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Mature virion

Non-infectious
particles and
HBeAg

Successive phases:

Fig. 7.5 The HBV infection (a) Schematic representation of the HBV life cycle. (b) HBV natural
history of infection. Abbreviations: cccDNA covalently closed circular DNA, ER endoplasmic
reticulum, HBeAg hepatitis B extracellular “e” antigen, HBsAg HBV surface antigen, pgRNA
pregenomic RNA, Rc receptor, reDNA relaxed circular DNA, RT reverse transcription

6.2 MiRNAs Involved in the Regulation of HBV Gene
Expression, Replication and Effects on the Carcinogenesis

Viruses, nuclear DNA viruses in particular, need some time to complete their life
cycle. During this period, the host cell can develop defense mechanisms such as cell
cycle arrest and viral clearance. By taking advantage of the cellular miRNA machinery,
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Table 7.2 Cellular miRNAs and their effects on HBV biology, pathogenesis or related-HCC HBV
(1): Promotes HBYV replication, HBV (1): Inhibits HBV replication, HCC (1): Development and/
or growth of HCC

miRNA HBYV or HCC
Target genes miRNAs expressions  status Reference
Viral target genes
HBsAg miR-199-3p Up HBV(]) Zhang et al. (2010)
HBVpre-S1 miR-210 Up HBV(]) Zhang et al, (2010)
Cellular target genes
HDAC4 miR-| Up HBV (1) Zhang et al. (201 1a)
c-myb miR-15a Down HCC (1) Liu et al. (2009)
E2F1 (c-myc miR-17-92 cluster ~ Up HCC (D Connolly ¢t al.
IePressor) (2008)
PTEN (7) miR-21 Up HCC (1) Connolly et al.,
(2008)
cyclin G1 (p53 miR-122 Down HBV (1), Wang et al. (2012)
modulator) HCC (1)
DNMTI miR-152 Down HBV (}) Huang et al. (2010)
SOCST (STAT miR-155 Up HBV() Suetal. 2011
inhibitor)
HLA-A (miR-181)  miR-181a, -181b,  Up HBV (1) Liu et al. (2009)
200b
NFIB miR-372,-373 Up HBV (1) Guoetal. 2011
STAT3 let-7 family Down HBV (17, Wang ct al. (2010)
HCC (1)

these viruses can more easily and efficiently help to promote a favorable cellular
environment for viral replication and achievement of the life cycle (Skalsky and
Cullen 2010). The modulation of the machinery could be made by direct action on
the cellular miRNAs (Backes et al. 2012; Jopling et al. 2005) (inhibition or up-
regulation) or by expression of their own miRNAs that will mimic their cellular
counterparts (Gottwein et al. 2007; Lu and Cullen 2004). Despite the fact that HBV
is a nuclear DNA virus, none viral-encoded miRNA has been identified so far. Only
one putative HBV-miRNA, with hypothetical regulation role on its own genome,
was deduced by computational approach (Jin et al. 2007). However, several cellular
miRNAs are involved in the HBV viral replication. They are presented here above
and summarized in Table 7.2.

6.2.1 Cellular miRNAs That Promote HBV Replication

MiR-1 can enhance the HBV core promoter transcription and thus increase the
viral replication by modulating the expression of several host genes such as
transcription factors (Zhang et al. 2011a). The report has confirmed that the
histone deacetylase 4 (HDAC4) expression is down-regulated by miR-1. Knowing
that the cccDNA amplification is controlled by epigenetic regulation (Pollicino
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et al. 2006), miR-1 could act in complementarity with the nuclear HBV X protein
(HBx) in order to induce these modifications (Belloni et al. 2009). However,
miR-1 can also inhibit the cell proliferation and even induce a reverse cancer cell
phenotype (Zhang et al. 2011a). The roles of miR-1 in the cell proliferation and
hepatocellular carcinogenesis (Datta et al. 2008) seem to be contradictory with
the viral replication and with the characteristics of oncogenic virus but must
represent benefit for HBV survival.

Another miRNA, miR-501, has also been suggested to work together with HBx
for the benefit of viral replication (Jin et al. 2013). HBx itself has also the ability to
deregulate the cellular miRNAs expression. This small protein is a key regulator of
HBYV infection. It is usually over-expressed in HCC and accumulated evidence
indicates that HBx can promote hepatocarcinogenesis by disrupting the normal
physiologic mechanisms of the host cell (Chirillo et al. 1997; Lee et al. 2005; Tian
et al. 2013). The let-7 family of miRNAs has been demonstrated to be negatively
regulated by HBx (Wang et al. 2010). This miRNA family is often observed
down-regulated in many cancers including HCC (Guo et al. 2006; Johnson et al.
2005; Yu et al. 2007). The consequence of this down-regulation is the increase
activity of that signal transducer and activator of transcription 3 (STAT3) that
supports the cell proliferation, and potentially the hepatocarcinogenesis.

Finally, the miRNAs can promote the viral replication by the indirect stimulation
the HBV enhancer element I or II. It is the case for the CCAAT/enhancer binding
protein that binds and activates the HBV enhancer II in a dose-dependent manner
(Lopez-Cabrera et al. 1991). miR-372, together with miR-373, targets the nuclear
factor I/B, an important regulator of several viruses (Nagata et al. 1983), and so
supports the HBV expression (Guo et al. 2011).

6.2.2 Cellular miRNAs That Prevent HBV Replication

One of the best studied miRNAs in liver-related diseases is miR-122. This liver-
specific miRNA is expressed at high levels in normal hepatocytes (about 70 % of
the total miRNA population in the adult liver) (Lagos-Quintana et al. 2002) and is
pivotal in numerous aspects of the liver function such as lipid metabolism, liver
development, differentiation, growth and neoplastic transformation (Girard et al.
2008). The essential role of mir-122 in the HCV replication reflects furthermore
the importance of this miRNA in the infection process (Jopling et al. 2005).
While the loss of miR-122 expression is impeding HCV replication, it is enhancing
the replication in the circumstance of HBV infection (Wang et al. 2012). In fact,
miR-122 can negatively regulate the viral gene expression and replication by direct
binding to a highly conserved sequence of HBV (Chen et al. 2011). This repression
effect can apparently be impeded by a negative feedback loop involving the Heme
oxygenase-1 (Qiu et al. 2010). A recent study has reported the indirect implication
of HBx in miR-122 deregulation (Song et al. 2013) that could, at least partially,
explain the difference observed between the two viruses. Knowing that miR-122
expression is low in HBV and HCC tissues (Wang et al. 2012; Kutay et al. 2006)
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and that HBV replication is usually low or absent in HCC cells (Wong et al. 20006),
miR-122 is a highly potential linker between HBYV infection and liver carcinogen-
esis (Wang etal. 2012; Fan et al. 2011) and thercfore a predilected target for future
clinical applications.

The miR-17-92 cluster is also important in the HB V-associated HCC. This polycis-
tron includes six miRNAs (miR-17-5p, miR-18a, miR-19a, miR-19b, miR-20a and
miR-92a-1) and its up-regulated expression is associated with malignancies (Hayashita
et al. 2005). By using human HBV-positive human HCC tissues, hepatoma cell lines
and woodchuck hepatitis virus -induced HCC animal model (Popper et al. 1987),
Connolly and colleagues were able to demonstrate the elevated expression of miR-
17-92 cluster and its implication in the malignant phenotype (Connolly et al. 2008). The
expression could be amplified by c-myc activation (He et al. 2005), under HBx control
(Terradillos et al. 1997), to contribute to HBV latency state (Jung et al. 2013). The
consequence is the induction of liver oncogenesis. Since the RNA intermediates of
HBYV (pgRNA and transcripts) are good targets of miRNA action, it is not surprising
to observe several cellular miRNAs with different binding sites. So, in addition to
miR-122 that targets the polymerase region (Chen et al. 201 1), the mir-199a-3p and
mir-210 can repress the S and pre-S1 regions, respectively (Zhang et al. 2010).

All the examples illustrating cellular miRNAs as inhibitors of the viral replication
are a bit difficult to comprehend initially because of their obvious negative effect on
HBYV infection. However, it can be understood by keeping in mind the survival of the
virus into the host organism. The natural history of HBV infection shows often a
transition from acute to chronic infection, especially in young children. This step
corresponds to a failure of the immune system to eradicate the virus (Fig. 7.5b). One
of the escape pathways is the successful adaptation to the immune-induced down-
regulation of replication. The virus could evade the immune system by reaching a
dormant state into the infected hepatocytes, under the cccDNA form, and survive until
its eventual life cycle reactivation (Ganem and Prince 2004; Belloni et al. 2009, 2012;
Huang et al. 2010). The study of Huang and colleagues reports the CpG islands methyla-
tion of the cccDNA by the DNA methyltransterase 1 (DNMT1) to prevent the viral
gene expression and therefore the viral antigen presentation. DNMTT1 over-expression is
induced by a decrease of miR-152, under the effect of HBx (Huang et al. 2010).

6.3 MiRNAs in the Modulation of the Immune System
and Effects on the Carcinogenesis

HBYV must adapt to a very complex network in order to survive. It has to cope with
the modification of homeostasis, the cell cycle arrest, the apoptosis and the
destruction of the host cell by the immune cells. MiRNAs are also important in the
development and function of immune system (Baltimore et al. 2008). Some miRNAs
in particular are crucial for modulating innate and adaptive immune responses.
MiR-155 has multi-roles during an innate immune response such as the regulation
of the acute inflammatory response after recognition of pathogens by the toll-like
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Fig. 7.6 Chronology of events from the HBV infection until HCC development. The indicated
altered miRNAs and related pathways are based on the results from Ura et al. (2009)

receptors (O’Connell et al. 2007; Tili et al. 2007). The up-regulation of miR-155 can
lead to prolonged exposure to inflammation, a well-known causal agent to cancers
like HCC (Berasain et al. 2009). Two recent studies suggest a role of miR-155 in
hepatocarcinogenesis and HBV infection (Table 7.2). Using HCC-induced mouse
model, Wang and collaborators have demonstrated an oncogenic role of miR-155 at
the early stages of the tumorigenesis (Wang et al. 20092a). On the other hand, the
ectopic expression of miR-155 in human hepatoma cells enhances the innate
immunity through promotion of the JAK/STAT pathway and down-regulates HBx
expression (Su et al. 2011). .

A study analyzing the modified expression profiles of miRNAs in a stable
HBV-expressing cell line revealed the up-regulation of miR-181a (Liu et al. 2009)
(Table 7.2). The deregulation of this miRNA in liver cell might participate to the
establishment of HBV persistence through inhibition of the human leukocyte
antigen A (HLA-A) -dependent HBV antigen presentation. To date, it is unclear if
miRNAs altered in the host cell, like miR-181a and miR-146a also present in Liu’s
study, miRNAs involved in ubiquitous and cell-specific regulatory functions, could
affect directly the immune cells. The presence of circulating miRNAs, as well as the
existence of intercellular nanovesicle-mediated miRNA transfer and its impact on
the environmental modulation, could potentially support that hypothesis (Arataki
et al. 2013; Waidmann et al. 2012; Li et al. 2010, 2012; Zhou et al. 2011; Kogure
et al. 2011). The current knowledge shows an altered miRNA profile expression
between normal and HCC liver at the different stages, and between the HBV and
HCV-induced HCC (Murakami et al. 2006; Li et al. 2008; Budhu et al. 2008; Ura
et al. 2009). For the latest one, this reflects the variation in the cellular pathways that
are modulated as a consequence of the viral infection (Fig. 7.6).
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0.4 MIiRNAs as Biomarkers and Treatment-Based Strategies
Jor HBV Infection and HBV-Induced HCC

It is important to know the precise mechanisms, the cellular pathways that the viral
infection or cancer cells alter in the different steps of the infection and/or tumor
evolution. The knowledge will allow developing powerful targeted therapeutical
strategies. The significance of miRNAs in antiviral immunity and liver carcinogenesis
emphasizes their values as therapeutic targets for HBV infection and HBV-induced
HCC. MiR-122 and miR-18a are of particular interest. They are both released in the
blood and could be used as potential non-invasive biomarkers for HBV-related HCC
screening (Liu et al. 2009; Waidmann et al. 2012; Li et al. 2012). Some other reports
suggest using a miRNA panel in order to improve the specificity of the test (Li et al.
2010; Zhou et al. 2011). In addition with the current routinely used markers such as
HBY surface antigen, HBV extracellular antigen and alanine aminotransferase, the
circulating miRNAs represent a significant clinical value for better evaluation of the
HBV-infection status, liver injury and early diagnosis of HCC.

In the therapeutic perspective, the work of Ura’s group is valuable. They analyzed
the livers of HBV and HCV positive patients with HCC to identify the miRNAs that
are differentially expressed. Nineteen miRNAs were clearly differentiated between
HBYV and HCV groups, six specific for HBV and thirteen specific for HCV. Based
on the miRNAs profile, they made a pathway analysis of candidate targeted genes
and were also able to distinguish the cellular mechanisms altered in HBV or HCV-
infected livers (Ura et al. 2009). The HBV infection alters mostly the pathways
related to signal transduction, inflammation and natural killer toxicity, DNA
damage, recombination, and cell death (Fig. 7.6), while HCV infection modifies
those involved in immune response involving antigen presentation, cell cycle and
cell adhesion (Ura et al. 2009).

Moreover, technological advances in the delivery of miRNA and RNA interfer-
ence enable safe and efficient in vivo miRNA gene therapy, as exemplify by the
recent study from Kota and collaborators on the liver cancer (Kota et al. 2009). They
used an adeno-associated virus to deliver miR-26a in a mouse model of HCC. This
resulted in the successful inhibition of the cancer cell proliferation, induction of the
tumor-specific apoptosis, and protection from disease progression without toxicity.

7 Concluding Remarks

MiRNAs have emerged as novel key players in the control of gene expression in
cells. Investigations of their profiling have unveiled specific miRNA deregulations
in tumors and in condition of viral infection. On the viral point of view, the
deregulated pathways mirror the strategies of the virus to allow its replication and
evade the host defense mechanisms to survive. On the cellular point of view, they
mirror the immune response that is trying to get rid of the intruder and that become
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deregulated. In both cases, the viral infection leads to the alteration of miRNA
expression by RSSs that can trigger tumorigenesis. Several oncogenic viruses,
especially herpesviruses like EBV and KSHYV, encode their own miRNAs to modify
both cellular and viral gene expression (Pfeffer et al. 2004). This step is crucial for
their latency phase. On the other hand, HPV, HBV and HCV do not express viral
miRNAs but can affect the host miRNA pathway. The present and future knowledge
about miRNA will broaden our understanding of the pathogenesis of oncogenic
viruses and most certainly allow developing efficient oncogenic viral therapies.
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Three new oxindole derivatives, RK-270A (1), B (2) and C (3)
(Figure 1), were discovered and isolated from Strepromyces sp. RK85-
270. They had an isopropylidene group at C-3 position of an oxindole
skeleton, and C-1 also had a prenyl group and belonged to a class
of 6-prenylated indoles. The isolation of this type of indoles was the
first example as a natural product. Their cytotoxicity and antibacterial
activities were evaluated.

Secondary metabolites from microorganisms are a major source of
pharmaceutical Jeads and therapeutic agents' or bioprobes in a
chemical biology study.? To obtain such valuable metabolites effi-
ciently we have constructed a microbial metabolites fraction library
and a spectral database based on the photodiode array detector
attached LC/MS analysis. > Through our methodology, we have
identified several structurally unique metabolites, verticilactam,’
spirotoamides A and B, pyrrolizilactone,” fraquinocins 1 and J® and
6-dimethylallylindole (DMAI)-3-carbaldehyde.” Moreover, we recently
reported the advanced metabolite database Natural Products Plot
(NPPlot) and discovery of new quinomycins, RK-1355A and B by the
NPPlot search.!” These results have revealed the advantage of the
fraction library for isolation of new metabolites.

The fraction library of Streptomyces sp. RK85-270, which was
isolated from a soil sample collected in Java, Indonesia in 1985, was
prepared from 301 of culture broth following the scheme as described
in the previous paper® On screening for structurally unique
secondary metabolites using the database, we identified three
unknown peaks with identical UV, which showed characteristic UV
absorption with around 260, 265 and 300 nm indicating an indole
chromophore with extended conjugation. They also showed quasi-
molecular ion peaks at 242, 276 and 271 [M+H]*, respectively. The
related fractions were purified by Cig-HPLC with acetonitrile/water
isocratic elution to yield compounds 1 (1.2mg), 2 (1.4mg) and 3

(1.3 mg) (see Supplementary Information for physicochemical proper-
ties). We report herein the structures of these three new compounds
designated RK-270A (1), B (2) and C (3).

Compound 1 was obtained as an orange amorphous powder, and
its molecular formula was determined to be CjgH;gNO by HRESIMS
(m/z 2421542 [M+H]", caled for CigHyoNO, 242.1545). The IR
spectrum implied the presence of an amide carbonyl group (1687 and
1617ecm™!). The 'H NMR spectrum in DMSO-dg showed four
methyl signals (6y 1.67 (3H, s), 1.69 (3H, s), 2.26 (3H, s) and 2.47
(3H, s)) (Table 1). Two of them (8 1.67 and 1.69) suggested the
presence of a prenyl group with olefin and methylene signals (6 5.26
(1H, m), 3.26 (2H, d, J=7.4 Hz)). It also showed an exchangeable NH
proton (6y 10.31 (1H, broad singlet; brs)) and three aromatic
resonances with AB-X pattern (y 740 (1H, d, J=8.0Hz), 6.74
(1H, dd, J=8.0, 1.1 Hz) and 6.60 (1H, d, J=1.1 Hz)) suggesting the
presence of a trisubstituted benzene ring, which was supposed to be a
part of an indole skeleton. The 'H and *C NMR data in conjunction
with the HSQC data suggested the presence of 16 carbons, comprising
four methyls, one methylene, four methins and seven quaternary
carbons, which included an amide carbonyl signal at §¢ 168.8. In the
HSQC spectrum in DMSO-dg, the correlation between H-10 and C-10
was observed as a very weak signal, therefore it was confirmed by
HSQC spectrum in CDCls. Interpretation of the 2D NMR data
including DQF-COSY, HSQC and HMBC spectra led to the con-
struction of precise structure of 1 (Figure 2). The HMBC correlations
from NH signal to C-3 and C-7a, from H-4 to C-3, C-6 and C-7a,
from H-5 to C-3a and C-7 and from H-7 to C-3a constructed an
oxindole skeleton and substitutions at C-3 and C-6 positions in the
oxindole skeleton in consideration of AB-X coupling pattern in 'H
NMR spectra, 1*C NMR data and IR spectrum. The isopropylidene
moiety and its attachment at C-3 position was confirmed by HMBC
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N

Figure 1 Structures of compounds 1, 2 and 3.

Table 1 NMR spectroscopic data (500 MHz) for compounds 1, 2 and 3

12 2a 3a

Position S¢ Sy (Jin Hz) S¢ Sy (J in Hz) 8¢ Sy (J in Hz)

1-NH — 10.31, brsP — 10.34, brs — 10.37, brs

2 168.8 — 168.9 — 169.3¢ —

3 122.7 — 122.8 — 123.1 —

3a 121.4 — 121.2 — 122.3 —

4 123.5 7.40, d (8.0) 123.1 7.38,d (8.0) 124.1 7.43,d (8.0)

5 120.8 6.74,dd (8.0, 1.1) 122.0 6.79, dd (8.0, 1.1) 121.5 6.79, dd (8.0, 1.2)

6 141.2 —_ 141.4 — 140.0 —

7 108.8 6.60, d (1.1) 110.0 6.71,d (1.1) 109.6 6.63,d (1.2)

7a 140.6 — 140.2 — 141.2 —

8 152.5 — 152.0 — 1535 —

9 24.7 2.26,s 24.7 2.27,s 25.3 2.28,s

10 22.1 2.47,s 22.0 2.48, s 22.7 2.48, brs

1 33.8 3.26,d (7.4) 37.6 2.88,d (13.2) 345 3.43,d (7.5)

2.31,dd (13.2, 10.3)

2 123.1 5.26, m 79.1 3.27,dd (10.3, 1.2) 134.0 6.42, ddd (7.5, 7.5, 1.2)

3’ 131.9 — 71.7 — 132.6 —

4’ 25.5 1.69, s 24.0 1.05, s 170.5P —

5 17.7 1.67,s 26.9 1.10, s 13.3 1.82,d (1.2)

2'-0H — — — 4.44, brs — -

3'-0H — — —_ 4.26, brs — —_

4’-NHa — s — — — 6.87, brs
7.32, brs

2Recorded in DMSO-ds.
bbrs: broad singlet.

c|ndicated carbons showed only weak resonances in the 13C NMR spectrum, but their presence and connectivity were clearly evidenced by all conducted 2D NMR experiments.

=== DQF-COSY

Figure 2 Key 2D NMR correlations of 1, 2 and 3.

correlations from both H-9 and H-10 to C-8, from H-9 to C-10, and
from both H-9 and H-10 to C-3. The assignments of C-9 and C-10
signals were established by the low field chemical shift value of H-10
rather than that of H-9. The prenyl group was constructed by HMBC
correlations from H-1’ to C-3/, from H-2’ to both C-4’ and C-5,
from both H-4' and H-5' to C-3 and from H-5 to C-4'. The
attachment of the prenyl group was established by HMBC correlation
from both H-5 and H-7 to C-1’ and from H-1' to C-6. The
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assignment of C-4’ and C-5 signals were performed owing to their
chemical shifts (6c 17.7 (C-5") and 25.5 (C-4')). Thus, the structure of
1 was designated as RK-270A.

The molecular formula of compound 2 was determined to be
Ci6H,NO; by HRESIMS. The IR absorption at 1683 and 1622 cm ™!
and identical UV spectrum with that of 1 suggested that 2 had the
same oxindole skeleton as 1. However, the IR spectrum showed an
additional absorption at 3388 cm~1, indicating the presence of a
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hydroxyl group. The 'H NMR spectrum in DMSO-dy was also similar
to that of 1, except for the disappearance of the olefin proton and
appearance of two exchangeable signals at dy; 4.44 and 4.26 as broad
signals and an oxymethine signal at 8y 3.27, which were confirmed by
HSQC spectrum. The *C NMR spectrum in DMSO-dy showed 16
signals including identical signals for the oxindole skeleton with those
of 1. However, the olefin signals were disappeared and two oxygenated
signals at 8¢ 71.7 as a quaternary one and d¢; 79.1 as a methine were
observed. On the basis of the above observation, 2 was supposed to be
a dihydroxylated derivative of 1 at the A”. The planner structure of 2
was established by the same manner as 1. The assignments of C-9 and
C-10 were established by their '"H NMR chemical shift values and
confirmed by NOESY correlation between H-4 and H-9 (Figure 2). To
determine the absolute configuration for C-2', preparation of the ester
of 2 using a-methoxy-a-trifluoromethylphenylacetatic acid (MTPA)
or a-methoxy-o-trifluoromethylphenylacetyl chloride (MTPACI) were
carried out by application of the modified Mosher’s method (see
Supplementary Information for detail).!! However, all of the
approaches employed did not yield the desired product. Therefore,
the optical rotation value of 2 was compared with those of (R)-6-(2,3-
dihydroxy-3-methylbutyl)indole and (R)-6-(2,3-dihydroxy-3-methyl-
butyl)indolin-2-one.' Compound 2 displayed a negative optical
rotation as same as the literature. Thus, the absolute configuration
at C-2’ was supposed to be R-configuration, and the structure of 2 was
designated as RK-270B.

Compound 3 had a molecular formula of CygHgN,O, determined
by HRESIMS. The 'H and '*C NMR spectra in DMSO-dg were similar
to those of 1 for the oxindole skeleton with isopropylidene group at
C-3, which was also supported by the identical UV spectrum and
similar IR spectrum with those of 1. However, one methyl signal was
disappeared and two exchangeable signals assigned as NH, protons
(6H 7.32 (1H, brs) and 6.87 (1H, brs)) were observed in the '"H NMR
spectrum of 3. In addition, the C NMR spectrum showed the
additional carbonyl carbon at d¢ 170.5 as a weak signal, which was
clearly observed by the HMBC correlations and confirmed by *C
NMR data obtained in CD30D, and the missing of one methyl signal.
These observation suggested that one of the methyl groups at C-3" of 1
was replaced by an amide group. The detailed structure was
determined by the same manner as 1 and 2 (Figure 2) and designated
as RK-270C.

Compounds 1, 2 and 3 were evaluated for cytotoxic activity against
human cervical cancer cells (HeLa), human promyelocytic leukemia
cells (HL-60), mouse temperature-sensitive cdc2 mutant cells
(tsFT210) and rat kidney cells that were infected with ts25 (src®-
NRK) and antimicrobial activity against Staphylococcus aureus, Escher-
ichia coli, Aspergillus fumigatus, Magnaporthe oryzae and Candida
albicans. Compound 1 showed moderate cytotoxicity against all of
four cell lines with ICs, values of 6.6, 5.5, 10.9 and 15.3 pgml~},
respectively. Compound 1 also showed weak antifungal activity against
M. oryzae with 1Csq value of 8.7 pgml~! In contrast, 2 and 3 did not
show any effects up to 30 pgml~!. These results suggest that the
prenyl group is important for the activities, which will be an important
knowledge for future SAR study.

Three new oxindole derivatives, RK-270A (1), B (2) and C (3) were
isolated from Streptomyces sp. RK85-270 based on our methodology
constructing the fraction library with spectral database. They had an

RK-270A~C from a microbial metabolites fraction library
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isopropylidene group at C-3 position and prenyl group or its related
side chains at C-6 position. Even though prenylated indole derivatives
are widely distributed in nature,'® the isolation of the prenylated
oxindole with the isopropylidene group at C-3 position is the first
example as a natural product. We have reported the isolation of the
new prenylated indole, 6-DMAI-3-carbaldehyde from Stretomyces. sp.
SN-593 and identified the key enzyme (IptA) for the prenylation at
C-6 position.? Recently, Satou ef al.'* have reported the isolation of 3-
hydroxy-6-dimethylallylindolin-2-one from Actinoplanes missouriensis
and its biosynthetic pathway. However, a gene responsible for
oxindole formation still remains unsolved. In addition, conversion
of 1 into 2 and 3 requires successive hydroxylation and carboxamide
formation. Identification of the gene cluster of 1 -3 is indispensable to
address the mechanism of biosynthesis and future derivatization of
oxindoles which might have a strong biological activity.
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Introduction

It has become increasingly clear over the past decade that non-
coding small RNAs play roles in viral life cycles at various ways [1—
3]. Hepatitis C virus (HCV) is known to utilize host microRINA
miR 122, which is specifically expressed and highly abundant in
the human liver, to support its efficient replication through its
direct attachment to the HCV 5’ non-translation region; thus,
miR122 is regarded as a therapeutic target for antiviral
intervention [4-6]. Moreover, more than two hundred small
RNAs derived from viruses have been identified. For example,
Epstein-Barr virus (EBV) encodes two small RNAs, EBER-1 and
EBER-2 [7-9], which modulate the interferon-mediated antiviral
response [10].

Adenoviruses (Ads) encode two kinds of non-coding small-
RNAs, known as virus-associated (VA) RNAs, VAI and VAIL that
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consist of 157-160 nucleotides (nts). After Ad infection, the
transcription of VA RNAs starts at the same time as the E1A gene
and lasts until the late phase. Since the transcription level of VA
RNAs increases depending on the number of viral genome copies,
VA RNAs in Ad-infected cells are abundant during the late phase,
and this is one reason why the functional analysis of VA RNAs
during the late phase has been investigated much more frequently
than during the early phase.

The VA RNA I (VAI), which is expressed at a level of 108 copies
per infected cell during the late phase [11], is required to establish
efficient translation in virus-infected cells [12,13]. Moreover, it is
well known that VAI inhibits anti-viral double-stranded RNA
(dsRNA)-activated protein kinase (PKR). Also, VAI stabilizes
ribosome-associated viral mRNAs, which could lead to enhanced
levels of protein synthesis [14]. These findings have indicated that
VAI plays a role in creating suitable conditions for viral growth, at
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least during the late phase of infection. Recently, VA RNAs have
been reported to be processed to microRNAs (mivaRNAs) via the
cellular RNA-interference (RINAi) machinery, and mivaRNAs
disturb cellular DNA expressions during the late phase [15].
However, it has not been investigated the function of VA RNA
during the early phase, though the expression of VA RNAs starts
immediately during the early phase of viral infection.

El- and E3-deleted adenovirus vectors (AdVs), known as first-
generation (FG) AdVs, have widely been used for the transient
expression of transgenes in various cell types. FG AdVs lack E1A
gene, an essential for viral replication; consequently, they neither
express any viral gene product in target cells nor replicate except
" in 293 cells, which express EIA gene constitutively. However,
since VA RNAs are transcribed by RINA polymerase III, their
expressions are independent of E1A-mediated transactivation and
they are always transcribed from AdV genome in AdV-infected
cells. Therefore, FG AdVs are thought to be a suitable tool for the
investigation of VA RNA function during the early phase of viral
infection, since they express VA RINAs but do not replicate except
in 293 cells. Moreover, these AdVs allow us to study the function
of VA RNAs during both early and late phase using 293 cells. For
this purpose, AdVs lacking VA RNA genes (VA-deleted AdVs) are
essential as a control, however, VA-deleted AdVs have been
difficult to generate and produce in quantities sufficient for
practical use. Recently, we have developed a novel method for the
efficient production of VA-deleted AdVs using a site-specific
recombinase FLP [16]. A “pre-vector” containing the VA RNA
region flanked by a pair of FRT sequences, which are target
sequences for FLP recombinase, is constructed according to a
commonly used method for the production of FG AdV [17]. This
pre-vector, which is obtained at a high titer, is subsequently used
to infect a 293 cell line that constitutively expresses humanized-
FLPe [18] (293hdel2) [19] so that the VA RINA region is removed
from replicating viral genome. Since the excision efficiency of FLP
in 293hdel2 cells is high enough to remove almost all the VA
RNA region from the very high number of viral genome copies,
this method can be used to generate a high-titer of VA-deleted
AdVs efficiently.

Here, we demonstrated the effect of VA RNAs expressed via FG
AdVs on cellular gene expression by comparing the expression
patterns between VA-deleted AdV- and FG AdV-infected cells
using a microarray analysis. We found that VA RNAs expressed
from FG AdVs disturbed the cellular gene expressions. Especially,
the expression level of HDGF (hepatoma-derived growth factor;
ENSG00000143321.14) was significantly decreased under the
replication-deficient conditions; notably, HDGF expression started
to decrease even during the early phase of infection in the 293
cells. Moreover, the overexpression of the HDGF gene inhibited
viral growth in 293 cells, suggesting that the suppression of HDGF
gene expression mediated by the VA RNAs was important for

viral growth. This is the first report to show the function of VA

RNAs during the early phase of infection.

Materials and Methods

Cells and AdVs

Human embryo kidney 293 cell line (ATCC) [20], human lung
carcinoma A549 cell line (ATCC) [21], and human hepatocellular
carcinoma derived HuH-7 cell line (RIKEN BRC) [22]were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal calf serum (FCS). 293hdel2 cell
line [19], which is a 293 cell line possessing the hFLPe gene [18]
(an improved version of the FLPe gene [23]), was cultured in
DMEM supplemented with 10% FCS plus geneticin (0.75 mg/
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mkL). After infection with AdVs, the cells were maintained in
DMEM supplemented with 5% FCS without geneticin. For AraC
(cytosine b-D-arabinofuranoside, hydrochloride: Sigma) treat-
ment, the infected cells were maintained in DMEM supplemented
with 5% FCS plus AraC (20 ug/mL).

The FG AdVs were prepared using 293 cells, which constitu-
tively express adenoviral E1 genes and support the replication of
El-substituted AdVs. The VA-deleted AdVs except for HDGF-
and GFP-expressing AdVs were prepared according to a method
using 293U6GVA-1 cells that constitutively express both VAI and
VAIIL. HDGF-expressing and GFP-expressing VA-deleted AdVs
were generated as described previously [16]. Briefly, an HDGF-
expressing and a GFP-expressing unit under the control of the
EFlo promoter was inserted into the Swal cloning site at the
authentic E1 substitution region in the pre-vector cosmid pAxdV-
4FVF-w, and the pre-vectors were prepared using 293 cells.
Subsequently, the pre-vectors were used to infect 293hdel2 cells
that constitutively express humanized FLPe recombinase [19] to
excise the VA RINA region from the replicating viral genome. The
VA-deleted AdVs transcribed less than 1% of the VA RNAs,
compared with the FG AdVs, as confirmed using real-time PCR
[16]. The VA-deleted AdVs and the FG AdVs were titrated using
the methods described by Pei et al [24]. Briefly, the copy numbers
of a viral genome that was successfully transduced into infected
target cells were measured using qPCR (relative virus titer: rVT).
This method enabled us to compare the various titers, since the
transduction titer is not influenced by the growth rate of the 293
cells, even if an expressed gene product is deleterious to 293 cells.

Plasmids

The pVA41da plasmid [16] contains a DNA fragment covering
all of VAI and VAII from nt position 10576—11034 of adenovirus
type 5. The pBluescript SK (-) (Stratagene) was used as a control.
The plasmids were transfected using Transfast (Promega). A
pxEFGFP plasmid expressing GFP under the control of the EFlo.
promoter was used as a transfection control. Two days after the
transfection of pVA4lda plasmid into 293 cells, the cells were
harvested and the total RNAs were extracted as described below to
measure the HDGF mRNA levels using gPCR.

Microarray analysis

VA-deleted AdV (Axd12CARedE) and VA-containing FG AdV
(AxCAdsRedE) were infected at an MOI (multiplicity of infection)
of 0.5 to A549 cells for 24 h. We prepared triplicate samples for
each of the conditions, and total RNA isolation was performed
using a Qiagen RNeasy kit (Qiagen). A DNA microarray analysis
using Affymetrix Gene-Chip technology was performed as
described previously [25-27]. Briefly, 100 ng of total RNAs were
used as a template for cDNA synthesis, and biotin-labeled ¢cRNA
was synthesized with a 3" IVT Express Kit (Affymetrix). After
generating the hybridization cocktails, hybridization to the DNA
microarray (Genechip; Human Genome U133 Plus 2.0 Array;
Affymetrix) [28] and fluorescent labeling were performed. The
microarrays were then scanned with a GeneChip; Scanner 3000
7G System (Affymetrix). The data analysis was performed using
GCOS software (Affymetrix). Signal detection and quantification
were performed using the MASS algorithm with default settings.
Global normalization was performed so that the average signal
intensity of all the probe sets was equal to 100. For the clustering
analysis, the signals were normalized and calculated to the
individual scores, and the scores were visualized using Spotfire
DecisionCite [29]. The analysis of variance among the groups was
also performed using Spotfire DecisionCite and normalized data.
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