Table 3 Factors associated with sustained virological response in patients with chronic hepatitis C who underwent 48 weeks of pegylated inferferon-α plus ribavirin therapy

	UVA			MVA	
	SVR	Non-SVR	p	OR (95 % CI)	p
Number	74 (38 male, 36 female)	45 (31 male, 14 female)	0.06		
Age (years)	55.4 ± 10.1	58.2 ± 10.0	0.122		
WBC (/mm ³)	$5,043 \pm 1,695$	$5,248 \pm 1,363$	0.247		
Hb (g/dL)	14.3 ± 1.5	14.4 ± 1.6	0.504		
Plt $(\times 10^4/\text{mm}^3)$	18.2 ± 4.6	16.9 ± 6.0	0.186		
TP (g/dL)	7.5 ± 0.6	7.6 ± 0.5	0.292		
Alb (g/dL)	4.2 ± 0.4	4.1 ± 0.4	0.575		
AST (U/L)	47.5 ± 27.9	66.5 ± 50.0	0.049	1.012 (0.997–1.027)	0.108
ALT (U/L)	66.4 ± 47.9	80.0 ± 62.9	0.286		
T-bil (mg/dL)	0.7 ± 0.3	0.9 ± 0.4	0.101		
T-chol (mg/dL)	178.1 ± 36.8	174.3 ± 37.7	0.717		
AFP (ng/mL)	7.1 ± 7.8	14.1 ± 18.8	0.062		
HCV RNA (log IU/mL)	6.3 ± 0.7	6.3 ± 0.5	0.753		
IFNL3 rs8099917 (TT/non-TT)	70:4	30:15	< 0.0001	17.25 (3.34–89.13)	0.001
Histological activity score (A0-A1/A2-A3)	45:20	24:15	0.454		
Fibrosis score (F1-F2/F3-F4)	57:8	27:12	0.023	0.239 (0.072-0.798)	0.02
IFN- λ_3 (pg/mL)	17.3 ± 31.7	11.8 ± 14.9	0.262		
IP-10 (pg/mL)	458.0 ± 404.9	504.7 ± 364.0	0.208		
MIP-1α (pg/mL)	13.1 ± 36.1	4.2 ± 5.6	0.026	0.66 (0.457-0.956)	0.028
MIP-1β (pg/mL)	195.7 ± 204.3	154.9 ± 81.5	0.865		
RANTES (pg/mL)	$18,125 \pm 8,076$	$16,597 \pm 7,946$	0.187		
PDGF-BB (pg/mL)	$3,931 \pm 1,846$	$3,312 \pm 1,803$	0.079		

Alb albumin, AFP α -fetoprotein, ALT alanine aminotransferase, AST aspartate aminotransferase, CI confidence interval, Hb hemoglobin, HCV hepatitis C virus, $IFN-\lambda_3$ interferon- λ_3 , IP-10 interferon- γ -inducible protein 10, $MlP-1\alpha$ macrophage inflammatory protein 1 α , $MIP-1\beta$ macrophage inflammatory protein 1 α , MVA multivariate analysis, OR odds ratio, PDGF-BB platelet-derived growth factor BB, Plt platelets, RANTES regulated on activation, normally T cell expressed, and secreted, T-bil total bilirubin, T-chol total cholesterol, TP total protein, UVA univariate analysis, WBC white blood cells

function was reported for PDGF-BB, the level of which is reported to be increased in patients with advanced/fibrosis stages of HBV infection [32, 33]. These reports support the notion that IFN- λ_3 is related to liver inflammation and fibrosis. As well as in B-CH patients, a positive correlation was observed between serum IFN-λ₃ levels and inflammation (AST levels) and fibrosis markers (FIB-4 score and APRI). Secondly, we examined whether serum IFN- λ_3 and chemokines are involved or not involved in the SVR to PEG-IFN-α plus RBV therapy for C-CH patients. We confirmed that IFNL3 genotypes, fibrosis score, and MIP-1α are associated with SVR in this cohort, but failed to do so with IP-10 and serum IFN- λ_3 . Several studies showed that pretreatment IP-10 levels could be a predictor of SVR in PEG-IFN-α plus RBV therapy for C-CH [34], the significance of which became stronger in combination with IFNL3 genotypes [35, 36]. One of the reasons why the IP-10 levels failed to be significant in this study may be a bias for the enrollment of patients from multiple hospitals and medical centers.

In summary, serum IFN- λ_3 levels are increased in patients with chronic HCV infection regardless of the *IFNL3* genotype, the level of which is associated with liver inflammation and fibrosis. The biological role and clinical impact of IFN- λ_3 in patients with chronic HCV infection need to be investigated further.

Acknowledgment This study was supported by grants (23-105) from the National Center for Global Health and Medicine in Japan.

Conflict of interest The authors declare that they have no conflict of interest.

References

- Thomas DL. Global control of hepatitis C: where challenge meets opportunity. Nat Med. 2013;19(7):850-8.
- Hayashi N, Takehara T. Antiviral therapy for chronic hepatitis C: past, present, and future. J Gastroenterol. 2006;41(1):17–27.
- 3. Liang TJ, Ghany MG. Current and future therapies for hepatitis C virus infection. N Engl J Med. 2013;368(20):1907-17.

- Liang TJ, Ghany MG. Therapy of hepatitis C—back to the future. N Engl J Med. 2014;370(21):2043–7.
- Sarrazin C, Hezode C, Zeuzem S, et al. Antiviral strategies in hepatitis C virus infection. J Hepatol. 2012;56(Suppl 1):S88–100.
- Thompson AJ, Muir AJ, Sulkowski MS, et al. Interleukin-28B polymorphism improves viral kinetics and is the strongest pre-treatment predictor of sustained virologic response in genotype 1 hepatitis C virus. Gastroenterology. 2010;139(1):120-9.e18.
- Ge D, Fellay J, Thompson AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401.
- Suppiah V, Moldovan M, Ahlenstiel G, et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat Genet. 2009;41(10):1100–4.
- Tanaka Y, Nishida N, Sugiyama M, et al. Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41(10):1105–9.
- 10. Marcello T, Grakoui A, Barba-Spaeth G, et al. Interferons α and λ inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology. 2006;131(6):1887–98.
- 11. Kotenko SV. IFN-λs. Curr Opin Immunol. 2011;23(5):583-90.
- Thomas E, Gonzalez VD, Li Q, et al. HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons. Gastroenterology. 2012;142(4):978–88.
- 13. Kumada H, Okanoue T, Onji M, et al. Guidelines for the treatment of chronic hepatitis and cirrhosis due to hepatitis C virus infection for the fiscal year 2008 in Japan. Hepatol Res. 2010;40(1):8–13.
- 14. Ghany MG, Nelson DR, Strader DB, et al. An update on treatment of genotype 1 chronic hepatitis C virus infection: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology. 2011;54(4):1433–44.
- Bedossa P. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology. 1994;20(1):15–20.
- Ogawa E, Furusyo N, Shimizu M, et al. Non-invasive fibrosis assessment predicts sustained virological response to telaprevir with pegylated interferon and ribavirin for chronic hepatitis C. Antivir Ther. 2014. doi:10.3851/IMP2805.
- 17. Teshale E, Lu M, Rupp LB, et al. APRI and FIB-4 are good predictors of the stage of liver fibrosis in chronic hepatitis B: the Chronic Hepatitis Cohort Study (CHeCS). J Viral Hepat. 2014;21(12):917–20.
- 18. Ito K, Higami K, Masaki N, et al. The rs8099917 polymorphism, when determined by a suitable genotyping method, is a better predictor for response to pegylated alpha interferon/ribavirin therapy in Japanese patients than other single nucleotide polymorphisms associated with interleukin-28B. J Clin Microbiol. 2011;49(5):1853-60.
- Sugiyama M, Kimura T, Naito S, et al. Development of specific and quantitative real-time detection PCR and immunoassays for λ3-interferon. Hepatol Res. 2012;42(11):1089–99.
- Melton AC, Yee HF. Hepatic stellate cell protrusions couple platelet-derived growth factor-BB to chemotaxis. Hepatology. 2007;45(6):1446-53.

- 21. Wasmuth HE, Tag CG, Van de Leur E, et al. The Marburg I variant (G534E) of the factor VII-activating protease determines liver fibrosis in hepatitis C infection by reduced proteolysis of platelet-derived growth factor BB. Hepatology. 2009;49(3):775–80.
- 22. Ogawa S, Ochi T, Shimada H, et al. Anti-PDGF-B monoclonal antibody reduces liver fibrosis development. Hepatol Res. 2010;40(11):1128-41.
- 23. Park H, Serti E, Eke O, et al. IL-29 is the dominant type III interferon produced by hepatocytes during acute hepatitis C virus infection. Hepatology. 2012;56(6):2060–70.
- 24. Yoshio S, Kanto T, Kuroda S, et al. Human blood dendritic cell antigen 3 (BDCA3)⁺ dendritic cells are a potent producer of interferon-λ in response to hepatitis C virus. Hepatology. 2013;57(5):1705–15.
- Stone AE, Giugliano S, Schnell G, et al. Hepatitis C virus pathogen associated molecular pattern (PAMP) triggers production of lambda-interferons by human plasmacytoid dendritic cells. PLoS Pathog. 2013;9(4):e1003316.
- Pott J, Mahlakoiv T, Mordstein M, et al. IFN-λ determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci U S A. 2011;108(19):7944–9.
- Sugiyama M, Tanaka Y, Wakita T, et al. Genetic variation of the IL-28B promoter affecting gene expression. PLoS One. 2011;6(10):e26620.
- 28. McFarland AP, Horner SM, Jarret A, et al. The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus-induced microRNAs. Nat Immunol. 2014;15(1):72–9.
- Langhans B, Kupfer B, Braunschweiger I, et al. Interferonlambda serum levels in hepatitis C. J Hepatol. 2011;54(5):859–65.
- 30. Harvey CE, Post JJ, Palladinetti P, et al. Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and lobular inflammation. J Leukoc Biol. 2003;74(3):360–9.
- 31. You CR, Park SH, Jeong SW, et al. Serum IP-10 levels correlate with the severity of liver histopathology in patients infected with genotype-1 HCV. Gut Liver. 2011;5(4):506–12.
- 32. Fingas CD, Bronk SF, Werneburg NW, et al. Myofibroblast-derived PDGF-BB promotes hedgehog survival signaling in cholangiocarcinoma cells. Hepatology. 2011;54(6):2076–88.
- Patsenker E, Popov Y, Wiesner M, et al. Pharmacological inhibition of the vitronectin receptor abrogates PDGF-BB-induced hepatic stellate cell migration and activation in vitro. J Hepatol. 2007;46(5):878–87.
- 34. Lagging M, Romero AI, Westin J, et al. IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection. Hepatology. 2006;44(6):1617–25.
- 35. Darling JM, Aerssens J, Fanning G, et al. Quantitation of pretreatment serum interferon-γ-inducible protein-10 improves the predictive value of an IL28B gene polymorphism for hepatitis C treatment response. Hepatology. 2011;53(1):14–22.
- 36. Lagging M, Askarieh G, Negro F, et al. Response prediction in chronic hepatitis C by assessment of IP-10 and IL28B-related single nucleotide polymorphisms. PLoS One. 2011;6(2):e17232.

