- Castera L: Non invasive assessment of liver fibrosis in chronic hepatitis C. Hepatol Int 2011, 5:625 634. - Rosenberg WM, Voelker M, Thiel R, Becka M, Burt A, Schuppan D, Hubscher S, Roskams T, Pinzani M, Arthur MJ, European Liver Fibrosis G: Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology 2004, 127:1704, 1713 - Cales P, Oberti F, Michalak S, Hubert Fouchard I, Rousselet MC, Konate A, Gallois Y, Ternisien C, Chevailler A, Lunel F: A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology 2005, 42:1373, 1381 - Colletta C, Smirne C, Fabris C, Toniutto P, Rapetti R, Minisini R, Pirisi M: Value of two noninvasive methods to detect progression of fibrosis among HCV carriers with normal aminotransferases. *Hepatology* 2005, 42:838 845. - Kettaneh A, Marcellin P, Douvin C, Poupon R, Ziol M, Beaugrand M, de Ledinghen V: Features associated with success rate and performance of FibroScan measurements for the diagnosis of cirrhosis in HCV patients: a prospective study of 935 patients. J Hepatol 2007, 46:628 634. - Kuno A, Ikehara Y, Tanaka Y, Saito K, Ito K, Tsuruno C, Nagai S, Takahama Y, Mizokami M, Hirabayashi J, Narimatsu H: LecT Hepa: a triplex lectin antibody sandwich immunoassay for estimating the progression dynamics of liver fibrosis assisted by a bedside clinical chemistry analyzer and an automated pretreatment machine. Clin Chim Acta 2011, 412:1767 1772. - Kuno A, Ikehara Y, Tanaka Y, Angata T, Unno S, Sogabe M, Ozaki H, Ito K, Hirabayashi J, Mizokami M, Narimatsu H: Multilectin assay for detecting fibrosis specific glyco alteration by means of lectin microarray. Clin Chem 2011, 57:48 56. - 24. Ito K, Kuno A, Ikehara Y, Sugiyama M, Saito H, Aoki Y, Matsui T, Imamura M, Korenaga M, Murata K, Masaki N, Tanaka Y, Hige S, Izumi N, Kurosaki M, Nishiguchi S, Sakamoto M, Kage M, Narimatsu H, Mizokami M: LecT Hepa, a glyco marker derived from multiple lectins, as a predictor of liver fibrosis in chronic hepatitis C patients. Hepatology 2012, 56:1448 1456. - Du D, Zhu X, Kuno A, Matsuda A, Tsuruno C, Yu D, Zhang Y, Ikehara Y, Tanaka Y, Zhang X, Narimatsu H: Comparison of LecT Hepa and FibroScan for assessment of liver fibrosis in hepatitis B virus infected patients with different ALT levels. Clin Chim Acta 2012, 413:1796 1799. - Berzigotti A, Abraldes JG, Tandon P, Erice E, Gilabert R, Garcia Pagan JC, Bosch J: Ultrasonographic evaluation of liver surface and transient elastography in clinically doubtful cirrhosis. J Hepatol 2010, 52:846 853. - Vallet Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin Venier V, Fontaine H: FIB 4: an inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology 2007, 46:32 36. - Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, Sulkowski MS, Jacobson IM, Reddy KR, Goodman ZD, Boparai N, DiNubile MJ, Sniukiene V, Brass CA, Albrecht JK, Bronowicki JP, SPRINT 2 Investigators: Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 2011, 364:1195 1206. - Jacobson IM, McHutchison JG, Dusheiko G, Di Bisceglie AM, Reddy KR, Bzowej NH, Marcellin P, Muir AJ, Ferenci P, Flisiak R, George J, Rizzetto M, Shouval D, Sola R, Terg RA, Yoshida EM, Adda N, Bengtsson L, Sankoh AJ, Kieffer TL, George S, Kauffman RS, Zeuzem S, ADVANCE Study Team: Telaprevir for previously untreated chronic hepatitis C virus infection. N Enal J Med 2011, 364:2405 2416. - Poordad F, Lawitz E, Kowdley KV, Cohen DE, Podsadecki T, Siggelkow S, Heckaman M, Larsen L, Menon R, Koev G, Tripathi R, Pilot Matias T, Bernstein B: Exploratory study of oral combination antiviral therapy for hepatitis C. N Engl J Med 2013, 368:45 53. - Fattovich G, Covolo L, Bibert S, Askarieh G, Lagging M, Clement S, Malerba G, Pasino M, Guido M, Puoti M, Gaeta GB, Santantonio T, Raimondo G, Bruno R, Bochud PY, Donato F, Negro F, ITAHEC Study Group: IL28B polymorphisms, IP 10 and viral load predict virological response to therapy in chronic hepatitis C. Aliment Pharmacol Ther 2011, 33:1162 1172 - 32. Giannini E, Risso D, Botta F, Chiarbonello B, Fasoli A, Malfatti F, Romagnoli P, Testa E, Ceppa P, Testa R: Validity and clinical utility of the aspartate aminotransferase alanine aminotransferase ratio - in assessing disease severity and prognosis in patients with hepatitis C virus related chronic liver disease. *Arch Intern Med* 2003, 163:218–224 - Liu S, Cipriano LE, Holodniy M, Owens DK, Goldhaber Fiebert JD: New protease inhibitors for the treatment of chronic hepatitis C: a cost effectiveness analysis. Ann Intern Med 2012, 156:279 290. - 34. Lagging M, Romero Al, Westin J, Norkrans G, Dhillon AP, Pawlotsky JM, Zeuzem S, von Wagner M, Negro F, Schalm SW, Haagmans BL, Ferrari C, Missale G, Neumann AU, Verheij Hart E, Hellstrand K, DITTO HCV Study Group: IP 10 predicts viral response and therapeutic outcome in difficult to treat patients with HCV genotype 1 infection. Hepatology 2006, 44:1617 1625. - Mallet V, Gilgenkrantz H, Serpaggi J, Verkarre V, Vallet Pichard A, Fontaine H, Pol S: Brief communication: the relationship of regression of cirrhosis to outcome in chronic hepatitis C. Ann Intern Med 2008, 149:399 403. - Czaja AJ, Carpenter HA: Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol 2004, 40:646 652. - Pearlman BL, Sjogren MH: Treatment options for HCV nonresponders and relapse patients. Gastroenterol Hepatol (N Y) 2010, 6:1 12. - Shin SR, Sinn DH, Gwak GY, Choi MS, Lee JH, Koh KC, Yoo BC, Paik SW: Risk factors for relapse in chronic hepatitis C patients who have achieved end of treatment response. J Gastroenterol Hepatol 2010, 25:957 963. - Backus LI, Boothroyd DB, Phillips BR, Mole LA: Predictors of response of US veterans to treatment for the hepatitis C virus. Hepatology 2007, 46:37 47 - Tarantino G, Conca P, Sorrentino P, Ariello M: Metabolic factors involved in the therapeutic response of patients with hepatitis C virus related chronic hepatitis. J Gastroenterol Hepatol 2006, 21:1266 1268. - 41. Feld JJ, Hoofnagle JH: Mechanism of action of interferon and ribavirin in treatment of hepatitis C. *Nature* 2005, **436**:967 972. - French D, Watson J, McCahill B, Taggart I, Smith KD: A preliminary evaluation of the functional significance of alpha 1 acid glycoprotein glycosylation on wound healing. Biomed Chromatogr 2002, 16:412 419. - Franzblau C, Schmid K, Faris B, Beldekas J, Garvin P, Kagan HM, Baum BJ: The interaction of collagen with alpha1 acid glycoprotein. Biochim Biophys Acta 1976, 427:302 314. - Goodman ZD, Stoddard AM, Bonkovsky HL, Fontana RJ, Ghany MG, Morgan TR, Wright EC, Brunt EM, Kleiner DE, Shiffman ML, Everson GT, Lindsay KL, Dienstag JL, Morishima C, HALT C Trial Group: Fibrosis progression in chronic hepatitis C: morphometric image analysis in the HALT C trial. Hepatology 2009, 50:1738 1749. - Marcellin P, Asselah T, Boyer N: Fibrosis and disease progression in hepatitis C. Hepatology 2002, 36:S47 S56. - Forns X, Ampurdanes S, Sanchez Tapias JM, Guilera M, Sans M, Sanchez Fueyo A, Quinto L, Joya P, Bruguera M, Rodes J: Long term follow up of chronic hepatitis C in patients diagnosed at a tertiary care center. J Hepatol 2001, 35:265 271. - Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, Lok AS: A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38:518 526. - Akobeng AK: Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr 2007, 96:644 647. ### doi:10.1186/1559 0275 11 44 Cite this article as: Zou et al.: LecT Hepa facilitates estimating treatment outcome during interferon therapy in chronic hepatitis C patients. Clinical Proteomics 2014 11:44. # A novel serum marker, glycosylated *Wisteria floribunda* agglutinin-positive Mac-2 binding protein (WFA⁺-M2BP), for assessing liver fibrosis Takeo Toshima · Ken Shirabe · Toru Ikegami · Tomoharu Yoshizumi · Atsushi Kuno · Akira Togayachi · Masanori Gotoh · Hisashi Narimatsu · Masaaki Korenaga · Masashi Mizokami · Akihito Nishie · Shinichi Aishima · Yoshihiko Maehara Received: 1 November 2013/Accepted: 7 February 2014/Published online: 7 March 2014 © Springer Japan 2014 #### **Abstract** Background Recently, a novel marker, hyperglycosylated Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA+-M2BP), was developed for liver fibrosis using the glycan "sugar chain"-based immunoassay; however, the feasibility of WFA+-M2BP for assessing liver fibrosis has not been proven with clinical samples of hepatitis. Methods Serum WFA⁺-M2BP values were evaluated in 200 patients with chronic liver disease who underwent histological examination of liver fibrosis. The diagnostic **Electronic supplementary material** The online version of this article (doi:10.1007/s00535 014 0946 y) contains supplementary material, which is available to authorized users. T. Toshima \cdot K. Shirabe $(\boxtimes) \cdot$ T. Ikegami \cdot T. Yoshizumi \cdot Y. Maehara Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3 1 1 Maidashi, Higashi ku, Fukuoka 812 8582, Japan e mail: kshirabe@surg2.med.kyushu u.ac.jp A. Kuno · A. Togayachi · M. Gotoh · H. Narimatsu Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305 8568, Japan M. Korenaga · M. Mizokami The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa 272 8516, Japan # A. Nishie Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812 8582, Japan #### S. Aishima Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812 8582, Japan accuracy of WFA⁺-M2BP values was compared with various fibrosis markers, such as ultrasound based-virtual touch tissue quantification (VTTQ), magnetic resonance imaging based-liver-to-major psoas muscle intensity ratio (LMR), and serum markers, including hyaluronic acid, type 4 collagen, and aspartate transaminase to platelet ratio index (APRI). Results Serum WFA+-M2BP levels in patients with fibrosis grades F0, F1, F2, F3, and F4 had cutoff indices 1.62, 1.82, 3.02, 3.32, and 3.67, respectively, and there were significant differences between fibrosis stages F1 and F2, and between F2 and F3 (P < 0.01). The area under the receiver operating characteristic curves for the diagnosis of fibrosis ($F \ge 3$) using serum WFA⁺-M2BP values (0.812) was almost comparable to that using VTTQ examination (0.814), but was superior to the other surrogate markers, including LMR index (0.766), APRI (0.694), hyaluronic acid (0.683), and type 4 collagen (0.625) (P < 0.01 each). Conclusions Serum WFA+-M2BP values based on a glycan-based immunoassay is an accurate, reliable, and reproducible method for the assessment of liver fibrosis. This approach could be clinically feasible for evaluation of beneficial therapy through the quantification of liver fibrosis in hepatitis patients if this measurement application is commercially realized. **Keywords** Liver fibrosis · Chronic hepatitis · M2BP · Mac-2 binding protein · VTTQ · Fibrosis marker # **Abbreviations** ALT Alanine aminotransferase APRI Aspartate transaminase-to-platelet ratio index ARFI Acoustic radiation force impulse AST Aspartate aminotransferase COI Cutoff index Gd-EOB-DTPA Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid HBsAg Hepatitis B virus surface antigen HBV Hepatitis B virus HCV Hepatitis C virus HCVAb Hepatitis C virus antibody LMR Liver-to-major psoas muscle intensity ratio m/s Meters per second MRI Magnetic resonance imaging NPV Negative predictive value nonBnonC Negative for hepatitis B virus surface antigen and hepatitis C virus antibody PBC Primary biliary cirrhosis PPV Positive predictive value ROC Receiver operating characteristic VTTQ Virtual TouchTM Tissue Quantification WFA⁺-M2BP Wisteria floribunda agglutinin-positive Mac-2 binding protein #### Introduction The management of chronic liver disease depends on the degree of liver fibrosis. Therefore, assessment of the degree of liver fibrosis is important for choosing a therapeutic strategy and for determining the prognosis [1, 2]. Liver biopsy is the gold standard method for evaluating the degree of liver fibrosis [3]. However, the invasiveness of liver biopsy, its potential for life-threatening complications, and sampling errors place a heavy burden on those patients with hepatitis who require follow-up [4 6]. Therefore, many reports have demonstrated non-invasive examination methods for assessing the degree of liver fibrosis, which might be alternatives to liver biopsy, such as new serum markers and transient elastography [7 9]. However, none of these studies developed a definitive method. Recently, a novel marker for liver fibrosis was developed using the glycan "sugar chain"-based immunoassay, and the FastLec-Hepa system was used to determine serum values of "sweet-doughnut" hyperglycosylated *Wisteria floribunda* agglutinin-positive Mac-2 binding protein (WFA⁺-M2BP) for the assessment of liver fibrosis [10, 11]. This unique technical approach supported by multiple lectin-assisted glycan profiling may be applicable to the development pipeline for a wide variety of glycodiagnostic tools. However, the feasibility of WFA⁺-M2BP for assessing liver fibrosis has not been proven with clinical samples of hepatitis. A method based on acoustic radiation force impulse (ARFI) imaging, with virtual touch tissue quantification (VTTQ), has been developed to evaluate liver fibrosis. VTTQ measurements can be performed during observation of a particular liver lesion with an ultrasonic probe, and measurements are reproducible compared with transient elastography [12, 13]. For assessment of liver imaging, we have developed magnetic resonance imaging (MRI) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhancement to assess liver function, which may vary inversely for liver fibrosis with the passing grade [14]. Indeed, the increase in rate of liver-to-major psoas muscle intensity ratio (LMR) in the hepatobiliary phase compared with the precontrast image is best correlated with the degree of liver fibrosis, and significantly decreases as liver fibrosis progresses (F0 F4). This study aimed to compare the diagnostic accuracy of serum WFA⁺-M2BP values using the area under receiver operating characteristic (ROC) curves. The diagnostic performance of serum WFA⁺-M2BP values was compared with validated surrogate fibrosis markers, including VTTQ, the MRI-LMR index, and serum markers, such as hyaluronic acid, type 4 collagen, and the aspartate aminotransferase-to-platelet ratio index (APRI). #### Methods ## **Patients** The study cohort consisted of 200 adults, including 40 healthy volunteers and 160 patients with or without hepatitis, who underwent hepatectomy or living donor liver transplantation, and whose serum WFA⁺-M2BP values and liver stiffness by VTTQ were measured at Kyushu University Hospital. Serum samples of inferior quality, which had the potential of measurement errors, such as those with hemolysis, milky fluid, or protein aggregation, were excluded [15]. Of the 160 patients, 106 were positive for antibody to hepatitis C virus (HCVAb), 21 were positive for hepatitis B virus (HBV) surface antigen (HBsAg), 12 had hepatitis due to alcohol, and 21 were negative for HBsAg and HCVAb. The study protocol conformed to the ethical guidelines of the 1975 Helsinki Declaration and was approved by our institutional review board. Liver histology and quantification of liver fibrosis All liver specimens were obtained by surgical resection and were fixed in formalin, embedded in paraffin wax, and stained with hematoxylin and eosin and Masson's trichrome. The fibrosis staging in all surgical specimens was determined independently by two pathologists who did not know the VTTQ values. In case of discrepancies, histological sections were simultaneously reviewed using a multi-pipe microscope to reach a consensus. Fibrosis was staged on a scale of 0 4 according to the METAVIR classification [18], with F0 indicating no fibrosis; F1, enlarged, fibrotic portal tracts; F2, periportal or portal portal septa but intact architecture; F3, fibrosis with architectural distortion but no obvious cirrhosis; and F4, probable or definite cirrhosis. Direct measurement of serum Mac-2 binding protein The method of assessment of WFA⁺-M2BP was as follows [10, 11]. A glycan-based immunoassay, FastLec-Hepa, was developed as a simple and accurate system to automatically detect a unique fibrosis-related glyco-alteration in serum hyperglycosylated WFA⁺-M2BP. Briefly, the *Wisteria floribunda* agglutinin (WFA)-antibody immunoassay using the HISCL-2000i bedside clinical chemistry analyzer was developed to measure WFA⁺-M2BP values. These values were successfully adjusted every reaction condition during the automatic assay, and heat pretreatment of the serum was avoided to ensure binding avidity and a fast association rate within just 17 min. The measured values of WFA⁺-M2BP conjugated to WFA were indexed with the obtained values using the following equation: $$\begin{split} \text{Cutoff index (COI)} &= ([\text{WFA}^+ - \text{M2BP}]_{\text{sample}} \\ &- [\text{WFA}^+ - \text{M2BP}]_{\text{NC}}) / ([\text{WFA}^+ - \text{M2BP}]_{\text{PC}}) \\ &- [\text{WFA}^+ - \text{M2BP}]_{\text{NC}} \end{split}$$ [WFA⁺-M2BP]_{sample}, WFA⁺-M2BP count of serum sample (PC, positive control; NC, negative control) [10, 11]. VTTQ and ARFI The VTTQ system was installed on an ACUSON model S2000 ultrasound system (Siemens Medical Solutions, Inc., Ultrasound Division, Issaquah, WA, USA). The operators were surgeons trained by Siemens Medical Solutions, Inc. The VTTQ system uses an acoustic push pulse to generate shear waves, which pass through the liver parenchyma orthogonally to the acoustic push pulse, through a userplaced region of interest. When detection pulses interact with a passing shear wave, they reveal the wave's location at a specific time, allowing calculation of the shear wave speed. This absolute numerical value is related to the stiffness of the tissue within the region of interest [16, 17], and the results are expressed in meters per second (m/s). For each patient, seven successful measurements were performed several days before surgical operations during which histological specimens were obtained. The measurement of VTTQ in the right lobe of the liver was performed by placing the ultrasonic probe on the right intercostal space at a depth from 2 to 4 cm [9]. The median value of all measurements and the standard deviation of all right and left VTTQ measurements for each patient were considered for analysis. Analysis of the MRI-LMR index The analysis system of the LMR in MRI using Gd-EOB-DTPA enhancement was as follows [14]. Briefly, the signal intensities were measured by placing as large a region of interest as possible on the left and right lobes of the liver parenchyma and major psoas muscle, avoiding vessels, tumors and artifacts, and one slice without significant artifacts for the precontrast image and hepatobiliary phase was selected. The increase in rate of the LMR in the hepatobiliary phase compared with the precontrast image was calculated using the following equation: (LMR in the hepatobiliary phase -LMR on the precontrast image)/ LMR on the precontrast image [14]. Surrogate serum markers For all patients, blood samples were obtained on the same day that the VTTQ examination was performed, and they were examined in the same laboratory. The following parameters were determined: hyaluronic acid levels, type 4 collagen, platelet count, aspartate aminotransferase (AST) levels, alanine aminotransferase (ALT) levels, ICG-R15, and the APRI. The APRI was calculated as follows: AST level (per upper limit of normal; 33 U/L) × 100/platelet count (10⁹/L) [18, 19]. Statistical analysis Differences between quantitative variables for paired samples were analyzed using a nonparametric test (Wilcoxon rank sum test with Bonferroni's adjustment). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of optimal cutoff values of liver surrogate fibrosis markers for the diagnosis of liver fibrosis were calculated as described [18, 19]. In addition, the diagnostic value of liver stiffness for predicting significant liver fibrosis (F1 F3) and cirrhosis (F4) was assessed by calculating the areas under the ROC curves. The ROC curve is a plot of sensitivity versus 1-specificity for all possible cutoff values. The most commonly used index of accuracy is the area under the ROC curve, where values close to 1.0 indicate high diagnostic accuracy, and 0.5 indicates a test of no diagnostic value. The optimal liver stiffness cutoff values used for the diagnosis of significant fibrosis and cirrhosis were selected based on the sensitivity, specificity, PPV, and NPV [18 20]. Statistical analysis of the differences between the areas under the ROC curves was based on the theory of generalized U-statistics [21]. All of the differences were considered statistically significant at P < 0.05. ## Results #### Patients and liver specimens Subject characteristics are summarized in Supplementary Table 1. The mean age of the 200 subjects (135 men and 65 women) was 64 ± 20 years. The 200 enrolled adults consisted of 40 healthy volunteers and 160 patients with or without hepatitis; of the latter, 106 were positive for HCVAb, 21 were positive for HBsAg, 12 had hepatitis due to alcohol, and 21 were negative for HBsAg and HCVAb (nonBnonC). Of the 200 surgical liver specimens, 84 had fibrosis grade F0; 45 were F1, 21 were F2, 16 were F3, and 34 were F4. ## Liver fibrosis assessed by WFA+-M2BP values Figure 1 shows box plots of serum WFA⁺-M2BP values for each fibrosis stage. Serum WFA⁺-M2BP values measured by the glycan-based immunoassay ranged from 0.22 to 8.69 (COI). WFA⁺-M2BP levels in patients with fibrosis grades F0 (n=84), F1 (n=45), F2 (n=21), F3 (n=16), and F4 (n=34) had COIs of 1.62, 1.82, 3.02, 3.32, and 3.67, respectively. There were significant differences between fibrosis stages F1 and F2 (P < 0.01), and between fibrosis stages F2 and F3 (P < 0.01) (Fig. 1). Correlation of WFA⁺-M2BP values with VTTQ, the LMR index, and serum markers of liver fibrosis The log of WFA⁺-M2BP correlated with VTTQ results, a significant indicator of liver stiffness as liver fibrosis (P=0.0001) (Fig. 2a). Log WFA⁺-M2BP values were also inversely related with the LMR index, a significant indicator of liver function that varies inversely with liver fibrosis (P=0.0001) (Fig. 2b), as well as with type 4 collagen concentrations (P=0.0080) (Fig. 2c) and the APRI (P=0.0001) (Fig. 2d), but not with hyaluronic acid (Fig. 2e) and ICG-R15 concentrations (Fig. 2f). APRI, aspartate transaminase-to-platelet ratio index; LMR, liver-to-major psoas muscle intensity ratio; VTTQ, Virtual TouchTM Tissue Quantification; WFA⁺-M2BP, Wisteria floribunda agglutinin-positive Mac-2 binding protein. Diagnostic capability of WFA⁺-M2BP values for each type of liver fibrosis The areas under the ROC curve for the diagnosis of types of fibrosis F1, F2, F3, and F4 with serum WFA⁺-M2BP values Fig. 1 Box and whisker plot of serum WFA⁺ M2BP values for each fibrosis stage. The *tops* and *bottoms* of the boxes represent the first and third quartiles, respectively, with the *height* of the box represents the interquartile range, covering 50 % of the values. The *line* through the middle of each box represents the median. The *error bars* show the minimum and maximum values (range). Significant correlations were found between the stage of fibrosis and serum WFA⁺ M2BP values, and there were significant correlations between fibrosis stages F1 and F2 (P < 0.01) and between fibrosis stages F2 and F3 (P < 0.01). *Asterisk* Statistically significant by the Wilcoxon rank sum test with Bonferroni's adjustment; P < 0.01. WFA⁺ M2BP, *Wisteria floribunda* agglutinin positive Mac 2 binding protein were 0.686, 0.820, 0.817, and 0.806, respectively (Fig. 3). The optimal cutoff values were 1.00 m/s for $F \geq 1$, 1.86 m/s for $F \geq 2$, 2.21 m/s for $F \geq 3$, and 2.64 m/s for $F \geq 4$ (Table 1). The sensitivity of the serum WFA⁺-M2BP cutoffs for fibrosis grades $F \geq 1$, $F \geq 2$, $F \geq 3$, and $F \geq 4$ was 84.6, 84.7, 88.2, and 82.4 %, whereas the specificity was were 47.6, 74.4, 78.7, and 71.9 %, respectively. The sensitivity of VTTQ cutoffs for these fibrosis grades was 81.9, 70.4, 72.6, and 82.4 %, respectively, while the specificity was 70.2, 82.2, 83.3, and 79.5 %, respectively (Table 1, Supplementary Table 2). Thus, WFA⁺-M2BP cutoffs were more sensitive, but less specific, in predicting liver fibrosis in each grade than the VTTQ cutoffs. Comparison of WFA⁺-M2BP with other indicators for the diagnosis of fibrosis stage ≥ 3 We compared the area under the ROC curves of VTTQ, the LMR index, and serum markers (APRI, hyaluronic acid, and type 4 collagen) with that of WFA⁺-M2BP values. The cutoff values were determined, as described above. The area under the ROC curves for the diagnosis of fibrosis ($F \geq 3$) using serum WFA⁺-M2BP values (0.812) was comparable to that using VTTQ examination (0.814), but was significantly superior to the other surrogate markers, including LMR index (0.766), APRI (0.694), hyaluronic acid (0.683), and type 4 collagen (0.625) (P = 0.0001 each; Fig. 4). Serum WFA⁺-M2BP, VTTQ, LMR index, APRI, hyaluronic acid Fig. 2 Correlation of WFA+ M2BP values with VTTO, LMR index, and the other serum markers. The log of WFA+ M2BP correlated with VTTQ results, a significant indicator of liver stiffness as liver fibrosis 0.0001) (a). Log WFA M2BP values were also inversely related with the LMR index, a significant indicator of liver function that varies inversely with liver fibrosis 0.0001) (b), as well as with type 4 collagen concentrations (P (c) and the APRI (P 0.0001) (d), but not with hyaluronic acid (e) and ICG R15 concentrations (f). APRI aspartate transaminase to platelet ratio index, LMR liver to major psoas muscle intensity ratio, VTTQ Virtual TouchTM Tissue Quantification, WFA+ M2BP Wisteria floribunda agglutinin positive Mac 2 binding protein concentration, and type 4 collagen concentration cutoffs had sensitivities for fibrosis grades $F \ge 3$ of 88.2, 72.6, 52.9, 66.7, 85.1, and 88.1 %, respectively; specificities of 78.7, 83.3, 78.7, 78.9, 40.8, and 40.5 %, respectively; PPVs of 58.9 %, 60.0 %,/48.2, 59.6, 34.5, and 33.0 %, respectively; and NPVs of 94.5, 89.9, 83.4, 83.5, 96.2, and 91.1 %, respectively (Table 2). The areas under the ROC curves for the diagnosis of fibrosis $(F \ge 4)$ were comparable for serum WFA⁺-M2BP (0.806) and VTTQ (0.827), but significantly superior to the other surrogate markers, including LMR index (0.776), APRI (0.673), hyaluronic acid (0.657), and type 4 collagen (0.632) (P = 0.0001) each; Supplementary Figure 1 and Supplementary Table 3). Diagnostic capability of WFA⁺-M2BP values for liver fibrosis in each groups The area under the ROC curves for the diagnosis of fibrosis (F > 3) using serum WFA⁺-M2BP values was 0.797 in the 107 patients positive for HCVAb and 0.822 in the 21 patients negative for HBsAg and HCVAb, but was insufficient (0.620) in the 21 patients positive for HBsAg. The sensitivity, specificity, PPV, and NPV for the fibrosis grades \geq F3 in these three sets of patients using the serum WFA⁺-M2BP cutoff were 96.7 %/100.0 %/61.5 %, 63.6 %/73.3 %/87.5 %, 50.9 %/60.05/88.9 %, and 98.0 %/100.0 %/58.3 %, respectively. # Discussion This is the first report to quantify liver fibrosis in a large population using serum WFA⁺-M2BP values by the glycan-based immunoassay, FastLec-Hepa, which was developed as a simple and accurate system for automatically detecting unique fibrosis-related glyco-alterations. The accuracy of WFA⁺-M2BP values for diagnosing liver Fig. 3 Diagnostic ability of serum WFA⁺ M2BP values to assess stages of liver fibrosis. The areas under the ROC curves of serum WFA⁺ M2BP values for diagnosing liver fibrosis were a 0.698 for grade $F \ge 1$, b 0.837 for grade $F \ge 2$, c 0.812 for grade $F \ge 3$, and d 0.795 for grade $F \ge 4$. ROC receiver operating characteristic, WFA⁺ M2BP Wisteria floribunda agglutinin positive Mac 2 binding protein Table 1 WFA+ M2BP values for assessment of liver fibrosis | | Optimal cutoff (COI) | Sensitivity (%) | Specificity (%) | PPV
(%) | NPV
(%) | |------------|----------------------|-----------------|-----------------|------------|------------| | $F \ge 1$ | 1.00 | 84.6 | 47.6 | 69.2 | 69.0 | | $F \geq 2$ | 1.86 | 84.7 | 74.4 | 64.9 | 89.7 | | $F \geq 3$ | 2.21 | 88.2 | 78.7 | 58.9 | 94.5 | | $F \ge 4$ | 2.64 | 82.4 | 71.9 | 37.3 | 95.2 | Optimal cutoff points gave the highest total sensitivity and specificity APRI Aspartate transaminase to platelet ratio index, COI cutoff index, WFA⁺ M2BP Wisteria floribunda agglutinin positive Mac 2 binding protein, m/s meters per second NPV negative predictive value, PPV positive predictive value, VITQ Virtual Touch TM Tissue Quantification fibrosis grade $F \ge 3$, measured as sensitivity, specificity, PPV, and NPV, was better than that for other surrogate markers, such as the MRI-LMR index and other serum markers of liver fibrosis, including levels of hyaluronic acid, type 4 collagen, and the APRI. WFA⁺-M2BP could be an alternative non-invasive serum marker for liver biopsy for assessing liver fibrosis. No reports have demonstrated the feasibility of serum WFA⁺-M2BP values as a predictor of liver fibrosis, and the function of WFA⁺-M2BP is unclear. Iacobelli et al. [22] identified WFA⁺-M2BP in 1986 as a tumor-associated antigen and detected it in culture media using a monoclonal antibody from CG-5 breast cancer cell lines. WFA⁺-M2BP is a highly glycosylated secreted protein, a plant hemagglutinin Mac-2 (galectin-3) ligand, and has 90-kDa subunits, hence, the name 90K. WFA⁺-M2BP mainly mediates cell-to-cell and cell-to-matrix interactions, and is involved in cell proliferation and angiogenesis [23–25] by inducing the expression of cytokines, such as interleukin (IL)-1, IL-2, and IL-6 [23–25]. Indeed, endogenous WFA⁺-M2BP ligands laminin, fibronectin, and lysosome-associated membrane protein [26, 27], and enhances cell adhesion and the extracellular matrix to promote fibrosis. Therefore, expression of WFA⁺-M2BP levels may be proportional to the degree of liver fibrosis in patients with chronic liver diseases. In our study, serum WFA⁺-M2BP values had better diagnostic ability for assessment of liver fibrosis than the other serum markers, such as the APRI, hyaluronic acid, and type 4 collagen, as evaluated by the area under the ROC curves. For diagnosing fibrosis stage ≥3, the specificity and PPV using serum WFA⁺-M2BP were 78.7 and 58.9 %, respectively compared with 78.7 and 48.2 %, respectively, using APRI; 40.8 and 34.5 %, respectively, using hyaluronic acid, and 40.5 and 33.0 %, respectively, using type 4 collagen cutoffs. These results suggest that examination of serum WFA⁺-M2BP values is the most accurate diagnostic tool for liver fibrosis among the serum markers investigated in this study. The diagnostic significance of surrogate markers in liver fibrosis has been evaluated distinguishing F3 from F2 fibrosis. The clinical significance of distinguishing F3 from F2 fibrosis has been widely accepted in the follow-up of patients with viral hepatitis, and also has been linked with hepatocarcinogenesis [28, 29]. The annual carcinogenesis rate was reported to be correlated with the stage of liver fibrosis in the study of 2,890 patients with hepatitis [28]. The annual incidence of hepatocellular carcinoma in patients with severe liver fibrosis of grade F3 is high (5.3 %), whereas the incidence in those with moderate liver fibrosis of grade F2 is low (1.9 %) [29]. Therefore, fibrotic change is closely correlated with hepatocarcinogenesis in patients with viral hepatitis, and it is critically important to distinguish between liver fibrosis of grades F3 and F2, which was the cause of the favorable point for the serum WFA+-M2BP examination superior to the other markers in our study. In addition, we found that the measurement time for our glycan-based immunoassay was only 17 min, which has practical implications. However, a limitation is that its measurement was just applied by the glycan "sugar chain"-based immunoassay, the FastLec-Hepa system, which is currently only available in a few selected institutions. Commercial application of this system is a primary goal for evaluation of a clinically beneficial therapy through quantification of liver fibrosis in hepatitis patients. This study, however, had one important limitation, in that Fig. 4 Comparison of WFA⁺ M2BP with other indicators for the diagnosis of fibrosis stage $F \ge 3$ by areas under the receiver operating curves (ROC). The areas under the ROC curves for the diagnosis of grade $F \ge 3$ fibrosis were **a** 0.812 for serum WFA⁺ M2BP, **b** 0.814 for VTTQ, **c** 0.766 for LMR index, **d** 0.694 for APRI, **e** 0.683 for hyaluronic acid, and **f** 0.625 for type 4 collagen. *APRI* aspartate transaminase to platelet ratio index, *LMR* liver to major psoas muscle intensity ratio, *ROC* receiver operating characteristic, *VTTQ* Virtual TouchTM Tissue Quantification, *WFA*⁺ *M2BP* Wisteria floribunda agglutinin positive Mac 2 binding protein **Table 2** Diagnostic performance of indicators predicting liver fibrosis $(F \ge 3)$ | | Optimal cutoff | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | |-----------------------|----------------|-----------------|-----------------|---------|---------| | WFA ⁺ M2BP | 2.21 (COI) | 88.2 | 78.7 | 58.9 | 94.5 | | VTTQ | 1.77 (m/s) | 72.6 | 83.3 | 60.0 | 89.9 | | LMR index | 1.15 | 66.7 | 78.9 | 59.6 | 83.5 | | APRI | 3.33 | 52.9 | 78.7 | 48.2 | 83.4 | | Hyaluronic acid | 58.0 (ng/mL) | 85.1 | 40.8 | 34.5 | 96.2 | | Type 4 collagen | 125.0 (ng/mL) | 88.1 | 40.5 | 33.0 | 91.1 | Optimal cutoff points gave the highest total sensitivity and specificity APRI Aspartate transaminase to platelet ratio index, COI cutoff index, WFA⁺ M2BP Wisteria floribunda agglutinin positive Mac 2 binding protein, m/s meters per second, NPV negative predictive value, PPV positive predictive value, VTTQ Virtual TouchTM Tissue Quantification the number of patients with a fibrosis score of F3 was relatively low. Most patients who underwent hepatectomy had Child-Pugh grade A liver function and fibrosis scores of F0, F1, and F2, whereas most patients who underwent living donor liver transplantation had liver cirrhosis (F4). Accumulation of addition liver specimens by surgical resection may be necessary. We have previously demonstrated that VTTQ values are correlated with liver fibrosis [9, 12, 13]. Compared with VTTQ, serum WFA⁺-M2BP values were almost equal for predicting liver fibrosis ≥F3, with similar areas under the ROC curves (0.812 vs 0.814) and similar sensitivity (88.2 vs 72.6 %), and specificity (78.7 vs 83.3 %). However, this VTTQ method has some limitations compared with serum WFA⁺-M2BP values. First, the diagnostic accuracy of VTTQ values in the right and left lobes of the liver was significantly different; VTTQ values in the right lobe were more accurate for diagnosing liver fibrosis than those in the left lobe, as evaluated by the area under the ROC curves and the standard deviations of each VTTQ value [9]. The other limitation is the lower diagnostic accuracy of VTTQ values in fatty liver compared with other types of hepatitis for predicting liver fibrosis [30]. Therefore, the diagnostic accuracy for assessment of liver fibrosis needs to be compared between serum WFA+-M2BP and VTTQ values in these marginal clinical cases in the future. In addition, the VTTQ system installed on the ultrasound system by Siemens Medical Solutions is expensive [15 17]. Therefore, it may have the clinical significance of the WFA+-M2BP assessment for the medical economy to assess the liver fibrosis for choosing a therapeutic strategy if the serum WFA⁺-M2BP examination by the glycan 'sugar chain'-based immunoassay spread more widely in the world. With regard to the MRI-LMR index, the liver-specific contrast agent, Gd-EOB-DTPA, is widely used to improve the detectability of focal liver lesions and the characterization of liver tumors on MRI [31]. Gd-EOB-DTPA is specifically taken up by hepatocytes. Therefore, the uptake of Gd-EOB-DTPA in the liver could directly reflect the function of the liver, which varies inversely with liver fibrosis. The present study showed that serum WFA+-M2BP values had better diagnostic ability than the LMR index in predicting of liver fibrosis $\geq F3$, with higher areas under the ROC curves (0.812 vs 0.766), sensitivity (88.2 vs 66.7 %), and NPV (94.5 vs 83.5 %). Considering these results, WFA⁺-M2BP values may indicate liver fibrosis, as well as liver function. The specific function of WFA⁺-M2BP in the progress of liver fibrosis urgently needs to be clarified by basic research. In assessing the heterogeneity of samples, we found that the area under the ROC curves for the diagnosis of fibrosis $(F \ge 3)$ using serum WFA⁺-M2BP values was insufficient (0.620) only in the 21 patients positive for HBsAg. Similarly, measurements of liver stiffness, using VTTQ and transient elastography, were shown superior in patients with HCV than in those with HBV [32]. The impact of HBV infection on the function of activated WFA⁺-M2BP in fibrosing liver has not been determined, suggesting the need for further research. In classifying liver inflammation in the 160 patients (n = 160) as A1-A4 by the METAVIR grading system, we found that 33 were classified as A0 (2.04 ± 0.39) , 73 as A1 (2.75 ± 0.26) , 38 as A2 (2.70 ± 0.37) , 16 as A3 (2.11 ± 0.56) , and none as A4 by the METAVIR grading system [33]. WFA⁺-M2BP levels did not correlate significantly with hepatic inflammatory activity in the general patient cohort and in the three groups, those with HCV, with HBV, and nonBnonC. These findings are in agreement with those of previous reports [10, 11], which did not observe a correlation between WFA⁺-M2BP levels and inflammatory activity. Further research is needed to clarify the molecular mechanisms of hepatic WFA⁺-M2BP production in patients with different etiologies and inflammatory grades of hepatitis. The previous report [34] analyzed the ability of serum M2BP levels to predict liver fibrosis only in patients with HCV [34]. In that study, however, M2BP concentrations could distinguish only between patients classified as F4 and those classified as F0, F1, or F2, but could not differentiate patients classified as F0 to F3. Our previous reports [10, 11] showed that a WFA-antibody sandwich ELISA (glycan-based immunoassay) was superior to screening with monoclonal anti-M2BP antibody in accelerated stability and spiking tests by using lectin microarray analysis and human embryonic kidney 293 (HEK293) cells [10, 11]. Human endogenous M2BP consists of 10 16 monomers, each weighing 1000 1500 kDa, with 70 112 *N*-glycans attached to each macromolecule [34]. Since alterations in M2BP during the progression of liver disease and fibrosis were due to changes in *N*-glycosylation, measurements of serum hyperglycosylated WFA⁺-M2BP by glycan-based immunoassays, FastLec-Hepa, seemed reasonable. In conclusion, examination of serum WFA⁺-M2BP values based on a glycan-based immunoassay is an accurate, reliable, and reproducible method with which to assess liver fibrosis in patients with hepatitis. This approach could be clinically feasible for evaluation of beneficial therapy through the quantification of liver fibrosis in hepatitis patients if this measurement application is commercially realized. Acknowledgments This study was supported by a Grant in Aid from the Ministry of Health, Labour and Welfare, Japan (H23 kan nen 011). This research was performed by the Hepatitis Glyco bio marker Study Group. **Conflict of interest** The authors declare that they have no conflict of interest and have no financial interests linked to this work. #### References - Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693 9. - Shirabe K, Takeishi K, Taketomi A, et al. Improvement of long term outcomes in hepatitis C virus antibody positive patients with hepatocellular carcinoma after hepatectomy in the modern era. World J Surg. 2011;35:1072 84. - Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med. 2001;344:495 500. - Maharaj B, Maharaj RJ, Leary WP, et al. Sampling variability and its influence on the diagnostic yield of percutaneous needle biopsy of the liver. Lancet. 1986;327:523 5. - Bedossa P, Dargere D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology. 2003;38:1449 57. - Shirabe K, Toshima T, Taketomi A, et al. Hepatic aflatoxin B1 DNA adducts and TP53 mutations in patients with hepatocellular carcinoma despite low exposure to aflatoxin B1 in southern Japan. Liver Int. 2011;31:1366 72. - 7. Imbert Bismut F, Ratziu V, Pieroni L, et al. Biochemical markers of liver fibrosis in patients with hepatitis C virus infection: a prospective study. Lancet. 2001;357:1069 75. - Forns X, Ampurdanes S, Llovet JM, et al. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology. 2002;36:986–92. - Toshima T, Shirabe K, Takeishi K, et al. New method for assessing liver fibrosis based on acoustic radiation force impulse: a special reference to the difference between right and left liver. J Gastroenterol. 2011;46:705 11. - Kuno A, Ikehara Y, Tanaka Y, et al. A serum "sweet doughnut" protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep. 2013;3:1065. - Kuno A, Sato T, Shimazaki H, et al. Reconstruction of a robust glycodiagnostic agent supported by multiple lectin assisted gly can profiling. Proteomics Clin Appl. 2013;. doi:10.1002/prca. 201300010 - 12. Ninomiya M, Shirabe K, Ijichi H, et al. Temporal changes in the stiffness of the remnant liver and spleen after donor hepatectomy as assessed by acoustic radiation force impulse: a preliminary study. Hepatol Res. 2011;41:579 86. - Harada N, Shirabe K, Ijichi H, et al. Acoustic radiation force impulse imaging predicts postoperative ascites resulting from curative hepatic resection for hepatocellular carcinoma. Surgery. 2012;151:837 - Nishie A, Asayama Y, Ishigami K, et al. MR prediction of liver fibrosis using a liver specific contrast agent: superparamagnetic iron oxide versus Gd EOB DTPA. J Magn Reson Imaging. 2012;36:664 71. - Boadella M, Gortázar C. Effect of haemolysis and repeated freeze thawing cycles on wild boar serum antibody testing by ELISA. BMC Res Notes. 2011;4:498. - Dahl JJ, Pinton GF, Palmeri ML, et al. A parallel tracking method for acoustic radiation force impulse imaging. IEEE Trans Ultra son Ferroelectr Freq Control. 2007;54:301 12. - Garra BS. Imaging and estimation of tissue elasticity by ultra sound. Ultrasound O. 2007:23:255 68. - The French METAVIR Cooperative Study Group. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology. 1994;20:15 20. - Harada N, Soejima Y, Taketomi A, et al. Assessment of graft fibrosis by transient elastography in patients with recurrent hep atitis C after living donor liver transplantation. Transplantation. 2008;85:69 74. - Ziol M, Handra Luca A, Kettaneh A, et al. Noninvasive assess ment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology. 2005;41:48 54. - DeLong ER, DeLong DM, Clarke Pearson DL. Comparing the area under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837 45. - Iacobelli S, Sismondi P, Giai M, et al. Prognostic value of a novel circulating serum 90K antigen in breast cancer. Br J Cancer. 1994;69:172 6. - Shirure VS, Reynolds NM, Burdick MM. Mac 2 binding protein is a novel E selectin ligand expressed by breast cancer cells. PLoS One. 2012;7:e44529. - Hu J, He J, Kuang Y, et al. Expression and significance of 90K/ Mac 2BP in prostate cancer. Exp Ther Med. 2013;5:181 4. - 25. Sun L, Chen L, Sun L, et al. Functional screen for secreted proteins by monoclonal antibody library and identification of Mac 2 Binding protein (Mac 2BP) as a potential therapeutic target and biomarker for lung cancer. Mol Cell Proteomics. 2013;12:395 406. - Inohara H, Akahani S, Koths K, et al. Interactions between ga lecetin 3 and Mac 2 binding protein mediate cell cell adhesion. Cancer Res. 1996;56:4530 4. - Ulmer TA, Keeler V, Loh L, et al. Tumor associated antigen 90K/Mac 2 binding protein: possible role in colon cancer. J Cell Biochem. 2006;98:1351 66. - 28. Yoshida H, Shiratori Y, Moriyama M, et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveil lance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of hepato carcinogenesis by interferon therapy. Ann Intern Med. 1999;131:174–81. - Ikeda K, Saitoh S, Suzuki Y, et al. Disease progression and hepatocellular carcinogenesis in patients with chronic viral hep atitis: a prospective observation of 2215 patients. J Hepatol. 1998;28:930 8. - Palmeri ML, Wang MH, Rouze NC, et al. Noninvasive evaluation of hepatic fibrosis using acoustic radiation force based shear stiffness in patients with nonalcoholic fatty liver disease. J Hep atol. 2011;55:666 72. - 31. Takayama Y, Nishie A, Asayama Y, et al. Image quality of Gd EOB DTPA enhanced magnetic resonance imaging of the liver using dual source parallel radiofrequency transmission technology: comparison with the post processing correction method for B1 inhomogeneity induced signal loss. Eur J Radiol. 2012;81: 3035 40. - 32. Sporea I, Sirli R, Bota S, et al. Comparative study concerning the value of acoustic radiation force impulse elastography (ARFI) in comparison with transient elastography (TE) for the assessment of liver fibrosis in patients with chronic hepatitis B and C. Ultrasound Med Biol. 2012;38:1310 6. - The French METAVIR Cooperative Study Group. An algorithm for the grading of activity in chronic hepatitis C. Hepatology. 1996;24:289 93. - Cheung KJ, Tilleman K, Deforce D, Colle I, Van Vlierberghe H. The HCV serum proteome: a search for fibrosis protein markers. J Viral Hepat. 2009;16:418 29.