 ml culture media at a final concentration of 50 nM miRNA 24 h before the indicated assays (unless otherwise specified). ### Northern blotting of miRNAs Northern blotting of miRNAs was performed as described previously. Total RNA was extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions. RNA (10 μg) was resolved on denaturing 15% polyacrylamide gels containing 7 M urea in 1× TBE and then transferred to a Hybond N+ membrane (GE Healthcare) in 0.25× TBE. Membranes were UV-crosslinked and prehybridized in hybridization buffer. Hybridization was performed overnight at 42°C in ULTRAhyb-Oligo Buffer (Ambion) containing a biotinylated probe specific for miRNA93 (CTA CCT GCA CGA ACA GCA CTT TG) and let-7g (AAC TGT ACA AAC TACT ACC TCA), which was heated to 95°C for 2 min prior to hybridization. Membranes were washed at 42°C in 2× SSC containing 0.1% SDS, and the bound probe was visualized using the BrightStar BioDetect Kit (Ambion). Blots were stripped by boiling in a 0.1% SDS, 5 mM EDTA solution for 10 min prior to rehybridization using a U6 probe (CAC GAA TTT GCG TGT CAT CCT T). ### Reporter plasmids, transient transfection, and dual luciferase assays The firefly luciferase reporter plasmid was used to examine let7g and miRNA93 function. pGL4-TK, a renilla luciferase reporter, was used as an internal control [44]. Transfection and dual luciferase assays were performed as described previously [45]. ### Flow cytometry The expression levels of MICA on the cell surface were determined using flow cytometry, as described previously [23]. Briefly, cells were hybridized with anti-MICA (1:500; R&D Systems, Minneapolis, MN, USA) and isotype control IgG (1:500; R&D Systems) in 5% BSA/1% sodium azide/PBS for 1 h at 4°C. After washing, cells were incubated with goat anti-mouse Alexa 488 (1:1,000; Molecular Probes, Eugene, OR, USA) for 30 min. Flow cytometry was performed and the data analyzed using Guava Easy Cyte Plus (GE Healthcare, Little Chalfont, UK). ### **ELISA for MICA** The concentration of MICA in the cell culture supernatant was measured using a sandwich ELISA, according to the manufacturer's instructions (R&D Systems, Minneapolis, MN, USA). ### Statistical analysis Significant differences between groups were determined using the Student's *t*-test when variances were equal and using Welch's *t*-test when variances were unequal. *P*-values less than 0.05 were considered statistically significant. ### **ACKNOWLEDGMENTS** This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (# 25293076 and #24390183) (to M.Otsuka and K.K.); Health Sciences Research Grants from the Ministry of Health, Labour and Welfare of Japan (Research on Hepatitis) (to S.K. and K.K.); the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) (to S.K.); grants from the Okinaka Memorial Institute for Medical Research, the Liver Forum in Kyoto, and the Japanese Society of Gastroenterology (to M.Otsuka). ### **Editorial note** This paper has been accepted based in part on peerreview conducted by another journal and the authors' response and revisions as well as
expedited peer-review in Oncotarget ### **AUTHOR CONTRIBUTIONS** M.Ohno and M.Otsuka planned the research and wrote the manuscript. M.Ohno, T.K., C.S., T.Y., and A.T. performed the majority of the experiments. R.M., N.K., M.S. and N.K. measured performed ELISA. S.K. provided materials and wrote the manuscript. K.K. supervised the entire project. ### **COMPETING FINANCIAL INTERESTS** The authors declare no competing financial interests. ### REFERENCES - 1 Mittal S, El-Serag HB: Epidemiology of hepatocellular carcinoma: Consider the population. J Clin Gastroenterol 2013;47 Suppl:S2-6. - 2 Chen DS: From hepatitis to hepatoma: Lessons from type b viral hepatitis. Science 1993;262:369-370. - 3 Blachier M, Leleu H, Peck-Radosavljevic M, Valla DC, Roudot-Thoraval F: The burden of liver disease in europe: A review of available epidemiological data. J Hepatol 2013;58:593-608. - 4 Yuen MF, Lai CL: Treatment of chronic hepatitis b: Evolution over two decades. J Gastroenterol Hepatol 2011;26 Suppl 1:138-143. - 5 Liaw YF, Chu CM: Hepatitis b virus infection. Lancet 2009;373:582-592. - 6 Omata M: Treatment of chronic hepatitis b infection. N Engl J Med 1998;339:114-115. - 7 Tuttleman JS, Pourcel C, Summers J: Formation of the pool of covalently closed circular viral dna in hepadnavirus-infected cells. Cell 1986;47:451-460. - 8 Sureau C, Romet-Lemonne JL, Mullins JI, Essex M: Production of hepatitis b virus by a differentiated human hepatoma cell line after transfection with cloned circular hbv dna. Cell 1986;47:37-47. - 9 Günther S, Li BC, Miska S, Krüger DH, Meisel H, Will H: A novel method for efficient amplification of whole hepatitis b virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J Virol 1995;69:5437-5444. - 10 Summers J, Mason WS: Replication of the genome of a hepatitis b--like virus by reverse transcription of an rna intermediate. Cell 1982;29:403-415. - 11 Chang CM, Jeng KS, Hu CP, Lo SJ, Su TS, Ting LP, Chou CK, Han SH, Pfaff E, Salfeld J: Production of hepatitis b virus in vitro by transient expression of cloned hbv dna in a hepatoma cell line. EMBO J 1987;6:675-680. - 12 Delaney WE, Isom HC: Hepatitis b virus replication in human hepg2 cells mediated by hepatitis b virus recombinant baculovirus. Hepatology 1998;28:1134-1146. - 13 Mercer DF, Schiller DE, Elliott JF, Douglas DN, Hao C, Rinfret A, Addison WR, Fischer KP, Churchill TA, Lakey JR, Tyrrell DL, Kneteman NM: Hepatitis c virus replication in mice with chimeric human livers. Nat Med 2001;7:927-933. - 14 Chayama K, Hayes CN, Hiraga N, Abe H, Tsuge M, Imamura M: Animal model for study of human hepatitis viruses. J Gastroenterol Hepatol 2011;26:13-18. - Meuleman P, Libbrecht L, De Vos R, de Hemptinne B, Gevaert K, Vandekerckhove J, Roskams T, Leroux-Roels G: Morphological and biochemical characterization of a human liver in a upa-scid mouse chimera. Hepatology 2005;41:847-856. - 16 Sainz B, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S, Marsh KA, Yu X, Chayama K, Alrefai WA, Uprichard SL: Identification of the niemann-pick c1-like 1 cholesterol absorption receptor as a new hepatitis c virus entry factor. Nat Med 2012;18:281-285. - 17 Tsuge M, Takahashi S, Hiraga N, Fujimoto Y, Zhang Y, Mitsui F, Abe H, Kawaoka T, Imamura M, Ochi H, Hayes CN, Chayama K: Effects of hepatitis b virus infection on the interferon response in immunodeficient human hepatocyte chimeric mice. J Infect Dis 2011;204:224-228. - 18 Tsuge M, Hiraga N, Takaishi H, Noguchi C, Oga H, Imamura M, Takahashi S, Iwao E, Fujimoto Y, Ochi H, Chayama K, Tateno C, Yoshizato K: Infection of human hepatocyte chimeric mouse with genetically engineered hepatitis b virus. Hepatology 2005;42:1046-1054. - 19 Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C: Infection of a human hepatoma cell line by hepatitis b virus. Proc Natl Acad Sci U S A 2002;99:15655-15660. - 20 Yamada T, Jung J, Seno M, Kondo A, Ueda M, Tanizawa K, Kuroda S: Electroporation and use of hepatitis b virus envelope l proteins as bionanocapsules. Cold Spring Harb Protoc 2012;2012:702-705. - 21 Yamada T, Iwasaki Y, Tada H, Iwabuki H, Chuah MK, VandenDriessche T, Fukuda H, Kondo A, Ueda M, Seno M, Tanizawa K, Kuroda S: Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol 2003;21:885-890. - 22 Bartel DP: Micrornas: Target recognition and regulatory functions. Cell 2009;136:215-233. - 23 Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Takata A, Shibata C, Kondo Y, Akanuma M, Yoshida H, Koike K: Regulation of the expression of the liver cancer susceptibility gene mica by micrornas. Sci Rep - 2013;3:2739. - 24 Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, Otsuka M, Tateishi R, Omata M, Nakagawa H, Koike K, Kamatani N, Kubo M, Nakamura Y, Matsuda K: Genome-wide association study identifies a susceptibility locus for hcv-induced hepatocellular carcinoma. Nat Genet 2011;43:455-458. - 25 Kumar V, Yi Lo PH, Sawai H, Kato N, Takahashi A, Deng Z, Urabe Y, Mbarek H, Tokunaga K, Tanaka Y, Sugiyama M, Mizokami M, Muroyama R, Tateishi R, Omata M, Koike K, Tanikawa C, Kamatani N, Kubo M, Nakamura Y, Matsuda K: Soluble mica and a mica variation as possible prognostic biomarkers for hbv-induced hepatocellular carcinoma. PLoS One 2012;7:e44743. - 26 Pan XB, Ma H, Jin Q, Wei L: Characterization of microrna expression profiles associated with hepatitis b virus replication and clearance in vivo and in vitro. J Gastroenterol Hepatol 2012;27:805-812. - 27 Niu Y, Wu Z, Shen Q, Song J, Luo Q, You H, Shi G, Qin W: Hepatitis b virus x protein co-activates pregnane x receptor to induce the cytochrome p450 3a4 enzyme, a potential implication in hepatocarcinogenesis. Dig Liver Dis 2013;45:1041-1048. - 28 Mills JB, Rose KA, Sadagopan N, Sahi J, de Morais SM: Induction of drug metabolism enzymes and mdr1 using a novel human hepatocyte cell line. J Pharmacol Exp Ther 2004;309:303-309. - 29 Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, Mandelboim M, Mandelboim O: Human micrornas regulate stress-induced immune responses mediated by the receptor nkg2d. Nat Immunol 2008;9:1065-1073 - 30 Yamada T, Iwabuki H, Kanno T, Tanaka H, Kawai T, Fukuda H, Kondo A, Seno M, Tanizawa K, Kuroda S: Physicochemical and immunological characterization of hepatitis b virus envelope particles exclusively consisting of the entire 1 (pre-s1 + pre-s2 + s) protein. Vaccine 2001;19:3154-3163. - 31 Jung J, Matsuzaki T, Tatematsu K, Okajima T, Tanizawa K, Kuroda S: Bio-nanocapsule conjugated with liposomes for in vivo pinpoint delivery of various materials. J Control Release 2008;126:255-264. - 32 Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian micrornas predominantly act to decrease target mrna levels. Nature 2010;466:835-840. - 33 Meister G: Mirnas get an early start on translational silencing. Cell 2007;131:25-28. - 34 Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Fürst D, Mytilineos J, Kalthoff H, Janssen O, Oberg HH, Kabelitz D: Shedding of endogenous mhc class i-related chain molecules a and b from different human tumor entities: Heterogeneous involvement of the "A disintegrin and metalloproteases" 10 and 17. Int J Cancer 2013;133:1557-1566. - 35 Jung J, Iijima M, Yoshimoto N, Sasaki M, Niimi T, Tatematsu K, Jeong SY, Choi EK, Tanizawa K, Kuroda S: Efficient and rapid purification of drug- and genecarrying bio-nanocapsules, hepatitis b virus surface antigen I particles, from saccharomyces cerevisiae. Protein Expr Purif 2011;78:149-155. - 36 Honda M, Kaneko S, Kawai H, Shirota Y, Kobayashi K: Differential gene expression between chronic hepatitis b and c hepatic lesion. Gastroenterology 2001;120:955-966. - 37 Otsuka M, Aizaki H, Kato N, Suzuki T, Miyamura T, Omata M, Seki N: Differential cellular gene expression induced by hepatitis b and c viruses. Biochem Biophys Res Commun 2003;300:443-447. - 38 Wang X, Yuan ZH, Zheng LJ, Yu F, Xiong W, Liu JX, Hu GX, Li Y: Gene expression profiles in an hepatitis b virus transfected hepatoblastoma cell line and differentially regulated gene expression by interferon-alpha. World J Gastroenterol 2004;10:1740-1745. - 39 Dandri M, Locarnini S: New insight in the pathobiology of hepatitis b virus infection. Gut 2012;61 Suppl 1:i6-17. - 40 Wang H, Ryu WS: Hepatitis b virus polymerase blocks pattern recognition receptor signaling via interaction with ddx3: Implications for immune evasion. PLoS Pathog 2010;6:e1000986. - 41 Fisicaro P, Valdatta C, Boni C, Massari M, Mori C, Zerbini A, Orlandini A, Sacchelli L, Missale G, Ferrari C: Early kinetics of innate and adaptive immune responses during hepatitis b virus infection. Gut 2009;58:974-982. - 42 Banaudha K, Kaliszewski M, Korolnek T, Florea L, Yeung ML, Jeang KT, Kumar A: Microrna silencing of tumor suppressor dlc-1 promotes efficient hepatitis c virus replication in primary human hepatocytes. Hepatology 2011;53:53-61. - 43 Yamasaki C, Tateno C, Aratani A, Ohnishi C, Katayama S, Kohashi T, Hino H, Marusawa H, Asahara T, Yoshizato K: Growth and differentiation of colony-forming human hepatocytes in vitro. J Hepatol 2006;44:749-757. - 44 Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Hikiba Y, Obi S, Goto T, Kang YJ, Maeda S, Yoshida H, Omata M, Asahara H, Koike K: Microrna-140 acts as a liver tumor suppressor by controlling nf-κb activity by directly targeting dna methyltransferase 1 (dnmt1) expression. Hepatology 2013;57:162-170. - 45 Kojima K, Takata A, Vadnais C, Otsuka M, Yoshikawa T, Akanuma M, Kondo Y, Kang YJ, Kishikawa T, Kato N, Xie Z, Zhang WJ, Yoshida H, Omata M, Nepveu A, Koike K: Microrna122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma. Nat Commun 2011;2:338.