Cai Q, Zhang B,	Genome-wide	Nat Genet	46(8)	886-890	2014
Sung H, Low		Nat Genet	40(8)	080-090	2014
SK, Kweon SS,	association analysis in East Asians				
Lu W, Shi J,	identifies breast				
Long J, Wen W,	cancer susceptibility				
Choi JY, Noh	loci at 1q32.1, 5q14.3				
DY, Shen CY,	and 15q26.1.				
Matsuo K, Teo	and 15420.1.				
SH, Kim MK,					
Khoo US,					
Iwasaki M,					
Hartman M,					
Takahashi A,					
Ashikawa K,					
Matsuda K,					
Shin MH, Park					
MH, Zheng Y,					
Xiang YB, Ji					
BT, Park SK,					
Wu PE, Hsiung					
CN, Ito H,					
Kasuga Y, Kang					
P, Mariapun S,					
Ahn SH, Kang					
HS, Chan KY,					
Man EP, Iwata					
H, Tsugane S,					
Miao H, Liao J,					
Nakamura Y,					
Kubo M,					
Delahanty RJ,					
Zhang Y, Li B,					
Li C, Gao YT,					
Shu XO, Kang					
D, Zheng W.					
Deng Z,	Late cornified	Neoplasia	16(8)	656-664	2014
Matsuda K,	envelope group I, a	P	(-)		
Tanikawa C,	novel target of p53,				
Lin J,	regulates PRMT5				
Furukawa Y,	activity.				
Hamamoto R,					
Nakamura Y.					

		Г	T	T	r
Matsuda K,	Genome-wide	Hum Mol	24(4)	1177-1184	2015
Takahashi A,	association study	Genet			
Middlebrooks	identified SNP on				
CD, Obara W,	15q24 associated with				
	bladder cancer risk in				
Tamura K,	Japanese population.				
Yamasaki I, Naya					
Y, Tanikawa C,					
1 '					
Cui R, Figueroa					
JD, Silverman					
DT, Rothman N,					
Namiki M,					
Tomita Y,					
Nishiyama H,		,			
Kohri K,					
Deguchi T,					
Nakagawa M,					
Yokoyama M,					
Miki T, Kumon					
H, Fujioka T,					
Prokunina-Olsso					
n L, Kubo M,					
Nakamura Y,					
Shuin T.					
	11-4:6-4:1	O1 D	22(1)	267.272	2015
1	Identification of novel	Oncol Rep	33(1)	267-273	2015
C, Katagiri T,	epigenetically				
Nakamura Y,	inactivated gene				
Matsuda K.	PAMR1 in breast				
	carcinoma.				
Komohara Y,	Clinical significance of	Cancer Sci	105(1)	1-8	2014
Jinushi M,	macrophage				
Takeya M.	heterogeneity in human				
	malignant tumors.				
Jinushi M	Immune regulation of	Cancer	33(2-3)	737-745	2014
	therapy-resistant	Metastasis			
	niches: Emerging				
	targets for improving	100			
	anticancer drug				
Vomachina	responses.	Conom De-	74(10)	2609 2700	2014
Yamashina T,	Cancer stem-like cells	Cancer Kes	74(10)	2698-2709	2014
Baghdadi M,	derived from				
Yoneda A,	chemoresistant tumors				
	have a unique capacity				
1 -	to prime tumorigenic				
H, <u>Jinushi M</u> .	myeloid cells.				
Jinushi T,	Low expression levels	Cancer Med	3(6)	1544-1552	2014
Shibayama Y,	of microRNA-124-5p				
Kinoshita I,	correlated with poor				
Oizumi S, Jinushi	1 *				
		1	I	1	
M, Aota I,	cancer via targeting of				1
M, Aota T, Takahashi T,	cancer via targeting of SMC4.				
Takahashi T,	cancer via targeting of SMC4.				
Takahashi T, Horita S,					
Takahashi T,					

Jinushi M,	Tumor-associated	Biochim	1855(2)	123-130	2015
Komohara Y.	macrophages as an	Biophys Acta			
	emerging target against				
	tumors: Creating a new				
	path from bench to				
	bedside.				

IV. 研究成果の刊行物・別刷

Hepatology Research 2014; 44: E137-E144

doi: 10.1111/hepr.12258

Original Article

Impact of *PNPLA3* polymorphisms on the development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection

Masaya Sato,¹ Naoya Kato,² Ryosuke Tateishi,¹ Ryosuke Muroyama,² Norie Kowatari,² Wenwen Li,² Kaku Goto,² Motoyuki Otsuka,¹ Shuichiro Shiina,¹ Haruhiko Yoshida,¹ Masao Omata³ and Kazuhiko Koike¹

¹Department of Gastroenterology, Graduate School of Medicine, ²Unit of Disease Control Genome Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, and ³Yamanashi Prefectural Hospital Organization, Kofu, Japan

Aim: The PNPLA3 rs738409 C>G polymorphism (encoding for I148M) has recently been identified as a susceptibility factor for steatosis-mediated liver damage. We evaluated the influence of this polymorphism on hepatocarcinogenesis in patients with chronic hepatitis C (CHC) virus infection.

Methods: We genotyped the rs738409 single nucleotide polymorphism in 358 hepatitis C-associated hepatocellular carcinoma (HCC) patients and correlated the age at onset of HCC and the interval between hepatitis C virus (HCV) infection and the development of HCC in patients with each genotype.

Results: The frequencies of CC, CG and GG genotypes were 27.9% (100/358), 49.2% (176/358) and 22.9% (82/358), respectively, and were in Hardy–Weinberg equilibrium. The median age at onset of HCC for the GG genotype was significantly

younger compared to for non-GG genotypes (67.81 vs 69.87 years, P < 0.001), and the median interval between HCV infection and the development of HCC was significantly shorter in patients with the GG genotype (39.96 vs 40.85 years, P = 0.008). PNPLA3 GG genotype was also associated with a higher aspartate aminotransferase level (69.5 vs 59.0 IU/L, P = 0.02), lower prothrombin time (73.0% vs 78.0%, P = 0.008) and a higher prevalence of histological steatosis (40.0% vs. 22.2%, P = 0.01) at the time of HCC onset.

Conclusion: The PNPLA3 genotype GG may be associated with accelerated hepatocarcinogenesis in CHC patients through increased steatosis in the liver.

Key words: fibrosis, hepatocarcinogenesis, risk allele, rs738409, steatosis

INTRODUCTION

HEPATITIS C VIRUS (HCV) infection is a major health burden, with 130–170 million people infected, representing nearly 3% of the world's popula-

Correspondence: Dr Naoya Kato, Unit of Disease Control Genome Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. Email: kato-2im@ims.u-tokyo.ac.jp

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/TgwNHQ.

Conflict of interest: None of the authors have any conflicts of interest

Received 30 August 2013; revision 2 October 2013; accepted 4 October 2013.

tion.¹ HCV infection is one of the major causes of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma (HCC).²

In epidemiological studies of chronic HCV infection (CHC), age, duration of infection, alcohol consumption, co-infection with HIV, low CD4 count, male sex and HCV genotype 3 have been shown to be associated with histological activity.³⁻⁸ We also reported higher body mass index (BMI) as an independent risk factor for HCC development in CHC patients.⁹ Although these factors explain part of the extreme variability seen in fibrosis progression among HCV-infected patients, they do not completely account for the differences. Genetic host factors have long been suspected to play a role in CHC.¹⁰⁻¹² Recently, two genome-wide association studies (GWAS) carried out in Japan reported genetic factors, MICA locus (rs2596542) and DEPDC5 locus (rs1012068), associated with HCV-related HCC.^{13,14}

Because of the global epidemic of obesity, non-alcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disorder worldwide.¹⁵⁻¹⁸ Liver steatosis also has gained increasing attention as a modifier of CHC progression. In fact, hepatic steatosis is a common histological feature of CHC, seen in more than half of patients, and has been associated with fibrosis progression and increased risk of HCC via overproduction of reactive oxygen species.¹⁹⁻²¹

Adiponutrin encoded by PNPLA3 has been reported to have both lipolytic and lipogenic properties.²² Recently, independent GWAS identified a single nucleotide polymorphism (SNP; rs738409 C>G) in the PNPLA3 gene on chromosome 22, encoding an isoleucine to methionine substitution (p.I148M) of patatinlike phospholipase A3 as a genetic determinant of liver fat content or disease severity. 23,24 A recent meta-analysis showed that this polymorphism has been related, in NAFLD, to inflammatory activity and progression of fibrosis.25 The previous basic research showed that the PNPLA3 I148M impairs hydrolytic activity against triacylglycerol in vitro and is thought to lead to accumulation of triacylglycerol.²⁶ Other studies using mice showed that the inactivation of PNPLA3 has no effect on hepatic fat accumulation,27 but the overexpression of PNPLA3 I148M causes an increase in hepatic triacylglycerol content.²⁸ The rs738409 polymorphism was also found to be associated not only with elevated liver enzymes or prevalence of fatty liver histology in healthy subjects, 29,30 but also with disease severity and fibrosis in NAFLD, 25,31,32 alcoholic liver disease 33,34 and CHC.35,36 However, the influence of PNPLA3 (rs738409 C>G) polymorphism on HCV-related HCC still remains controversial. 34,36,37 In the present study, we focused on the association between the rs738409 SNP and the age at onset of HCC and the interval between HCV infection and the development of HCC to evaluate the influence of the PNPLA3 polymorphism on hepatocarcinogenesis in CHC patients.

METHODS

Patients

THIS RESEARCH PROJECT was approved by the ethics committees of the University of Tokyo (no. 400). The patients analyzed in the present study were derived from a HCV study cohort of the University of Tokyo Hospital. All patients visited the liver clinic at our institution between August 1997 and August 2009 and agreed to provide blood samples for human genome studies along with written informed consent

according with the Declaration of Helsinki. We enrolled patients who had developed HCC and received initial therapy for HCC at our institution by 31 January 2010, and with samples available for genotyping. Exclusion criteria were positivity for hepatitis B surface antigen and presence of biliary disease. We also excluded patients without information on BMI, daily alcohol intake, HCV genotype and HCV viral load. Finally, 358 patients were enrolled, and all subjects were Japanese. We analyzed the association of rs738409 C>G polymorphism with the age at onset of HCC and the interval between HCV infection and the development of HCC. Because we lacked knowledge of the exact date of hepatitis C seroconversion, the duration of HCV infection was estimated indirectly, based on the year of the first transfusion.

Diagnosis of HCC

Hepatocellular carcinoma was diagnosed by dynamic computed tomography, and hyperattenuation in the arterial phase with washout in the late phase was considered a definite sign of HCC. When the diagnosis of HCC was ambiguous, an ultrasound-guided tumor biopsy was performed, and a pathological diagnosis was made based on the Edmondson and Steiner criteria.³⁸

Genotyping

Human genomic DNA was extracted from the whole blood of each patient. Genotyping for the *PNPLA3* rs738409 C/G polymorphism was performed by polymerase chain reaction (PCR) using the TaqMan predesigned SNP Genotyping Assay (Applied Biosystems, Foster City, CA), as recommended by the manufacturer. Allele-specific primers were labeled with fluorescent dye (6-carboxyfluorescein or hexachloro-6-carboxyfluorescein) and used in the PCR reaction. Aliquots of the PCR products were genotyped using an allele-specific probe of the SNP on a real-time PCR thermocycler (MX3000P; Stratagene, La Jolla, CA, USA). Samples were subjected to 45 cycles of denaturation for 15 s at 95°C, annealing of primers for 30 s at 60°C and elongation for 30 s at 60°C.

Study end-point

We analyzed the relationship between host factors, including *PNPLA3* (rs738409 C>G) polymorphisms, sex, BMI, alcohol consumption and HCV genotype, and the age at onset of HCC or the interval between HCV infection and the development of HCC (the primary end-points of this study). We also examined the relationship between rs738409 polymorphisms and clinical

findings at the onset of HCC (the secondary end-point), such as biochemical markers and histological findings. The histological grade of disease activity and the histological stage of fibrosis were assessed using the reproducible METAVIR scoring system as follows: grades A1 to A3 for the degree of necroinflammatory activity (A1 = mild to A3 = marked), and stages F0 to F4 for the degree of fibrosis (F0 = no fibrosis to F4 = cirrhosis). 39,40 The presence of steatosis was studied as a qualitative (<5% vs ≥5%) variable.

Statistical analysis

Continuous variables are presented as medians with 1st and 3rd quartiles, whereas categorical variables are expressed as frequencies (%). Categorical data were analyzed using the χ^2 -test, and stepwise logistic regression analyses were used to adjust the influence of the PNPLA3 genotype by other covariates such as sex, BMI (<25 or not) and alcohol consumption (<50 g/day or not). For continuous data, the univariate associations were evaluated using Student's t-test or the nonparametric Wilcoxon rank sum test as appropriate. Because the age at onset of HCC and the length of time between HCV infection and the development of HCC (the primary end-points of this study) satisfied the assumption of normal distribution (Kolmogorov-Smirnov test, P > 0.05), we used stepwise regression analysis for multivariate analyses. We evaluated the association between the rs738409 mutant G allele and each outcome using a recessive model of inheritance, comparing G allele homozygotes (GG genotype) with patients carrying one copy or no copies of the G allele (CG or CC genotypes) because this was suggested to be the most appropriate one by studies of the impact of rs738409 on CHC liver damage.36,41 The Jonckheere-Terpstra trend test for continuous variables and the Cochran-Armitage trend test for categorical variables were used to evaluate the increasing or decreasing tendency of the findings across rs738409 CC, CG and GG genotypes. All statistical analyses were two-sided, and the threshold of the reported P-values for significance was less than 0.05. All statistical analyses were performed using the R version 2.13.1 software (http:// www.r-project.org).

RESULTS

Patient characteristics

ATIENT CHARACTERISTICS ARE shown in Table 1. Frequencies of the rs738409 CC, CG and GG genotypes were 27.9% (100/358), 49.2% (176/358)

Table 1 Clinical characteristics and genotype distributions of the subjects (n = 358)

Parameter	Values
Median age at onset of HCC, years	69.76 (63.88–75.35)
Male sex	200 (55.9%)
BMI >25	67 (18.7%)
Alcohol consumption (>50 g/day)	75 (20.9%)
PNPLA3 genotype	
CC	100 (27.9%)
CG	176 (49.2%)
GG	82 (22.9%)
G allele frequency	0.47
HCV genotype	
Genotype 1	271 (75.7%)
Genotype 2	87 (24.3%)

Continuous variables are presented as medians with 1st and 3rd quartiles, and categorical variables as numbers and frequency (%).

BMI, body mass index; HCC, hepatocellular carcinoma; HCV, hepatitis C virus.

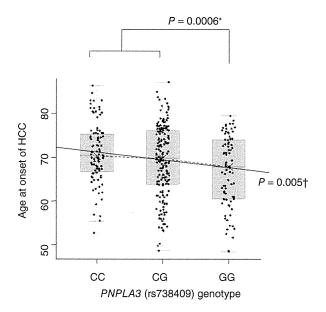


Figure 1 Box and whisker and dot plot: distributions of the age at onset of hepatocellular carcinoma (HCC) in each genotype. The dashed line connects the median value of each genotype, and the solid line shows the linear regression. The Jonckheere-Terpstra trend test showed a significant trend across the CC, CG and GG alleles (P = 0.005). *P-values after adjustment for sex, body mass index and alcohol consumption. †P-value by the Jonckheere-Terpstra trend test.

and 22.9% (82/358), respectively. The SNP genotype distribution was in Hardy–Weinberg equilibrium (*P*-value was non-significant). The median age at onset of the HCC patients was 69.76 years, and approximately 55% were male.

Primary end-point

Table 2 shows the age at onset of patients with HCC and the associations among rs738409 genotypes, sex, BMI, alcohol consumption, HCV genotype and HCV viral load. The median ages (1st-3rd quartile) at onset in patients with HCC for the rs738409 GG and non-GG (CC/CG) genotypes were 67.8 years (range, 60.6–74.0) and 69.9 years (range, 65.2-75.6), respectively. The median age was significantly younger in patients with the rs738409 GG genotype than in those with non-GG genotype (P = 0.004). In multivariate analysis, early age at onset of HCC was independently associated with rs738409 GG genotype (P < 0.001), male sex (P =0.004) and higher BMI (P = 0.03). The median ages at onset of patients with HCC for the CC and CG genotypes were 70.3 and 69.7 years, respectively. The Jonckheere-Terpstra trend test showed a significant trend across the GG, CG and CC alleles (P = 0.005; Fig. 1). One hundred and sixty-six patients had histories of blood transfusion. The median (1st–3rd quartile) intervals between blood transfusion and the onset of HCC in patients with rs738409 GG and non-GG (CC/CG) genotypes were 39.96 (range, 33.43–45.84) and 40.85 years (range, 33.52–46.76), respectively. In multivariate analysis, the median interval between blood transfusion and the onset of HCC was significantly shorter in patients with rs738409 GG genotype (P = 0.008) and male sex (P < 0.001) (Table 3).

Secondary end-point

Table 4 shows the clinical findings and associations between the rs738409 genotypes at the time of HCC onset. The rs738409 GG genotype was significantly associated with a higher aspartate aminotransferase (AST) level (69.5 vs 59.0 IU/L, P = 0.02), a lower prothrombin time (72.95% vs 78.00%, P = 0.008) and a higher prevalence of histological steatosis (40.00% vs. 22.16%, P = 0.01) compared to the non-GG genotype after adjustment for sex, BMI and alcohol consumption. There were no significant associations between rs738409 genotype and histological stage of fibrosis or histological grade of disease activity. Figure 2 shows the

Table 2 Factors associated with the age at onset of HCC (n = 358)

Variable	Median	1st-3rd quartile	P-	P-value
			Univariate	Multivariate†
PNPLA3 genotype			0.004	<0.001
GG	67.81	60.58-73.97		
CC/CG	69.87	65.20-75.62		
Sex			< 0.001	0.004
Male	68.59	62.09-74.20		
Female	71.81	65.98-76.26		
BMI			0.07	0.03
>25	68.95	63.05-73.50		
≤25	70.49	64.32-75.57		
Alcohol consumption			0.02	0.11
>50 g/day	68.25	59.75-73.35		
≤50 g/day	70.12	64.80-75.47		
HCV genotype			0.2	
Genotype 1	69.87	64.35-75.53		
Genotype 2	68.65	63.50-74.17		
Viral load			0.09	0.06
High‡	70.57	65.08-75.82		
Low§	68.89	63.75-74.59		

†Stepwise regression analysis for the age at onset of hepatocellular carcinoma (HCC; the dependent variable) using *PNPLA3* genotype, sex, body mass index (BMI), alcohol consumption, hepatitis C virus (HCV) genotype and HCV viral load as independent variables. ‡At or above the median value.

^{\$}Below the median value.

Table 3 Factors associated with the time between HCV infection and the development of HCC (n = 166)

Variable	Median	1st-3rd Quartile	P-	value
			Univariate	Multivariate†
PNPLA3 genotype			0.47	0.008
GG(n=40)	39.96	33.43-45.84		
CC/CG (n = 126)	40.85	33.52-46.76		
Sex			0.04	< 0.001
Male	38.54	31.95-44.93		
Female	42.45	35.67-47.25		
BMI			0.75	_
>25 kg/m ²	37.94	32.91-45.60		
≤25 kg/m²	40.85	33.70-46.87		
Alcohol consumption			0.26	_
>50 g/day	40.13	28.55-45.33		
≤50 g/day	40.87	33.79-46.76		
HCV genotype			0.09	
Genotype 1	41.46	34.20-46.92		
Genotype 2	37.80	28.70-45.44		
Viral load			0.008	0.11
High‡	41.81	35.18-48.28		
Low§	38.53	30.79-45.12		

†Stepwise regression analysis of age at onset of hepatocellular carcinoma (HCC; the dependent variable) using PNPLA3 genotype, sex, body mass index (BMI), alcohol consumption, hepatitis C virus (HCV) genotype, HCV viral load and the age at blood transfusion as independent variables.

histological findings for CC, CG and GG genotypes. The increment in the G allele was significantly associated with a higher prevalence of steatosis, as demonstrated by the Cochran-Armitage trend test (CC 13.11% vs CG 28.45% vs GG 40.00%, respectively; P = 0.004).

DISCUSSION

 \mathbf{I}^{N} THIS STUDY, we found that the risk allele of PNPLA3, which was strongly correlated with significant liver steatosis, also may be a risk factor for hepatocarcinogenesis in CHC patients. Median age at onset of HCC was significantly younger (P < 0.001), and the median interval between blood transfusion and the onset of HCC was significantly shorter (P = 0.008) in patients with the rs738409 GG genotype than in those with non-GG genotypes after adjustment for sex, BMI, alcohol consumption, HCV genotype and HCV viral

Earlier age at HCC onset or shorter time between HCV infection and the development of HCC in the GG genotype was thought to be caused by the acceleration of liver fibrosis. The patients with the rs738409 GG genotype may reach the stage of advanced cirrhosis and develop HCC in their early age or shorter time after HCV infection. Previous studies reported hepatic steatosis as a risk factor for progressed fibrosis and HCC in CHC patients. 4,42 The PNPLA3 polymorphism was originally reported as a determinant of liver fat content, 23 and a significant association between rs738409 SNP and histological evidence of steatosis (≥5%) was identified in the present study. The PNPLA3 polymorphism was thought to affect the susceptibility to HCC in CHC patients via alteration of lipid accumulation in the liver.

Although this was not confirmed histologically, the PNPLA3 GG genotype was also significantly associated with higher AST level and tended to be associated with a higher prevalence of progressed histological fibrosis compared to the non-GG genotypes (74.0% vs 60.5%, P = 0.11) at the time of HCC onset. Moreover, the GG genotype was associated with a lower prothrombin time, which suggests depressed liver function. Increased lipid accumulation in the PNPLA3 GG genotype may enhance the risks of hepatic inflammation, fibrosis and impairment of liver function in CHC patients.

[‡]At or above the median value.

[§]Below the median value.

Table 4 Associations between PNPLA3 genotype and clinical findings at the time of HCC onset (n = 358)

Variable	Median/number	(1st-3rd quartile)	P-v	alues
	GG	Non-GG	P-value	Adjusted P-value†
Platelet count (×10⁴/μL)	10.05 (7.73–12.78)	10.30 (7.68–13.35)	0.53	
AST (IU/L)	69.5 (49.0-88.5)	59.0 (43.0-83.5)	0.048	0.02\$
ALT (IU/L)	59.0 (42.0-93.3)	55.0 (37.0-86.3)	0.29	- ,
TB (mg/dL)	0.8 (0.6–1.1)	0.8(0.6-1.1)	0.85	_
Albumin (g/dL)	3.7 (3.3–3.9)	3.7 (3.4-3.9)	0.41	_
PT (%)	73.0 (67.3–79.0)	78.0 (69.0–90.0)	0.004	0.008\$
Viral load (log IU/mL)	4.73 (4.51-4.94)	4.75 (4.35-5.20)	0.90	-
LDL cholesterol (mg/dL)	77.2 (63.1–90.3)	74.7 (57.6–93.6)	0.77	_
Triglyceride (mg/dL)	82.0 (59.0-108.0)	87.0 (66.0–114.0)	0.32	_
Fasting plasma glucose (mg/dL)	100.0 (88.5-116.0)	103.0 (91.3-121.8)	0.20	_
Plasma insulin (μg/mL)	12.0 (8.0–18.0)	12.0 (9.0–19.0)	0.67	_
Histological findings ($n = 235$)	, ,	•		
Fibrosis				
F0-3	13	73	0.11	_
F4	37	112		
Activity				
A0-1	30	112	0.93	
A2-3	20	73		
Steatosis‡				
<5%	30	144	0.02	0.01¶
≥5%	20	41		

[†]Adjusted for sex, BMI and alcohol consumption (independent variables). The dependent variables of each *P*-value are the items in the leftmost fields of the corresponding row (e.g. platelet count, AST, ALT).

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CI, confidence interval; HCC, hepatocellular carcinoma; LDL, low-density lipoprotein; PT, prothrombin time; TB, total bilirubin.

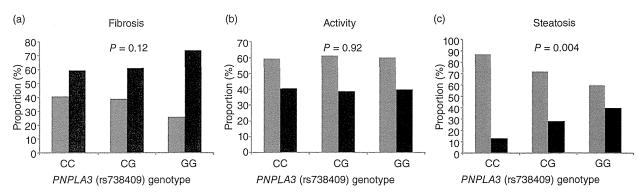


Figure 2 Bar plot: prevalence of fibrosis (F1-3 vs F4, a), necroinflammation (A1 vs A2-3, b) and steatosis (<5% vs ≥5%, c) in 235 patients with chronic hepatitis C. The proportions are shown on the Y axis. P-values of the frequency distributions are shown (Cochran–Armitage trend test). \blacksquare , F1-3; \blacksquare , F4; \blacksquare , A1; \blacksquare , A2-3; \blacksquare , <5%; \blacksquare , ≥5%.

© 2013 The Japan Society of Hepatology

[‡]Odds ratio (95% CI) for the GG allele was 2.43 (1.24–4.77), and the 95% CI of each proportion is shown in parentheses for this outcome.

[§]P-value by stepwise regression analysis.

[¶]P-value by stepwise logistic regression analysis.

One study investigated the impact of the *PNPLA3* polymorphism on liver steatosis and fibrosis in CHC patients.³⁶ In this study, the cumulative incidence of HCC during the follow-up period was significantly higher in patients with the GG genotype.³⁶ The *PNPLA3* polymorphism is also associated with susceptibility to HCC in patients with other causes of hepatitis.^{34,43} Our data suggest that the *PNPLA3* rs738409 polymorphism may provide important information that will assist identification of patients at particular risk for HCC.

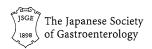
In the present study, early age at onset of HCC was also independently associated with male sex and higher BMI, and the median interval between blood transfusion and the onset of HCC was significantly associated with male sex. These results are consistent with previous reports of male sex and higher BMI as independent risk factors for HCC development in CHC patients. 9,44,45

A limitation of the present study is its retrospective design. The histology samples at the time of initial treatment were obtained via ultrasound-guided aspiration at the time of percutaneous tumor ablation or surgical resection. To minimize the risk of bleeding, ultrasound-guided aspiration was not performed for patients with a platelet count of less than 6 ($\times 10^4/\mu L$). Therefore, the histological samples were collected from a biased group of patients. Another limitation is the cross-sectional study design and the lack of controls without HCC. We are unable to confirm whether the age at onset of HCC (primary outcome of the present study) is an adequate indicator of susceptibility to HCC from the current study alone. Further prospective study is needed to validate the current results.

In conclusion, the *PNPLA3* rs738409 C>G polymorphism may play a significant role in hepatocarcinogenesis in CHC patients. Thus, this genetic factor should be taken into consideration when determining a treatment strategy intended to prevent the future development of HCC in CHC patients.

ACKNOWLEDGMENTS

THIS STUDY WAS supported by the Global COE Program, "Center of Education and Research for Advanced Genome-Based Medicine: For personalized medicine and the control of worldwide infectious diseases"; the Ministry of Education, Culture, Sports, Science and Technology, Japan; by grants from the Leading Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan; and by Health and Labor Sciences Research Grants for Research on Hepatitis from the Ministry of Health, Labor and Welfare, Japan.


REFERENCES

- 1 Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis Cvirus infection. *Lancet Infect Dis* 2005; 5: 558–67.
- 2 Barrera JM, Bruguera M, Ercilla MG *et al.* Persistent hepatitis C viremia after acute self-limiting posttransfusion hepatitis C. *Hepatology* 1995; **21**: 639–44.
- 3 Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. *Lancet* 1997; 349: 825–32.
- 4 Hourigan LF, Macdonald GA, Purdie D *et al*. Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. *Hepatology* 1999; 29: 1215–9.
- 5 Powell EE, Edwards-Smith CJ, Hay JL *et al*. Host genetic factors influence disease progression in chronic hepatitis C. *Hepatology* 2000; **31**: 828–33.
- 6 Massard J, Ratziu V, Thabut D *et al.* Natural history and predictors of disease severity in chronic hepatitis C. *J Hepatol* 2006; 44: S19–24.
- 7 Bochud PY, Cai T, Overbeck K *et al*. Genotype 3 is associated with accelerated fibrosis progression in chronic hepatitis C. *J Hepatol* 2009; **51**: 655–66.
- 8 De Nicola S, Aghemo A, Rumi MG, Colombo M. HCV genotype 3: an independent predictor of fibrosis progression in chronic hepatitis C. *J Hepatol* 2009; 51: 964–6.
- 9 Ohki T, Tateishi R, Sato T et al. Obesity is an independent risk factor for hepatocellular carcinoma development in chronic hepatitis C patients. Clin Gastroenterol Hepatol 2008; 6: 459-64.
- 10 Thursz M, Yallop R, Goldin R, Trepo C, Thomas HC. Influence of MHC class II genotype on outcome of infection with hepatitis C virus. The HENCORE group. Hepatitis C European Network for Cooperative Research. *Lancet* 1999; 354: 2119–24.
- 11 Pradat P, Tillmann HL, Sauleda S *et al.* Long-term follow-up of the hepatitis C HENCORE cohort: response to therapy and occurrence of liver-related complications. *J Viral Hepat* 2007; **14**: 556–63.
- 12 Kato N, Ji G, Wang Y *et al*. Large-scale search of single nucleotide polymorphisms for hepatocellular carcinoma susceptibility genes in patients with hepatitis C. *Hepatology* 2005; 42: 846–53.
- 13 Kumar V, Kato N, Urabe Y *et al*. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. *Nat Genet* 2011; 43: 455–8.
- 14 Miki D, Ochi H, Hayes CN *et al*. Variation in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. *Nat Genet* 2011; 43: 797–800.
- 15 Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis. *Clin Liver Dis* 2009; 13: 511–31.
- 16 Bedogni G, Bellentani S. Fatty liver: how frequent is it and why? *Ann Hepatol* 2004; 3: 63–5.

- 17 Lazo M, Clark JM. The epidemiology of nonalcoholic fatty liver disease: a global perspective. *Semin Liver Dis* 2008; 28: 339–50.
- 18 Everhart JE, Bambha KM. Fatty liver: think globally. *Hepatology* 2010; **51**: 1491–3.
- 19 Bedossa P, Moucari R, Chelbi E *et al*. Evidence for a role of nonalcoholic steatohepatitis in hepatitis C: a prospective study. *Hepatology* 2007; 46: 380–7.
- 20 Adinolfi LE, Gambardella M, Andreana A, Tripodi MF, Utili R, Ruggiero G. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. *Hepatology* 2001; 33: 1358–64.
- 21 Koike K, Tsutsumi T, Yotsuyanagi H, Moriya K. Lipid metabolism and liver disease in hepatitis C viral infection. *Oncology* 2010; 78 (Suppl 1): 24–30.
- 22 Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. *J Biol Chem* 2004; 279: 48968–75.
- 23 Romeo S, Kozlitina J, Xing C *et al*. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. *Nat Genet* 2008; 40: 1461–5.
- 24 Kawaguchi T, Sumida Y, Umemura A *et al.* Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. *PLoS ONE* 2012; 7: e38322.
- 25 Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. *Hepatology* 2011; 53: 1883–94.
- 26 Huang Y, Cohen JC, Hobbs HH. Expression and characterization of a PNPLA3 protein isoform (1148M) associated with nonalcoholic fatty liver disease. *J Biol Chem* 2011; 286: 37085–93.
- 27 Chen W, Chang B, Li L, Chan L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. *Hepatology* 2010; 52: 1134–42.
- 28 Li JZ, Huang Y, Karaman R *et al.* Chronic overexpression of PNPLA31148M in mouse liver causes hepatic steatosis. *J Clin Invest* 2012; 122: 4130–44.
- 29 Kollerits B, Coassin S, Kiechl S *et al.* A common variant in the adiponutrin gene influences liver enzyme values. *J Med Genet* 2010; 47: 116–9.
- 30 Dunn W, Zeng Z, O'Neil M *et al.* The interaction of rs738409, obesity, and alcohol: a population-based autopsy study. *Am J Gastroenterol* 2012; **107**: 1668–74.
- 31 Valenti L, Al-Serri A, Daly AK *et al*. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. *Hepatology* 2010; 51: 1209–17.

- 32 Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. *Hepatology* 2010; 52: 894–903.
- 33 Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. *Nat Genet* 2010; 42: 21–3.
- 34 Nischalke HD, Berger C, Luda C *et al*. The PNPLA3 rs738409 148M/M genotype is a risk factor for liver cancer in alcoholic cirrhosis but shows no or weak association in hepatitis C cirrhosis. *PLoS ONE* 2011; 6: e27087.
- 35 Trepo E, Pradat P, Potthoff A *et al.* Impact of patatin-like phospholipase-3 (rs738409 C>G) polymorphism on fibrosis progression and steatosis in chronic hepatitis C. *Hepatology* 2011; 54: 60–9.
- 36 Valenti L, Rumi M, Galmozzi E *et al.* Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C. *Hepatology* 2011; 53: 791–9.
- 37 Guyot E, Sutton A, Rufat P *et al.* PNPLA3 rs738409, hepatocellular carcinoma occurrence and risk model prediction in patients with cirrhosis. *J Hepatol* 2013; **58**: 312–8.
- 38 Edmondson HA, Steiner PE. Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. *Cancer* 1954; 7: 462–503.
- 39 Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. *Hepatology* 1994; 20: 15–20.
- 40 Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. *Hepatology* 1996; 24: 289–93.
- 41 Krawczyk M, Grunhage F, Zimmer V, Lammert F. Variant adiponutrin (PNPLA3) represents a common fibrosis risk gene: non-invasive elastography-based study in chronic liver disease. *J Hepatol* 2011; 55: 299–306.
- 42 Ohata K, Hamasaki K, Toriyama K *et al*. Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. *Cancer* 2003; 97: 3036–43.
- 43 Falleti E, Fabris C, Cmet S *et al.* PNPLA3 rs738409C/G polymorphism in cirrhosis: relationship with the aetiology of liver disease and hepatocellular carcinoma occurrence. *Liver Int* 2011; 31: 1137–43.
- 44 Kasahara A, Hayashi N, Mochizuki K et al. Risk factors for hepatocellular carcinoma and its incidence after interferon treatment in patients with chronic hepatitis C. Osaka Liver Disease Study Group. Hepatology 1998; 27: 1394– 402
- 45 Ikeda K, Saitoh S, Arase Y *et al*. Effect of interferon therapy on hepatocellular carcinogenesis in patients with chronic hepatitis type C: a long-term observation study of 1,643 patients using statistical bias correction with proportional hazard analysis. *Hepatology* 1999; 29: 1124–30.

IL28B minor allele is associated with a younger age of onset of hepatocellular carcinoma in patients with chronic hepatitis C virus infection

Masaya Sato · Naoya Kato · Ryosuke Tateishi · Ryosuke Muroyama · Norie Kowatari · Wenwen Li · Kaku Goto · Motoyuki Otsuka · Shuichiro Shiina · Haruhiko Yoshida · Masao Omata · Kazuhiko Koike

Received: 27 September 2012/Accepted: 22 April 2013/Published online: 22 May 2013 © Springer Japan 2013

Abstract

Background IL28B polymorphisms were shown to be associated with a response to peg-interferon-based treatment in chronic hepatitis C (CHC) and spontaneous clearance. However, little is known about how this polymorphism affects the course of CHC, including the development of hepatocellular carcinoma (HCC). We evaluated the influence of IL28B polymorphisms on hepatocarcinogenesis in CHC patients.

Methods We genotyped the rs8099917 single-nucleotide polymorphism in 351 hepatitis C-associated HCC patients without history of IFN-based treatment, and correlated the age at onset of HCC in patients with each genotype.

Results Frequencies of TT, TG, and GG genotypes were 74.3 % (261/351), 24.8 % (87/351), and 0.9 % (3/351), respectively. The mean ages at onset of HCC for TT, TG, and GG genotypes were 69.9, 67.5 and 66.8, respectively. In multivariate analysis, IL28B minor allele (TG and GG genotypes) was an independent risk factor for younger age at onset of HCC (P=0.02) in males (P<0.001) with higher body mass index (BMI; P=0.009). The IL28B minor allele was also associated with a lower probability of having aspartate aminotransferase-to-platelet ratio index

(APRI) >1.5 (minor vs. major, 46.7 vs. 58.6 %; P=0.01), lower AST (69.1 vs. 77.7 IU/L, P=0.02), lower ALT (67.8 vs. 80.9 IU/L, P=0.002), higher platelet count (12.8 vs. 11.2 × 10⁴/µL, P=0.002), and higher prothrombin time (79.3 vs. 75.4 %, P=0.002).

Conclusions The IL28B minor allele was associated with lower inflammatory activity and less progressed fibrosis of the liver; however, it constituted a risk factor for youngerage onset of HCC in CHC patients.

Keywords rs8099917 · Hepatocarcinogenesis · Interferon-λ · Risk allele · Fibrosis

Abbreviations

AFP α-Fetoprotein APRI Aminotransfer

APRI Aminotransferase platelet ratio index

CHC Chronic hepatitis C

GWAS Genome-wide association study HCC Hepatocellular carcinoma

HCV Hepatitis C virus IL28B Interleukin 28B

PCR Polymerase chain reaction

peg-IFN peg-Interferon

RIG- I Retinoic acid-inducible gene-I SNP Single-nucleotide polymorphism

SVR Sustained viral response TLR3 Toll-like receptor 3

M. Sato · R. Tateishi · M. Otsuka · S. Shiina · H. Yoshida · K. Voika

Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

N. Kato (⊠) · R. Muroyama · N. Kowatari · W. Li · K. Goto Unit of Disease Control Genome Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan e-mail: kato-2im@ims.u-tokyo.ac.jp

M. Omata

Yamanashi Prefectural Hospital Organization, Kofu, Japan

Introduction

Hepatitis C virus (HCV) infection is one of the major causes of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC) [1]. Currently, patients with chronic

hepatitis C (CHC) are treated with a combination of peginterferon (peg-IFN) and ribavirin [2, 3]. Recently, HCV nonstructural 3/4A serine protease inhibitors combined with PEG-IFN and RBV were reported to achieve higher sustained viral response (SVR) rates in genotype 1 patients compared to conventional PEG-IFN/RBV. These triple therapies are considered to be the next standard of care for patients with CHC virus infection [4, 5].

Genetic variations near the interleukin 28B (IL28B) gene, encoding the type III IFN-λ3, were shown to be strongly associated with the response to peg-IFN and ribavirin treatment in patients with CHC [6–8] and also spontaneous clearance of HCV [9]. Host immune cells produce IFN and other cytokines in response to viral infection. In response to HCV, cellular sensors detect the double-stranded RNA via the retinoic acid-inducible gene-I (RIG-I) and toll like receptor 3 (TLR3) and activate a pathway to produce antiviral cytokines, including alpha and beta IFNs that trigger an antiviral response to eradicate the virus [10, 11].

Genetic polymorphisms of genes involved in innate immunities are likely to influence the strength and nature of this defense system [12]. Besides its antiviral properties, IFN-λ exhibits antitumor activity; in fact, several experimental studies in cell lines and in animal models demonstrated that the activation of type III IFN induces apoptosis [13] and antitumor activities [14–16]. Thus, this genetic factor is thought to influence the natural course of HCV infection, including the development of HCC. However, little is known about the influence of IL28B polymorphisms on hepatocarcinogenesis in patients with CHC.

In the present study, we examined the association between the rs8099917 single-nucleotide polymorphism (SNP) at the IL28B locus with the age at onset of HCC and other clinical findings in patients with CHC who had no history of receiving IFN-based treatment.

Materials and methods

Patients

The patients analyzed in the present study were derived from an HCV study cohort of the University of Tokyo Hospital. In this cohort, we enrolled the patients who visited the liver clinic at our institute between August 1997 and April 2009, and agreed to provide blood samples for human genome studies along with written informed consent according with the Declaration of Helsinki. All patients underwent laboratory blood tests at the time of enrollment in our cohort. The result of the blood tests were recorded with the information on alcohol consumption and BMI of each patient. The patients who were positive for

hepatitis B surface antigen and had a history of biliary disease were excluded. All subjects in our cohort were Japanese, and this research project was approved by the ethics committees of the University of Tokyo (No. 400).

From this cohort, we examined the patients who had developed new-onset HCC and received initial therapy in our institute by January 31, 2010, and with available sample for genotyping. We excluded the patients with a history of receiving IFN-based treatment. Finally, 351 patients were enrolled for this study, and the association between the age at onset of HCC and the IL28B genotype was analyzed. Patient follow-up and Diagnosis of HCC was performed as previously described [17, 18].

IL28B genotyping

Human genomic DNA was extracted from the whole blood of each patient. Genotyping for the IL28B rs8099917 T/G polymorphism was performed by polymerase chain reaction (PCR) using the TaqMan predesigned SNP Genotyping Assay (Applied Biosystems, Foster City, CA) as recommended by the manufacturer. Allele-specific primers were labeled with fluorescent dye (FAM or HEX) and used in the PCR reaction. Aliquots of the PCR products were genotyped using an allele-specific probe of the SNP on a real-time PCR thermocycler (MX3000P, Stratagene, La Jolla, CA). Samples were subjected to 50 cycles of denaturation for 15 s at 92 °C, annealing of primers for 30 s at 60 °C, and elongation for 30 s at 60 °C.

Study endpoint

We analyzed the relationship between the age at onset of HCC (the primary endpoint of this study) and host factors, including the IL28B genotypes, sex, BMI, alcoholic consumption, and HCV genotype. We also examined the relationship between IL28B genotypes and the clinical findings at the time of enrollment in our cohort (the secondary endpoint), such as the biochemical markers and presence of liver fibrosis. Liver biopsies were only available in a small number of patients (48); liver fibrosis was assessed using the aspartate aminotransferase platelet ratio index (APRI), and an APRI of >1.5 was classified as bridging fibrosis or cirrhosis (F stage 3–4) [19].

Statistical analysis

Continuous variables were presented as the mean \pm standard deviation (SD) while categorical variables were expressed as frequencies (%). Categorical data were analyzed using the Chi square test, and stepwise logistic regression analyses were used to adjust the influence of IL28B genotype by other covariates such as sex, BMI (<25

or not), and alcoholic consumption (<50 g/day or not). For continuous data, the univariate associations were evaluated using the Student's t test or nonparametric Wilcoxon ranksum test as appropriate. Since the age at onset of HCC (the primary endpoint of this study) satisfied the assumption of normal distribution (Kolmogorov–Smirnov test, P > 0.05), we used stepwise regression analysis to adjust the influence of IL28B genotype by sex, BMI (<25 or not), and alcoholic consumption (<50 g/day or not). All statistical analyses were two-sided, and the threshold of the reported P values for significance was accepted as <0.05. All statistical analyses were performed using R 2.13.1 software (http://www.r-project.org).

Results

Patient characteristics

Patient characteristics are shown in Table 1. Frequencies of the rs8099917 TT, TG, and GG genotype were 74.3 % (261/351), 24.8 % (87/351), and 0.9 % (3/351), respectively. The SNP genotype distribution was in Hardy—Weinberg equilibrium (*P* value was not significant). We defined the IL28 major genotype as homozygous for the major sequence (TT) and the IL28B minor genotype as homozygous (GG) or heterozygous (TG) for the minor sequence. The mean age at onset of the HCC patients was 69.3 years, and approximately 60 % were male. The mean age at the time of enrollment was 67.2 years and the follow-up period was 27.9 months in average.

Table 1 Clinical characteristics and genotype distributions in the study cohort (n=351)

Parameter	Values
Mean age at onset of HCC, in years	69.26 ± 8.07
Mean age at the time of enrollment, in years	67.16 ± 8.32
Male sex	200 (57.0 %)
BMI >25	70 (20.0 %)
Alcohol consumption (>50 g/day)	75 (21.4 %)
IL28B genotype	
TT	261 (74.3 %)
TG	87 (24.8 %)
GG	3 (0.9 %)
T allele frequency	0.87
HCV genotype	
Genotype 1	240 (68.4 %)
Genotype 2	91 (25.9 %)
Not tested	20 (5.7 %)

Continuous variables were represented as the mean \pm standard deviation (SD) and categorical variables were as number and frequencies (%)

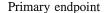


Table 2 shows the age at onset of patients with HCC and the associations among IL28B genotypes, sex, BMI, alcohol consumption, and HCV genotype. The mean age at onset in patients with HCC for the IL28B major and minor genotypes were 69.88 ± 7.97 and 67.48 ± 8.17 , respectively, and significantly higher in patients with the IL28B major genotype than in those with the minor genotype (P = 0.02). In multivariate analysis, the age at onset of HCC was significantly younger in patients with the IL28B minor genotype (P = 0.02, Fig. 1), independently of male sex (P < 0.001) and higher BMI (P = 0.009). The characters of HCC, such as sizes (2.56 vs. 2.40 cm, P = 0.41) or the numbers (1.94 vs. 2.23, P = 0.54) at diagnosis were not significantly different between IL28B major and minor genotypes. We also analyzed the interval between blood transfusion and the onset of HCC in 161 patients who have histories of blood transfusion which had been the major cause of HCV infection in Japan [20]. The mean interval between blood transfusion and the onset of HCC for the IL28B major and minor genotypes were 39.09 \pm 9.99 and 38.86 ± 9.27 years, respectively (P = 0.9; data not shown).

Secondary endpoint

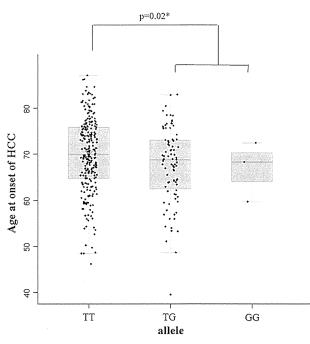

Table 3 shows the clinical findings and associations between the IL28B genotypes at the time of enrollment in our cohort. The IL28B major genotype was significantly associated with a higher probability of having an APRI >1.5 (58.62 vs. 46.67 %, P = 0.01; Fig. 2), a lower platelet count (11.15 vs. $12.80 \times 10^4/\mu L$, P = 0.002), a higher AST level (77.69 vs. 69.12 IU/L, P = 0.02), a higher ALT level (80.92 vs. 67.79 IU/L, P = 0.002), and a lower prothrombin time (75.40 vs. 79.27 %, P = 0.002) compared to the IL28B minor genotype after adjustment for sex, BMI, alcoholic consumption, and the age at enrollment of our cohort. A lower γ-GTP level was significantly associated with the IL28B major genotype in univariate analysis, and alcoholic consumption, sex, and age were stronger factors associated with the γ -GTP level. Thus, after adjustment for these factors, the IL28B genotype was not extracted as a significant factor associated with the γ -GTP level. Histological assessments of liver fibrosis were performed in 248 patients at the time of initial therapy. The prevalence of histologically proved liver cirrhosis (F4) was 65.6 % (118/180) in patients with major genotype and 51.5% (35/68) in those with minor genotype. The prevalence of liver cirrhosis was significantly higher in patients with major genotype after adjustment for sex, BMI, alcoholic consumption, and the age at the time of initial therapy for HCC (P = 0.045, data not shown).

Table 2 Factors associated with the age at onset of HCC

Variable	Mean Standard de		P value		
			Univariate	Multivariate ^a	
IL28B genotype			0.02	0.02	
Major (TT)	69.88	7.97			
Minor (TG/GG)	67.48	8.17			
Sex			< 0.001	< 0.001	
Male	67.94	8.48			
Female	71.02	7.16			
ВМІ			0.01	0.009	
>25	66.87	9.11			
≤25	69.86	7.70			
Alcohol consumption			0.11	_	
>50 (g/day)	67.78	9.37			
≤50 (g/day)	69.67	7.65			
HCV genotype			0.29	_	
Genotype 1	69.65	7.59			
Genotype 2	68.22	8.79			

^a Stepwise regression analysis for the age at onset of HCC (the dependent variable) using IL28B genotype, sex, BMI, alcohol consumption, and HCV genotype as independent variables

Fig. 1 Box and whisker and dot plot distributions of the age at onset of HCC in each genotype. The mean age at onset of HCC for the IL28B major and minor genotypes were 69.88 ± 7.97 and 67.48 ± 8.17 , respectively, and was significantly higher in patients with the IL28B major genotype than in those with the minor genotype (P=0.02). *P values after adjustment for sex, BMI, and alcoholic consumption

Discussion

In the present study, we evaluated the association between the IL28B polymorphism and the age at onset of HCC in patients with CHC. The IL28B minor genotype was

significantly associated with younger age at onset of HCC with well known risk factors for the development of HCC such as male gender and higher BMI [21] without prior IFN-based treatment. Our previous study analyzing a susceptibility locus for HCV-induced HCC using a genomewide association study (GWAS) could not detect the significant association between IL28B genotypes and the development of HCC in a cross-sectional distribution analysis between patients with and without HCC in more than 3,000 samples [22]. Also, IL28B alleles were not identified as a susceptibility locus for HCV-induced HCC in another GWAS study [23]. The cross-sectional distribution analyses may have underestimated the susceptibility to HCC because it could not take into consideration the future development of HCC and the duration after the past onset of HCC. Moreover, although GWAS would provide an effective and unbiased approach for revealing risk alleles for genetically complex non-Mendelian disorders, the risk of multiple comparisons made in a GWAS have resulted in reports of false positive results (Type 1 errors), and if the correction is overly conservative or the power is inadequate, false negative results (Type 2 errors) [24-26]. The relation between IL28B polymorphism and the susceptibility to HCC is still controversial. A previous study from Japan reported that the rs8099917 TT genotype was associated with a lower incidence of HCC even in nonresponders to IFN based treatment [27] that was in agreement with the present study. Another study from Italy evaluating the association between genome frequency and the presence of cirrhosis due to hepatitis C, hepatitis B, alcohol use, and other factors also showed a higher prevalence of the IL28B minor allele in patients with HCC

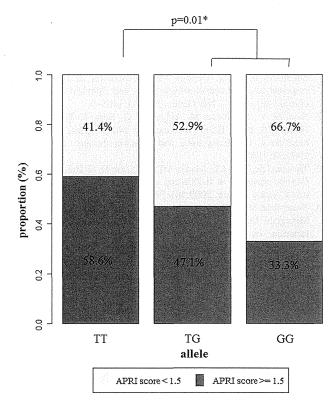


Table 3 Associations between the IL28B genotype and clinical findings at the time of enrollment in our cohort

Variable	Mean/proportion (standard d	eviation; SD)	P values	
	Major (TT)	Minor (TG/GG)	P value	Adjusted P value [¶]
APRI >1.5 ^a	58.62 % (52.38–64.66)	46.67 % (36.07–57.69)	0.07	0.01
Platelet count ($\times 10^4/\mu L$)	11.15 (5.00)	12.80 (5.43)	0.01	0.002**
AST (IU/L)	77.69 (45.14)	69.12 (38.16)	0.12	0.02**
ALT (IU/L)	80.92 (60.45)	67.79 (41.78)	0.17	0.002**
T.B (mg/dL)	0.90 (0.40)	0.83 (0.39)	0.02	****
Alb (g/dL)	3.69 (0.46)	3.71 (0.46)	0.9	-
ALP (IU/L) ^b	236.4 (81.75)	216.4 (58.96)	0.08	0.11**
γGTP (IU/L) ^c	76.83 (65.34)	87.23 (42.92)	0.005	
PT (%) ^d	75.40 (13.36)	79.27 (13.13)	0.02	0.002**

Adjusted for sex, BMI, alcoholic consumption, and the age at enrollment (independent variables). The dependent variables of each P values are the items in the leftmost fields of corresponding rows (the proportion of having APRI >1.5, platelet count, AST, ALT and so on)

d Missing in 4 patients

Fig. 2 *Bar plot* the proportion of having an AST-to-platelet ratio (APRI) score >1.5 in each allele. **P* values after adjustment for sex, BMI, alcoholic consumption, and the age at enrollment

compared to those without HCC [28]. However, other studies showed no relation between IL28B polymorphism and the susceptibility to HCC [29-32]. Some studies have reported the HCV genotype 1 as a risk factor associated with HCC in patients who had CHC [33-35]; however, we could not find a significant association between the HCV genotype and hepatocarcinogenesis in the present study. Our data showed no relationship between the duration of HCV infection in the patients with a history of blood transfusion. The mean age of blood transfusion was not significantly different between patients with major and minor genotypes (28.99 in major genotype vs. 27.60 in minor genotype, P = 0.18). Moreover, older age at HCV infection was reported to be associated with more rapid disease progression [36]. Thus, the difference in the duration of HCV infection may have little effect on the result of the present study. The IL28B genotype may have a critical role in the onset of HCC. Moreover, only about 45 % of all patients in the present study have the history of blood transfusion; hence, further analysis with larger samples may be indicated.

Previous studies evaluating patients with chronic HCV infection showed severer histological inflammatory activity and fibrosis, as well as higher ALT levels and APRI scores in patients homozygous for the IL28B major alleles [29, 32, 37, 38]. Similarly, in the present study, the IL28B

P value by stepwise logistic regression analysis

^{**} P value by stepwise regression analysis

^a Odds ratio (95 % CI) for major allele was 1.88 (1.13-3.11), and 95 % confidence interval (CI) of each proportion is parenthesized for this outcome

^b Missing in 115 patients

^c Missing in 112 patients

major genotype was significantly associated with a higher probability of having an APRI >1.5 and a higher ALT level; and the prevalence of histologically proved liver cirrhosis (F4) was significantly higher in patients with major genotype at the age at the time of initial therapy for HCC. Given the association between the IL28B major allele and the severe inflammatory activity or progressed fibrosis, the IL28B allele is thought to be associated with the susceptibility to HCC via a mechanism that is independent of controlling an activity of HCV infection.

Recent experimental studies have suggested that IFN-λ has an antitumor activity. In esophageal cancer cell lines expressing IFN-λ receptor complexes, IFN-λ1 suppressed growth via the induction of the G1 phase arrest or apoptosis [39]. An antitumor activity of IFN- λ was also shown in the B16 melanoma, BNL hepatoma, Colon 26, and neuroendocrine BON1 tumor cells [40-43]. One probable explanation for the paradoxical result of the present study is that the more aggressive inflammatory activity of patients with IL28B major genotype may reflect a stronger immune response to the virus, which may also have anti-tumor effects. However, the innate immune responses and antitumor activity via IFN-λ, as well as the mechanism underlying the association of the IL28B genotype, have not been elucidated. Further studies are needed to determine the functional role of the IL28B gene in relation to the course of chronic HCV infection, including hepatocarcinogenesis.

Because of the retrospective design, this study is limited by the absence of some important clinical details such as information about the histological findings of fibrosis and inflammation. Although the APRI is a useful index for the prediction of fibrosis, the limitation of this score has been reported in previous studies [44, 45]. Prospectively designed studies are needed to confirm our findings. However, observing chronic HCV-infected patients without antiviral treatment would be nearly impossible in the future. In this regard, the present study may have important implications.

In conclusion, the IL28B minor genotype was associated with a younger age of onset of HCC in patients with CHC, and this association was completely independent of the response to IFN-based treatment. Hepatocarcinogenesis appeared to be suppressed in patients who had CHC with the IL28B major genotype, despite higher inflammatory activity and progressed fibrosis of liver. The current findings may provide a clinically important information in the follow-up or HCC screening of cirrhotic patients.

Acknowledgments This study was supported by the Global COE Program, "Center of Education and Research for Advanced Genome-Based Medicine: For personalized medicine and the control of worldwide infectious diseases"; the Ministry of Education, Culture, Sports, Science and Technology, Japan; by grants from the Leading Project of the Ministry of Education, Culture, Sports, Science and

Technology, Japan; and by Health and Labor Sciences Research Grants for Research on Hepatitis from the Ministry of Health, Labor and Welfare, Japan.

Conflict of interest None of the authors have any conflicts of interest.

References

- Barrera JM, Bruguera M, Ercilla MG, Gil C, Celis R, Gil MP, et al. Persistent hepatitis C viremia after acute self-limiting posttransfusion hepatitis C. Hepatology. 1995;21:639–44.
- Hadziyannis SJ, Sette H Jr, Morgan TR, Balan V, Diago M, Marcellin P, et al. Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med. 2004;140: 346–55.
- Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358: 958-65.
- McHutchison JG, Everson GT, Gordon SC, Jacobson IM, Sulkowski M, Kauffman R, et al. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med. 2009;360:1827–38.
- Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, Sulkowski MS, et al. Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med. 2011;364:1195–206.
- Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, et al. Genetic variation in IL28B predicts hepatitis C treatmentinduced viral clearance. Nature. 2009;461:399–401.
- Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41:1105–9.
- Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41:1100–4.
- Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O'Huigin C, et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature. 2009;461:798–801.
- Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730–7.
- Moriyama M, Kato N, Otsuka M, Shao RX, Taniguchi H, Kawabe T, et al. Interferon-beta is activated by hepatitis C virus NS5B and inhibited by NS4A, NS4B, and NS5A. Hepatol Int. 2007:1:302–10.
- 12. Li CZ, Kato N, Chang JH, Muroyama R, Shao RX, Dharel N, et al. Polymorphism of OAS-1 determines liver fibrosis progression in hepatitis C by reduced ability to inhibit viral replication. Liver Int. 2009;29:1413–21.
- Li W, Lewis-Antes A, Huang J, Balan M, Kotenko SV. Regulation of apoptosis by type III interferons. Cell Prolif. 2008;41: 960–79.
- Numasaki M, Tagawa M, Iwata F, Suzuki T, Nakamura A, Okada M, et al. IL-28 elicits antitumor responses against murine fibrosarcoma. J Immunol. 2007;178:5086–98.
- Li M, Liu X, Zhou Y, Su SB. Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol. 2009;86:23–32.

- Maher SG, Sheikh F, Scarzello AJ, Romero-Weaver AL, Baker DP, Donnelly RP, et al. IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther. 2008;7:1109–15.
- Tateishi R, Shiina S, Teratani T, Obi S, Sato S, Koike Y, et al. Percutaneous radiofrequency ablation for hepatocellular carcinoma. An analysis of 1000 cases. Cancer. 2005;2005(103): 1201–9.
- Masuzaki R, Tateishi R, Yoshida H, Goto E, Sato T, Ohki T, et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology. 2009;49:1954–61.
- Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518–26.
- Kiyosawa K, Umemura T, Ichijo T, Matsumoto A, Yoshizawa K, Gad A, et al. Hepatocellular carcinoma: recent trends in Japan. Gastroenterology. 2004;127:S17–26.
- El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132: 2557–76.
- Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 2011;43:455–8.
- 23. Miki D, Ochi H, Hayes CN, Abe H, Yoshima T, Aikata H, et al. Variation in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. Nat Genet. 2011;43:797–800.
- McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.
- 25. Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet. 2010;86:6–22.
- Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, et al. Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics. 2010; 11:724
- 27. Asahina Y, Tanaka K, Suzuki Y, Tamaki N, Hoshioka T, Kato T, et al. Association between IL28B gene variation and development of hepatocellular carcinoma after interferon therapy in patients with chronic hepatitis C. J Hepatol. 2011;54:S37.
- 28. Fabris C, Falleti E, Cussigh A, Bitetto D, Fontanini E, Bignulin S, et al. IL-28B rs12979860 C/T allele distribution in patients with liver cirrhosis: role in the course of chronic viral hepatitis and the development of HCC. J Hepatol. 2011;54:716–22.
- 29. Bochud PY, Bibert S, Kutalik Z, Patin E, Guergnon J, Nalpas B, et al. IL28B alleles associated with poor hepatitis C virus (HCV) clearance protect against inflammation and fibrosis in patients infected with non-1 HCV genotypes. Hepatology. 2012;55:384–94.
- 30. Joshita S, Umemura T, Katsuyama Y, Ichikawa Y, Kimura T, Morita S, et al. Association of IL28B gene polymorphism with development of hepatocellular carcinoma in Japanese patients with chronic hepatitis C virus infection. Hum Immunol. 2012;73:298–300.
- 31. Miura M, Maekawa S, Kadokura M, Sueki R, Komase K, Shindo H, et al. Analysis of viral amino acids sequences and the IL28B

- SNP influencing the development of hepatocellular carcinoma in chronic hepatitis C. Hepatol Int. 2012;6:386–96.
- 32. Agundez JA, Garcia-Martin E, Maestro ML, Cuenca F, Martinez C, Ortega L, et al. Relation of IL28B gene polymorphism with biochemical and histological features in hepatitis C virus-induced liver disease. PLoS ONE. 2012;7:e37998.
- 33. Bruno S, Crosignani A, Maisonneuve P, Rossi S, Silini E, Mondelli MU. Hepatitis C virus genotype 1b as a major risk factor associated with hepatocellular carcinoma in patients with cirrhosis: a seventeen-year prospective cohort study. Hepatology. 2007;46:1350–6.
- 34. Bruno S, Silini E, Crosignani A, Borzio F, Leandro G, Bono F, et al. Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a prospective study. Hepatology. 1997;25: 754–8.
- Silini E, Bottelli R, Asti M, Bruno S, Candusso ME, Brambilla S, et al. Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a case-control study. Gastroenterology. 1996;111:199–205.
- Freeman AJ, Dore GJ, Law MG, Thorpe M, Von Overbeck J, Lloyd AR, et al. Estimating progression to cirrhosis in chronic hepatitis C virus infection. Hepatology. 2001;34:809–16.
- Moghaddam A, Melum E, Reinton N, Ring-Larsen H, Verbaan H, Bjoro K, et al. IL28B genetic variation and treatment response in patients with hepatitis C virus genotype 3 infection. Hepatology. 2011;53:746-54.
- Abe H, Ochi H, Maekawa T, Hayes CN, Tsuge M, Miki D, et al. Common variation of IL28 affects gamma-GTP levels and inflammation of the liver in chronically infected hepatitis C virus patients. J Hepatol. 2010;53:439–43.
- Li Q, Kawamura K, Ma G, Iwata F, Numasaki M, Suzuki N, et al. Interferon-lambda induces G1 phase arrest or apoptosis in oesophageal carcinoma cells and produces anti-tumour effects in combination with anti-cancer agents. Eur J Cancer. 2010;46: 180–90.
- Lasfar A, Lewis-Antes A, Smirnov SV, Anantha S, Abushahba W, Tian B, et al. Characterization of the mouse IFN-lambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanoma. Cancer Res. 2006;66:4468–77.
- Abushahba W, Balan M, Castaneda I, Yuan Y, Reuhl K, Raveche E, et al. Antitumor activity of type I and type III interferons in BNL hepatoma model. Cancer Immunol Immunother. 2010;59: 1059–71.
- Sato A, Ohtsuki M, Hata M, Kobayashi E, Murakami T. Antitumor activity of IFN-lambda in murine tumor models. J Immunol. 2006;176:7686–94.
- Zitzmann K, Brand S, Baehs S, Goke B, Meinecke J, Spottl G, et al. Novel interferon-lambdas induce antiproliferative effects in neuroendocrine tumor cells. Biochem Biophys Res Commun. 2006;344:1334–41.
- 44. Khan DA, Fatima Tuz Z, Khan FA, Mubarak A. Evaluation of diagnostic accuracy of APRI for prediction of fibrosis in hepatitis C patients. J Ayub Med Coll Abbottabad. 2008;20:122–6.
- Sebastiani G, Vario A, Guido M, Noventa F, Plebani M, Pistis R, et al. Stepwise combination algorithms of non-invasive markers to diagnose significant fibrosis in chronic hepatitis C. J Hepatol. 2006;44:686–93.

Impact of IL28B Genetic Variation on HCV-Induced Liver Fibrosis, Inflammation, and Steatosis: A Meta-Analysis

Masaya Sato¹, Mayuko Kondo¹, Ryosuke Tateishi¹*, Naoto Fujiwara¹, Naoya Kato², Haruhiko Yoshida¹, Masataka Taguri³, Kazuhiko Koike¹

1 Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan, 2 Unit of Disease Control Genome Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan, 3 Department of Biostatistics and Epidemiology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan

Abstract Abstract

Background & Aims: IL28B polymorphisms were shown to be strongly associated with the response to interferon therapy in chronic hepatitis C (CHC) and spontaneous viral clearance. However, little is known about how these polymorphisms affect the natural course of the disease. Thus, we conducted the present meta-analysis to assess the impact of IL28B polymorphisms on disease progression.

Methods: A literature search was conducted using MEDLINE, EMBASE, and the Cochrane Library. Integrated odds ratios (OR) were calculated with a fixed-effects or random-effects model based on heterogeneity analyses.

Results: We identified 28 studies that included 10,024 patients. The pooled results indicated that the rs12979860 genotype CC was significantly associated (vs. genotype CT/TT; OR, 1.122; 95%CI, 1.003–1.254; P=0.044), and that the rs8099917 genotype TT tended to be (vs. genotype TG/GG; OR, 1.126; 95%CI, 0.988–1.284; P=0.076) associated, with an increased possibility of severe fibrosis. Both rs12979860 CC (vs. CT/TT; OR, 1.288; 95%CI, 1.050–1.581; P=0.015) and rs8099917 TT (vs. TG/GG; OR, 1.324; 95%CI, 1.110–1.579; P=0.002) were significantly associated with a higher possibility of severe inflammation activity. Rs8099917 TT was also significantly associated with a lower possibility of severe steatosis (vs. TG/GG; OR, 0.580; 95%CI, 0.351–0.959; P=0.034), whereas rs12979860 CC was not associated with hepatic steatosis (vs. CT/TT; OR, 1.062; 95%CI, 0.415–2.717; P=0.901).

Conclusions: IL28B polymorphisms appeared to modify the natural course of disease in patients with CHC. Disease progression seems to be promoted in patients with the rs12979860 CC and rs8099917 TT genotypes.

Citation: Sato M, Kondo M, Tateishi R, Fujiwara N, Kato N, et al. (2014) Impact of IL28B Genetic Variation on HCV-Induced Liver Fibrosis, Inflammation, and Steatosis: A Meta-Analysis. PLoS ONE 9(3): e91822. doi:10.1371/journal.pone.0091822

Editor: Ming-Lung Yu, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan

Received October 3, 2013; Accepted February 15, 2014; Published March 17, 2014

Copyright: © 2014 Sato et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Global COE Program, "Center of Education and Research for Advanced Genome-Based Medicine: For personalized medicine and the control of worldwide infectious diseases"; the Ministry of Education, Culture, Sports, Science and Technology, Japan; by grants from the Leading Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan; and by Health and Labor Sciences Research Grants for Research on Hepatitis from the Ministry of Health, Labor and Welfare, Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tateishi-tky@umin.ac.jp

Introduction

Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC) [1]. In epidemiological studies of chronic HCV infection, age, duration of infection, alcohol consumption, coinfection with human immune deficiency virus, low CD4 count, male gender, and HCV genotype 3 have been shown to be associated with histological activity [2–7]. Although these factors explain part of the extreme variability seen in the progression of fibrosis among HCV-infected patients, they do not completely account for the differences. Genetic host factors have long been suspected to play a role in chronic hepatitis C (CHC) [8–10]. Two genome-wide association studies recently reported the susceptible loci for the progression of liver cirrhosis [11,12].

Currently, patients with CHC are treated with a combination of peg-interferon (peg-IFN) and ribavirin [13,14]. Telaprevir and boceprevir, two protease inhibitors, were recently approved for patients with genotype 1 in combination with peg-IFN and ribavirin. This combination has been shown to lead to substantial improvement in the sustained virologic response rate [15,16]. Genetic variations near the interleukin 28B (IL28B) gene, encoding type III IFN-\(\lambda\)3, were shown to be strongly associated with the response to peg-IFN and ribavirin treatment in patients with CHC [17-20] and with spontaneous clearance of HCV [21]. Host immune cells produce IFN and other cytokines in response to viral infection. In response to HCV, cellular sensors detect the double-stranded RNA via retinoic acid-inducible gene-I and tolllike receptor 3 and activate a pathway to produce antiviral cytokines, including alpha and beta IFNs that trigger an antiviral response to eradicate the virus [22,23].