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Fig 2. Relative HBV DNA concentrations in the total DNA extracted from HepaRG cells at 7 days after
HBYV infection. The Y-axis depicts the relative HBV DNA concentrations in the cells, with the concentrations
onday 1 setat 1. Mean + SD of three independent experiments are shown. clgG, control human monoclonal
1gG.

doi:10.1371/journal.pone.0118062.9002

confirmed by inoculating HBV gt-C at 5 HBV genomes per cell in the presence of 4% PEG
8000. The levels of pregenomic RNA, intracellular HBV DNA, extracellular HBV DNA, and
extracellular HBsAg were monitored and it was found that all these viral products gradually in-
creased from 3 to 12 dpi (Fig. 3A). Southern blot analysis of cell lysates revealed the presence of
single-stranded HBV DNA as a replication intermediate in the infected PHHs, confirming
HBYV replication in the cells (Fig. 3B). Furthermore, culture supernatants from HBV-infected
donor PHHs were inoculated into newly prepared PHHs. An increase of HBsAg production
from the PHHs was observed following exposure of the cells to another culture supernatant
containing HBV DNA (Fig. 3C), indicating that the donor PHHs produced infectious HBV vi-
rions (also known as Dane particles).

Next, to investigate whether this model can be adapted for the study of neutralizing activi-
ties against HBV infection, the effect of HBIG on HBV infection was evaluated in vitro. Fig. 3D
shows that HBIG strongly reduced HBV infection but residual infection was detected in the
presence of PEG, whereas, in the absence of PEG, the HBV infection was completely blocked
by HBIG. These results indicate that, when neutralizing activities against HBV infection were
investigated using this PHH system, inoculation without PEG is appropriate for the specificity
of the establishment of HBV infection. However, because inoculation without PEG would be
less efficient for HBV infection, the efficacy of HBV infection in the absence of PEG was also
examined. Various titers of HBV (10, 3, 1, and 0.3 genomes per cell) were inoculated into
PHHs and the HBsAg titers in the supernatants were monitored for 22 days (Fig. 3E).
Although the HBsAg levels from PHHs infected without PEG were lower than those with
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Table 1. In vivo neutralization of HBV infection by monoclonal antibodies (mAbs).

HBV genotype Group

c Group 1

Group 4
(n=3)

Group 5
(n=3)

A Group 6
(n=3)

Group 7
(n=3)

Group 8
(n=3)

Group 9
(n=2)
G145R Group 10
(n=2)
Group 11
(n=3)

Group 12
(n=3)

Group 13
(n=2)
Group 14
(n=2)
Group 15
(h=2)

HBO0116 (pg/body)

1
1
1
10
10
10

10
10

p S Gy

10
10
10

10
10
10

10
10

HB0478 (pg/body)

HBV DNA (copies/mL)

9.8x10°

1.1 x 10*
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
1.4x10*
1.0 x 10*
4.4 x 10*
1.1 x 10*
3.3x 10*
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.

n.d.: not detected.

doi:10.1371/journal.pone.0118062.t001

PEG, the HBsAg levels in the supernatants were well correlated with the initial input of HBV

(10 to 0.3 genomes per cells) in the absence of PEG. These results suggest that, albeit with
somewhat lower infectivity, inoculation without PEG is available for neutralization assays

using the PHH system.
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Fig 3. In vitro HBV infection model using PHHs isolated from chimeric mice with human hepatocytes. (A) PHHs were inoculated with HBV gt-C at 5
genomes per cell in the presence of PEG and intracellular pregenomic RNA, intracellular HBV DNA, extracellular HBV DNA and extracellular HBsAg were
monitored by real-time quantitative PCR, or by automated ELISA. dpi, days post infection. (B) 20 pg of total DNA was extracted from PHHs 22 days after
infection with HBV and analyzed by Southern blotting. Single-stranded HBV DNA (ss), a replication intermediate, and relaxed circular HBV DNA (rc) were
detected. (C) Freshly prepared PHHs were inoculated with the day 52 supernatant from other HBV-infected PHHs. HBsAg secretion was monitored. (D) The
use of PEG on HBV infection could mask the specificity of neutralization of HBV infection. Residual HBV infection was observed when PHHs were inoculated

with a mixture of HBV and HBIG in the presence of PEG. An asterisk indicates a value below detection limit. (E) The efficacy of HBV infection without PEG
was proportional to the size of the inoculum.

doi:10.1371/journal.pone.0118062.9003
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HBO0478 efficiently blocks HBV infection by both gt-C and gt-A

To evaluate the neutralizing activity of HB0478 against HBV infection, various amounts of
HB0478 were preincubated with HBV gt-C or gt-A at 10 HBV genomes per cell (6.7 x 10° ge-
nomes/well) for 2 hours and exposed to PHHs for 48 hours without PEG (Fig. 4A). Fig. 4B
shows the levels of HBV DNA in the supernatants harvested at 22 dpi. HB0478 in the amounts
of 550 and 55 mIU completely blocked the infection by both gt-C and gt-A (HBV DNA was
never detected in the supernatant). 5.5 mIU of HB0478 also completely inhibited gt-C infec-
tion, while it strongly reduced but did not completely inhibit gt-A infection. These results indi-
cate that mAb HB0478 has powerful neutralizing activity against HBV infection and that
HB0478 generated by the gt-C type vaccine could protect against HBV infection by both gt-C
and gt-A, although less effectively against gt-A.

Discussion

Although the HBV vaccine strain used predominantly worldwide is genotype A2, genotype C
strains are prevalent in Japan, where a selective vaccination program for high risk individuals
with a gt-C-based vaccine is ongoing. A potential problem is that genotype A2 has been in-
creasing recently as a cause of acute hepatitis B in Japan [10] and little is known about the effi-
cacy of the gt-C-based vaccine against non-C HBV infection. In this report, we demonstrated
that two mAbs, HB0478 and HB0116, derived from individuals immunized with the gt-C vac-
cine (Biimugen) that has been approved in Japan, neutralized HBV infections by both gt-C and
gt-A in vitro and in vivo, suggesting that immunization with the gt-C vaccine could prevent in-
fection by non-C HBV strains.

Epidemiological studies have shown that, in countries operating universal childhood vacci-
nation programs using the gt-A2 vaccine, vertical transfer and/or incident infection of non-A2
were prevented efficiently [7]. Some studies have produced data supporting cross-genotype
protection by immunization. An analysis of 221 mAbs isolated from volunteer HB vaccinees
showed that 97% of them recognized common epitopes shared by all HBV genotypes [5]. The
C(K/R)TC motif (amino acids 121-124), located in the N-terminal portion of the first loop of
the “a” determinant of HBsAg, is conserved among all HBV genotypes (except for residue 122,
K or R determining the serological subtype d or y, respectively) and highly immunogenic [26].
Moreover, a single mouse monoclonal Ab protected chimpanzees from infection by both adr
(gt-C) and ayw (genotype D) strains [27].

Along with these findings, our results showed that the mAbs HB0478 and HB0116, generat-
ed following immunization with the gt-C type vaccine, neutralized the infectivity of both gt-C
and gt-A HBV. In vitro experiments investigating dose dependency using freshly isolated
PHHs also demonstrated that HB0478, at doses above 55 mIU, completely protected against
both gt-C and gt-A infection, whereas HB0478, at a lower dose, 5.5 mIU, protected against gt-
C infection only. It has been reported that analysis of nine HBV DNA positive blood donors in
the United States revealed that 5 individuals who had been immunized with an A2-type vaccine
were not protected against infections by non-A2 HBV [28]; however, the serum anti-HBs levels
of these individuals (3-96 mIU/mL) were relatively low. Interestingly, the infections remained
at a subclinical level in these vaccines, who subsequently resolved the HBV infection, suggest-
ing that gt-A2 vaccination could not prevent non-A2 infection but can inhibit the development
of clinical manifestations [28]. Therefore, it is possible that HBV specific antibodies, induced
by gt-C vaccines, might be able to protect against clinical hepatitis caused by infection with
non-C genotypes, even with lower anti-HBs concentrations. Further investigations are needed
to determine clinical effectiveness of gt-C vaccine to induce cross-genotype immune responses.
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Fig 4. Titration of neutralization of gt-C and gt-A infection by mAb HB0478. HBV gt-C and gt-A were preincubated for 2 hours with 670 ng of control

human IgG (clgG), 100 mIU of HBIG, or 670, 67, 6.7 or 0.67 ng HB0478 (corresponding to 550, 55, 5.5, and 0.55 mlU) and PHHs were inoculated with the
products at 10 genomes per cell. The Y-axis depicts the levels of extracellular HBV DNA in the supernatant harvested on 12 days post infection. Asterisks
indicate values under the detection limit.

doi:10.1371/journal.pone.0118062.g004
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Meanwhile, virus strains with amino acid substitutions in HBsAg often escape from HB vac-
cine-induced antibody and HBIG treatment during vertical transmission of HBV [19,20,29].
The substitution reported most frequently is residue 145, glycine to arginine (G145R), located
in the second loop of the “a” determinant of HBsAg. This study demonstrated that HB0478
also recognized HBsAg with the G145R substitution and protected against G145R infection in
vivo, whereas HB0116 did not bind to the G145R substituted protein or neutralize the mutant.
Although how G145R in the second loop affects mAb-binding to the first loop is largely un-
known, it is possible that the C(K/R)TC-dependent HB0478 epitope might be more distant
from the second loop than that of HB0116, suggesting that HB0478 might not be affected by
the conformational change of HBsAg induced by substitution of glycine at residue 145. It is
noted that epitopes other than “a” determinant such as those within pre-S2 region [30] could
also contributed to the neutralization of escape mutants.

In conclusion, this study raises the possibility that active immunization with a gt-C-based
vaccine confers prophylaxis against gt-A, which is spreading in Japan, and against escape mu-
tants such as G145R, when the anti-HBs responses are sufficient. Note that PHHs isolated
from chimeric mice with human hepatocytes enabled us to investigate precisely the inhibitory
effects of the mAbs, or any antiviral compounds, against HBV infection in vitro.
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Abstract

The levels of expression of interferon-stimulated genes (ISGs) in liver are associated with
response to treatment with pegylated interferon (PEG-IFN) plus ribavirin (RBV). However,
associations between the responses of ISGs to IFN-based therapy and treatment efficacy
or interleukin-28B (IL28B) genotype have not yet been determined. Therefore, we investi-
gated the early responses of ISGs and interferon-lambdas (IFN-As) in peripheral blood
mononuclear cells (PBMCs) during PEG-IFN/RBV plus NS3/4 protease inhibitor (PI) thera-
py. We prospectively enrolled 50 chronic hepatitis C patients with HCV genotype 1, and col-
lected PBMCs at baseline, 8 and 24 h after the initial administration of PEG-IFN/RBV/PI.
Levels of MRNAs for selected ISGs and IFN-As were evaluated by real-time PCR. All 31 pa-
tients with a favorable /L28B genotype and 13 of 19 with an unfavorable genotype achieved
sustained virological responses (SVR). Levels of mRNA for A20, SOCS1, and SOCS3,
known to suppress antiviral activity by interfering with the IFN signaling pathway, as well as
IRF1 were significantly higher at 8 h in patients with an unfavorable /L28B genotype than in
those with a favorable one (P = 0.007, 0.026, 0.0004, 0.00086, respectively), especially in
the non-SVR group. Particularly, the fold-change of /RF1 at 8 h relative to baseline was sig-
nificantly higher in non-SVR than in SVR cases with an unfavorable /L28B genotype (P =
0.035). In conclusion, levels of several mMRNAs of genes suppressing antiviral activity in
PBMCs during PEG-IFN/RBV/PI differed according to /L28B genotypes, paralleling
treatment efficacy.
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Introduction

Chronic hepatitis C virus (HCV) infection is a significant risk factor for progressive liver fibro-
sis and hepatocellular carcinoma (HCC). Antiviral treatment improves the natural course in
chronic hepatitis C (CHC) [1, 2]. Newly-developed treatments involving direct-acting antivi-
rals (DAAs), including nonstructural (NS) 3/4A protease inhibitors have shown promising
outcomes in combination with pegylated interferon (PEG-IFN) plus ribavirin (RBV) in several
clinical trials. Thus >70% of patients infected with HCV genotype 1 are reported to achieve
sustained virological responses (SVR) [3-5].

Recent genome-wide association studies (GWAS), including our own study on HCV infec-
tion [6], have identified a single nucleotide polymorphism (SNP) near the interleukin-28B
(IL28B) gene encoding type III IFN-A3 that was strongly associated with the response to PEG-
IFN/RBV therapy for chronic HCV genotype 1 infection [6-9]. Furthermore, a recent meta-
analysis showed that the IL28B genotype was also associated with efficacy of PEG-IFN/RBV
plus NS3/4A protease inhibitor (PI) treatment, including telaprevir or boceprevir [10]. Howev-
er, it is not known how the IL28B gene influences the elimination of HCV.

IFNs mediate their potent antiviral effects through the regulation of hundreds of IFN-stimu-
lated genes (ISGs). Type I and III IFNs induce the transcription of ISGs by activating the Janus
kinase-signal transducer and activator of transcription (Jak-STAT) pathway through different
cell surface receptors [11-14]. Because it has been reported that a high level of expression of
intrahepatic ISGs at baseline affects responses to PEG-IFN/RBV therapy [15, 16], several
groups have investigated an association between IL28B genotype and the expression of intrahe-
patic ISGs [17, 18]. In addition, intrahepatic expression of genes involved in innate immunity,
Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene I (RIG-I) which are important in
signaling pathways for IFN-p induction, were also associated with the IL28B genotype and re-
sponse to PEG-IFN/RBV [19]. Nevertheless, we cannot fully explain treatment outcome by
evaluating IL28B genotypes and measuring intrahepatic gene expressions at baseline. Changes
of intrahepatic gene expressions cannot easily be evaluated due to the risk of complications
caused by taking a liver biopsy. For this reason, several groups have assessed the response of
ISGs to PEG-IFN/RBV using peripheral blood mononuclear cells (PBMCs) as a surrogate.
However, most of these earlier studies found less marked correlations between the expression
of ISGs in PBMCs and treatment efficacy or IL28B genotype, relative to what was seen in the
liver of the same patients [15, 20, 21]. We also analyzed the expression of ISGs, which included
previously reported genes [17, 19-21], in PBMCs during PEG-IFN/RBV therapy, indicating
that several ISGs that suppressed the antiviral state by interfering with the IFN signaling path-
way were associated with the IL28B genotype or response to PEG-IFN/RBV therapy. These in-
cluded A20, suppressor of cytokine signaling 1 (SOCS1), SOCS3. In PEG-IFN/RBV/PI therapy,
the expression of ISGs, IFN-As, and molecules related to the innate immune system is expected
to be changed greatly soon after the start of therapy, due to the effects of the PI. Hence, we pro-
spectively collected PBMCs of patients treated with PEG-IFN/RBV/PI, and then evaluated as-
sociations between the levels of mRNAs for the selected ISGs or IFN-As and the IL28B
genotype or patient’s response to treatment.

Patients and Methods
Patients and treatment protocol

We prospectively enrolled a total of 50 CHC individuals infected with HCV genotype 1 who
were treated with PEG-IFN/RBV/PI at Nagoya City University Hospital; 32 patients received
telaprevir and 18 faldaprevir. All patients had tested positive for HCV RNA for more than 6
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months. Patients chronically infected with hepatitis B virus or human immunodeficiency virus,
or with other liver diseases such as autoimmune hepatitis and primary biliary cirrhosis, were
excluded from this study.

The regimen of PEG-IFN/RBV/telaprevir therapy was as follows: PEG-IFN-a2b (1.5 pg/kg
body weight subcutaneously once a week), RBV (600-1000 mg daily according to body weight),
and telaprevir (standard dose of 2250 mg daily given three times a day every 8 hours or reduced
dose of 1500 mg daily given twice a day every 12 hours) for 12 weeks, followed by an additional
12 weeks of PEG-IFN/RBYV. In several patients, the initial dose of telaprevir was reduced to
1500 mg daily according to age, body weight, gender, or baseline hemoglobin level, at the dis-
cretion of the attending physicians. When marked adverse effects such as anorexia, anemia,
neutropenia, thrombocytopenia, renal dysfunction or skin rash, developed, the dose of telapre-
vir was reduced to 1500 mg daily, and that of PEG-IEN or RBV was reduced according to the
recommendation on the package inserts or the clinical condition of individual patients. The
regimen of PEG-IFN/RBV/faldaprevir was as follows: PEG-IFN-02a (180 pg subcutaneously
once a week), RBV (600-1000 mg daily according to body weight), and faldaprevir (120 or
240 mg once-daily) for 12 or 24 weeks, followed by an additional PEG-IFN/RBV, making a
total of 24 or 48 weeks. When marked adverse effects developed, the dose of PEG-IFN or RBV
was reduced as mentioned above.

Written informed consent was obtained from each patient and the study protocol con-
formed to the ethics guidelines of the Declaration of Helsinki and was approved by the ethics
review committees of Nagoya City University Hospital.

Definition of virological response to treatment

Treatment outcomes were defined as SVR (undetectable HCV RNA levels 24 weeks after cessa-
tion of treatment), transient virological response (TVR; HCV RNA levels became undetectable
during treatment but reappeared after the end of treatment), and non-virological response
(NVR; HCV RNA levels never became undetectable).

Detection of HCV RNA

Blood samples were obtained before treatment, and at week 1, 2, 4, 8, 12, and every 4 weeks up
to treatment completion, and hematologic tests, blood chemistry and HCV RNA assays were
performed. Follow-up measurements were obtained at week 4, 12 and 24 weeks after the end of
treatment. HCV RNA levels were measured throughout the course of therapy using the
COBAS TagMan HCYV test (Roche Diagnostics K.K., Tokyo, Japan). The measurement range
of this assay is 1.2-7.8 log IU/mL.

SNP genotyping

Genetic polymorphisms in SNPs of the IL28B gene (rs8099917) were determined according to
the manufacturer s instructions using TagMan SNP Genotyping Assays and an ABI PRISM
7900HT Fast Real-Time PCR System (Applied Biosystems, Carlsbad, CA).

Measurement of gene expression in PBMCs

Blood samples were collected from the patients at baseline, 8, and 24 hours (h) after the initial
administration of PEG-IFN/RBV/PL PBMCs were isolated from blood by Ficoll gradient cen-
trifugation. Total RNA was extracted from PBMCs using the RNeasy Mini Kit (Qiagen, Valen-
cia, CA). Complementary DNA (cDNA) synthesis was performed using 1.0 ug of total RNA
isolated from PBMCs using the High Capacity RNA-to-cDNA kit (Applied Biosystems,
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