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FIG 3 Immunoblot analyses of viral latent gene expression in cells infected with the recombinant viruses. (A) Whole-cell extracts of the B95.8v-infected and the
BART(+)v-infected HEK293 cells, LCLs, and AdAH cells were analyzed by immunoblotting using EBV-immune human serumn (top panel), a monoclonal
anti-LMP1 antibody (middle panel), or an anti-GAPDH antibody (bottom panel) as a control. (B) LMP1 and LMP2A protein levels of two additional lines of the
B95.8v-infected and the BART (+)v-infected LCLs were examined by Western blotting analyses. (C) The AJAH cells infected with the recombinant viruses were
processed for immunofluorescence to detect the expression of EBNA. The EBNA staining of C666-1 is shown as a positive control.

examined cells (Fig. 2A and data not shown). Notably, the expres-
sion levels of the restored miRNAs were comparable to those of
the endogenous miRNAs in the C666-1 cells, which express high
levels of viral miRNAs (15).

Previous studies demonstrated that relative BART miRNA ex-
pression levels in LCLs were far less than those in epithelial cells
(50), which was not very obvious in our Northern blot data. Thus,
two of the BART miRNAs (BART17-5p and BART22) were cho-
sen and subjected to TagMan small RNA assay to determine
miRNA expression levels in the BART(+)v-infected epithelial
cells relative to those in the BART(+ )v-infected LCLs. The results
revealed that relative BART17-5p expression levels in the infected
epithelial cells were comparable to those in the LCLs, whereas
BART?22 expression levels in BART(+)v-infected epithelial cells
were approximately five times (HEK293 cells) and two times
(AdAH cells) more than those in the BART(+)v-infected LCLs
(Fig. 2B). These results were in good concordance with the North-
ern blot data, indicating that estimation of miRNA expression
levels by Northern blotting data is reliable.

Whole-cell extracts were prepared from various B95.8v-in-
fected and BART(+)v-infected cells (HEK293, LCLs, and AdAH
cells), and the expression levels of viral latent proteins were exam-
ined by immunoblotting. The Epstein-Barr virus nuclear antigen
1 (EBNA1), EBNA?2, and EBNA3 proteins were expressed at com-
parable levels in B95.8v-infected and BART(+)v-infected
HEK?293 cells and LCLs (Fig. 3A). Latent membrane protein 1
(LMP1) and LMP2A were expressed in the LCLs, but their expres-
sion levels were highly variable among different LCL cell clones
(Fig. 3A and B). Thus, the effect of BART miRNA expression on
LMP1 and LMP2A expression was obscure in this experimental
setting. Although only traces of EBNA1 and LMP1 were detected
by Western blotting, the infected AJAH cells were nearly 100%
EBNA-positive (Fig. 3C), arguing against the possibility that only
minor populations of AdAH cells were infected. These results in-
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dicate that the absence or presence of BART miRNAs did not
significantly affect viral latent protein expression.

NDRGT1 is downregulated in the cells infected with the
BART-restored EBV. Next, microarray analyses were performed
to identify differences between the expression levels of host genes
in the B95.8v-infected and the BART(+ )v-infected HEK293 cells
(see Dataset S1 in the supplemental material). Two independent
B95.8v-infected and two independent BART(+ )v-infected
HEK293 cell clones, each of which were derived from a single
colony after hygromycin selection, were chosen based on their
good virus producing abilities. Representative scatter plots of the
global gene expression profiles of the B95.8v-infected and the
BART(+)v-infected HEK293 cells are shown in Fig. 4A. We fo-
cused on cellular genes that were downregulated in the
BART(+)v-infected HEK293 cells, since these genes are more
likely to be direct targets of the EBV BART miRNAs. The analysis
identified 19 genes that were expressed at moderate to high levels
in the B95.8v-infected HEK293 cells and downregulated (0.75-
fold or less) in the BART(+)v-infected HHEK293 cells (see Table S5
in the supplemental material). We then used the DIANA-microT
program (51) to search for possible direct target genes of each
BART miRNA. Of the downregulated genes shown in Table S5 in
the supplemental material, NDRGI1, NOM1, and ANGEL2 were
identified as possible direct targets of BART miRNA (see Dataset
S2 in the supplemental material). NDRGI (N-myc downstream
regulated gene 1) was chosen for further analyses, because the gene
had previously been identified as a BART miRNA target by a pho-
toactivatable-ribonucleoside-enhanced cross-linking and immu-
noprecipitation analysis (32). NDRG1 mRNA expression was
downregulated in the BART (- )v-infected AJAH cells as well (Fig.
4A and see Table S6 in the supplemental material). The down-
regulation of NDRGI expression in the BART(+)v-infected
HEK293 cells was confirmed by quantitative RT-PCR (Fig. 4B).

Whole-cell extracts were prepared from B95.8v-infected and
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FIG 4 Downregulation of NDRG1 mRNA and protein in epithelial cells infected with the BART-restored virus. (A) Representative scatter plots of the global gene
expression profiles of the B95.8v-infected and the BART(+)v-infected HEK293 and AdAH cells. The black dots (indicated by arrows) represent NDRG!, and the
top and bottom diagonal lines indicate 2-fold differences between the expression levels in the two samples. The signal intensities of selected genes, including
NDRGI, are shown in Tables S5 and S6 in the supplemental material. (B) Quantitative RT-PCR analyses of the expression levels of NDRG! mRNAs in the
B95.8v-infected and the BART(+ )v-infected HEK293 cells (two independent clones of each). The values were normalized by using those of GAPDH mRNA. The data
are represented as the means = the standard deviations (SD) of n = 3 replicates. (C) Immunoblot analyses of NDRG1 and GAPDH protein levels in whole-cell extracts
of the B95.8v-infected cells, the BART (- )v-infected cells, and the revertant virus-infected cells (HEK293 and AdAH cells, two independent clones of each).

BART(+)v-infected HEK293 and AdAH cells, and the expression
levels of the NDRG1 protein were examined by immunoblotting.
In agreement with the mRNA levels, NDRG1 protein expression
was downregulated in the BART (+)v-infected HEK293 cells (Fig.
4C). To confirm that the 12-kb region of EBV that is deleted in the
B95-8 strain is responsible for downregulating NDRG1 expres-
sion, this region was removed from the BART(+) EBV-BAC clone
to generate a BART-deleted revertant. An immunoblot analysis
revealed that HEK293 stably infected with the revertant virus ex-
hibited high levels of NDRG1 expression that were similar to those
in the B95-8-infected cells (Fig. 4C). In the AdAH cells, NDRG1
was detected as a double band, and transfection of exogenous
NDRGI1 cDNA produced a protein band that comigrated with the
smaller band (data not shown). Both the larger and the smaller
NDRGI protein bands were downregulated in the BART(+)v-
infected AdAH cells, and the downregulation disappeared in the
revertant virus-infected cells (Fig. 4C).

These results indicate that downregulation of NDRG1 expression
in the BART(+ )v-infected cells occurs at both the mRNA and pro-
tein levels and that the 12-kb region of the EBV genome encompass-
ing the BART miRNAs is responsible for the downregulation.

NDRG1 is expressed at a high level in epithelial cells but not
B cells. It was previously reported that NDRG1 is expressed at a
high level in epithelial cells (52); therefore, the expression levels of
NDRGL1 in various epithelium-derived cell lines were examined by

2690 jvi.asm.org

Journal of Virology

immunoblotting. Substantial levels of NDRG1 expression were
detected in AdAH cells, primary human bronchial epithelium-
derived cells (HBEC1), human colon cancer-derived epithelial cell
line Caco-2, human prostate cancer-derived epithelial cell line
PC-3, and primary human prostate epithelium PrEC (Fig. 5).
Consistent with the notion of its downregulation by EBV infec-

FIG 5 NDRGI is expressed at a high level in epithelial cells but not B cells.
Immunoblot analyses of NDRG1 and GAPDH protein levels in whole-cell
extracts of various epithelial cells (AdAH cells, primary human bronchial ep-
ithelial HBECI cells, colon cancer-derived Caco-2 cells, prostate cancer-de-
rived PC-3 cells, primary prostate epithelial PrEC cells [purchased from
Lonza)], and C666-1 cells) and B cells (Akata, P3HR-1, Daudi, and LCLs). The
presence (+) or absence (—) of EBV infection in each cell line is indicated. The
recombinant viruses used to establish the LCLs are indicated.
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tion, the expression level of NDRGI in C666-1 cells, which have
abundant levels of BART miRNAs, was relatively low (Fig. 5).
Although substantial levels of NDRG1 protein expression were
detected in various epithelium-derived cells, Burkitt’s lymphoma-
derived cell lines (Akata, P3HR-1, and Daudi) and the LCLs barely
expressed the NDRG1 protein (Fig. 5). These results indicate that,
among EBV host cells, epithelial cells but not B cells express high
levels of NDRG1 protein.

Screening of viral miRNAs putatively responsible for down-
regulating NDRG1 expression. Next, we investigated the possi-
bility that BART miRNAs mediate the downregulation of NDRG1
expression directly in EBV-infected epithelial cells. Because
miRNAs bind to specific sequences located within the 3’ UTR of a
target mRNA (53), a reporter construct containing the 3’ UTR of
NDRGT located between a luciferase open reading frame and a
polyadenylation signal was constructed (Fig. 6A). The abilities of
BART miRNA mimics corresponding to the 17 miRNAs encoded
in the 12-kb deleted region of the EBV B95-8 strain (BARTS, -16,
-17,-6,-21,-18,-7,-8,-9,-22,-10, -11, -12, -19, -20, -13, and - 14;
indicated in gray in Fig. 1B) to downregulate luciferase gene ex-
pression in the B95-8v-infected HEK293 cells were determined.
Some BART miRNA mimics upregulated the reporter, presum-
ably due to their indirect effect on cytomegalovirus (CMV) pro-
moter activity of the reporter gene. Thus, we focused on miRNA
mimics that downregulated the reporter gene, The BART22
mimic suppressed the luciferase activity most strongly (Fig. 6A).
This result agrees with that of a previous photoactivatable-ribo-
nucleoside-enhanced cross-linking and immunoprecipitation
analysis, which demonstrated that the NDRGI mRNA coprecipi-
tates with BART17-5p and BART22 (32), both of which were ex-
pressed at high levels in the BART(-)v-infected HEK293 cells
(Fig. 2A). BART9-5p, BART11-5p, and BART11-3p were also
strong suppressors in the reporter assay (Fig. 6A). However,
BART9-5p was hardly expressed in the infected cells (Fig. 2A),
which had been demonstrated by deep sequencing (50, 54).
BART11-5p and BART11-3p were found to suppress a reporter
gene that lacked the NDRG1 3" UTR (data not shown), suggesting
they influence the expression of transcription factors that regulate
CMYV promoter of the reporter gene.

Although four putative BART17-5p binding sites and three
putative BART22 were identified in the 3’ UTR of NDRGI using
the miRNA target prediction program DIANA microT (51) (Fig.
6B), only the BART22 mimic downregulated the reporter gene
expression (Fig. 6A and C). Notably, this mimic failed to down-
regulate luciferase gene expression when the three putative bind-
ing sites in the 3’ UTR of NDRGI were mutated (Fig. 6C). These
results indicate that the downregulation of luciferase activity by

the BART22 mimic was specifically dependent on the presence of
the BART22 binding sites within the 3’ UTR of NDRGI. Trans-
fection of B95.8v-infected HEK293 cells with the BART22 mimic
also downregulated NDRG1 protein expression, while transfec-
tion of these cells with the BART17-5p mimic had no effect (Fig.
6D). This result supports the concept that BART22 is responsible
for downregulating NDRG1 expression in EBV-infected epithelial
cells.

Clustered EBV miRNAs cooperatively downregulate NDRG1
expression. The effects of BART miRNAs on NDRG1 expression
were then verified by generating recombinant viruses containing
specific deletions of BART miRNA genes. A BAC engineering
technique was used to obtain modified EBV-BAC clones that spe-
cifically lacked the pre-miRNAs of BART22 only (BART22A),
BARTS through BART11 (BART8-11A), or BART21 through
BART14 (BART21-14A) (Fig. 7A). The genome of the BART21-
14A virus, which had a 3.3-kb deletion, lacked the 13 pre-miRNA
genes of cluster 2 BART miRNAs (18) but retained the three open
reading frames (LF1, LF2, and LF3 in Fig. 1B). Restriction enzyme
mapping of these BAC clone DNAs demonstrated that they did
exhibit identical digestion pattern except for the fragments corre-
sponding to the modified region (Fig. 7B, and see Table S7 in the
supplemental material), and the result was verified by Southern
blotting analyses using a specific probe for detecting the region
(Fig. 7B). These modified BAC clones were stably transfected into
HEK293 cells, and stably infected cell clones were established.
Northern blot analyses demonstrated a specific loss of BART22
expression in the BART22Av-infected cells (Fig. 7C). Immuno-
blot analyses indicated that NDRG1 was expressed at low levels in
the BART22Av-infected HEK293 cells, indicating that BART22 is
not solely responsible for the downregulation of this protein (Fig.
7D). Similarly, NDRG1 was expressed at low levels in the BARTS-
11Av-infected cells. However, NDRG1 expression levels were sig-
nificantly higher in the BART21-14Av-infected cells (Fig. 7D). No
significant difference of viral latent gene expression was observed
among the cells harboring different recombinant viruses; they ex-
pressed comparable levels of EBNAI, EBNA2, EBNA3s, and
LMP1 (Fig. 7D). These results imply that clustered viral miRNAs
cooperatively downregulate NDRG1 expression.

Metastatic prostate cancer-derived PC-3 cells, which expressed
high levels of NDRGI1 (Fig. 5), were then used as recipient cells of
EBV infection to verify the results described above. PC-3 cells were
transduced with CR2, infected with various recombinant EBVs,
and pools of stably infected cells were established. Again, NDRG1
protein level was low in the BART(+)v-infected PC-3 cells, but
the protein level recovered in the BART21-14Av-infected cells
(Fig. 7E). Only traces of EBNA1 protein, but no other viral latent

FIG 6 NDRGI is a target of the BART22 miRNA. (A) The upper panel shows a schematic illustration of the reporter construct containing the 3' UTR of NDRGI
between the luciferase gene (under the control of a cytomegalovirus immediate-early promoter, CMVp) and a simian virus 40 polyadenylation signal [poly(A)].
The lower panel shows the abilities of a series of BART miRNA mimics (indicated in gray in Fig. 1B) to downregulate luciferase activity in the B95.8v-infected
HEK?293 cells. The activity of firefly uciferase was normalized to that of Renilla luciferase (control), and the average values obtained by transfecting the control
mimic were adjusted to 1. The data are represented as the means = the SD of n = 3 independent experiments. (B) The predicted BART17-5p and BART22 target
sequences in the 3’ UTR of NDRGI. The miRNA sequences are shown in green. The mutations introduced into the BART22 binding sites are indicated in blue.
(C) BART17-5p mimic and BART22 mimic were tested for their abilities to downregulate the luciferase gene expression from the reporter construct shown in
panel A or from a reporter construct containing mutations in the BART22 bindings sites in the NDRGI 3’ UTR. The B95.8v-infected HEK293 cells were used for
the assay. The activity of firefly luciferase was normalized to that of Renilla luciferase (control), and the average values obtained by transfecting the control mimic
were adjusted to 1. The data are represented as the means = the SD of n = 3 independent experiments. (D) Immunoblot analyses of NDRG1 and GAPDH
(control) protein levels in the B95.8v-infected HEK293 cells transfected with synthetic miRNA mimics (as indicated). The whole-cell extracts were prepared at
48 h posttransfection.
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FIG 7 The EBV BART miRNA cluster 2 is responsible for the downregulation of NDRGI expression. (A) Schematic illustrations of the BART miRNA cluster 2
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PCR-amplified (arrows in panel A) and used as a probe. The bands representing the BART miRNA cluster 2 region (arrowheads in left) were detected by Southern
blotting. The calculated sizes (see Table S7 in the supplemental material for the details) of the detected bands are indicated. (C) BART miRNA expression pattern
of various recombinant viruses. Total RNAs of C666-1 cells and HEK293 cells infected with the indicated recombinant viruses were subjected to Northern blot
analyses. Note that BART22A virus did not express BART22 miRNA but did express flanking miRNAs (BART8-5p and BART11-3p). (D) Protein levels of
NDRG]I, EBNAs, LMP1, and GAPDH in HEK293 cells infected with the indicated recombinant viruses (two independent cell clones for each virus). (E) Protein
levels of NDRG1, EBNAL, and GAPDH in PC-3 cells infected with the indicated recombinant viruses.

proteins, were expressed in these cells (Fig. 7E and data not
shown). The result reinforces the argument that the BART
miRNA cluster 2 is responsible for the NDRG1 downregulation.
NDRG] protein expression is downregulated in EBV-posi-
tive NPC tissues. The results thus far obtained indicate that
NDRGI was downregulated by BART miRNAs in EBV-infected
epithelial cell cultures. We then examined whether NDRG1 was

March 2015 Volume 89 Number 5
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downregulated in EBV-positive epithelial tumors in vivo. The ex-
pression level of the NDRG1 protein in NPC biopsy specimens
(Table 1) was examined by immunohistochemical staining. I situ
hybridization (ISH) of EBV-encoded small RNA (EBER) was used
to verify the presence of EBV infection. The results revealed that
nine of the 10 EBER-ISH-negative NPC specimens were positive
for NDRGI expression (Table 1 and Fig. 8A). In contrast, six of the
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TABLE 1 Clinicopathological features of the patients and the expression of NDRG1 in biopsy specimens

No. of patients

WHO classification” Stages” NDRG14
Mean age U
NPC type No. of cases (yr = SD)* 1 i 111 Lo v - +
EBER-ISH positive 9 54.0 + 10.4 0 7 2 2 7 6 3
EBER-ISH negative 10 59.1 % 8.0 i 8 1 3 7 1 9

4P = 0.244 (Student ¢ test).
bp = 0509 (x* test).

€ P =0.708 (x* test).

4 p=0.02 (Student ¢ test).

nine EBER-ISH-positive NPC specimens were negative for
NDRG1 expression (Table 1 and Fig. 8B). The difference between
the NDRG1 expression levels in the EBER-ISH-positive and
EBER-ISH-negative NPC specimens was statistically significant
(P = 0.02; Table 1). These results indicate that downregulation of
NDRG1 expression is common in EBER-ISH-positive NPC tis-
sues and reinforce the biological significance of NDRG1 down-
regulation during NPC tumorigenesis.

A EBER-ISH

NDRG1
o

200 x

400 x

200 x

400 x

Cie

FIG 8 NDRGI protein expression is downregulated in EBER-ISH-positive
NPC biopsy specimens. (A and B) ISH analyses of EBER expression (left pan-
els) and immunohistochemical analyses of NDRG1 expression (right panels)
in NPC biopsy specimens. The magnifications are indicated. (A) Representa-
tive images of EBER-ISH-negative specimens. (B) Representative images of
EBER-ISH-positive specimens.
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DISCUSSION

It is well known that the commonly used EBV B95-8 strain lacks a
12-kb genomic region that is actively transcribed in EBV-positive
epithelial malignancies. Recent studies have indicated that the
transcripts encoded by this region are primary miRNAs that are
processed to mature miRNAs (known as BART miRNAs). A few
previous studies have successfully used recombinant EBV tech-
nology to investigate the roles of BART miRNAs (55, 56); how-
ever, to our knowledge, the specific roles of BART miRNAs in
EBV-infected epithelial cells have not yet been analyzed using re-
combinant viruses.

Here, we established epithelial cells that were latently infected
with the EBV B95-8 virus lacking the actively transcribed 12-kb
region, or the BART(-+) virus in which this region was restored
using BAC technology. The 12-kb region encodes 17 of the 22
BART miRNAs and three open reading frames (LF1, LF2, and
LF3). Physiological levels of BART miRNA expression were re-
constituted in the BART(+ )v-infected epithelial cells. In our sys-
tem, the BART miRNA genes were seamlessly restored at their
native loci and expressed under the control of their native pro-
moters (57). This experimental strategy likely contributes to
achieve appropriate expression levels of BART miRNAs.

Via unbiased screening under physiological conditions, in
combination with miRNA target prediction, NDRG1 was identi-
fied as a direct target of BART miRNAs in EBV-infected epithelial
cells. We found that a recombinant EBV lacking BART miRNA
cluster 2 (BART21-14Av) failed to downregulate NDRGI in two
different types of cells (HEK293 and PC-3 cells). Since BART
miRNA cluster 2 is located within the intron of BART mRNA,
open reading frames of putative BART-encoded protein(s) are
preserved in the BART21-14A recombinant virus. Furthermore,
the BART21-14A virusretains intact LF1, LF2, and LF3 open read-
ing frames as well. Therefore, although we cannot completely ex-
clude the possibility that altered expression of putative viral pro-
tein(s) encoded by BART mRNA somehow contribute to this
NDRG1 dysregulation, it is highly likely that BART miRNAs per se
are responsible for the NDRG1 downregulation. Transfection as-
say using BART miRNA mimics identified the BART22 miRNA
mimic as the strongest suppressor of NDRG1 expression at both
mRNA and protein levels. This is in good agreement with the
previous report that NDRG1 mRNA was in complex with
BART17-5p and BART?22 in primary effusion lymphoma cell lines
(32). It is important to note that BART22 is one of the highly
expressed BART miRNAs in EBV-infected epithelial cells (9, 54,
58). However, a recombinant EBV lacking the BART22 pre-
miRNA gene (BART22Av) was still able to downregulate NDRG1
expression. This apparent inconsistency can be interpreted that
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miRNA-mediated gene regulation is highly redundant; other viral
miRNAs likely can compensate for the loss of BART22. BART
miRNAs may also bind to 5" UTR and/or the coding region of
NDRG1 mRNA to downregulate protein expression. BART
miRNA-mediated downregulation of NDRG1 may not be re-
stricted to direct interaction between BART miRNAs and NDRG1
mRNA. Furthermore, the use of miRNA target prediction pro-
grams revealed that NDRGI may be targeted by several cellular
miRNAs, including miR-182, a well-known metastasis-regulatory
miRNA (59). Further investigations of the cooperative effects of
viral and cellular miRNAs are warranted.

NDRGI expression increases in response to cell differentiation
signals (52, 60). Our results indicate that NDRGI is expressed at
high levels in primary epithelial cells (Fig. 5). Therefore, a possible
scenario is that when EBV infects cells in epithelial lineages in vivo,
BART miRNA targets NDRGI to avoid growth arrest and termi-
nal differentiation. Alternatively, EBV may preferentially establish
latent infection in undifferentiated epithelial cells with little
NDRGI expression, assuming that NDRG1 expression is disad-
vantageous for the proliferation of the infected cells. NDRGI has
also been characterized as a metastasis suppressor (61), although
its antimetastatic potential was mostly demonstrated by overex-
pressing NDRG1 in tumor cells. Due to its pleiotropic functions of
NDRG! protein (60), it is currently difficult to envision how
NDRG1 downregulation contributes to epithelial carcinogenesis.
A recent study indicated that NDRGI interacts with the Wnt re-
ceptor LRP6 and blocks Wnt signaling (62). Thus, NDRG1 down-
regulation may contribute to the activation of Wnt signaling path-
way, which is common in gastrointestinal epithelium-derived
malignancies (63). For note, other regulators of Wnt signaling
pathway, such as CARPIN2 (24) and DAZAP2 (27), were also
identified as BART miRNA targets (64).

For unknown reasons, most of the previously identified BART
miRNA targets were not identified under the experimental condi-
tions used here; NDRG1 (32) and API5 (30) are the two excep-
tions (See Dataset S1 and Table S5 in the supplemental material).
API5 protein levels were also examined in the established cells, but
downregulation of API5 in the BART(+)v-infected cells was not
as apparent as that of NDRGI1 at the protein level (data not
shown).

Thus far, we have found no obvious phenotypic differences
between the B95.8v-infected and BART(+)v-infected epithelial
cells in their morphologies and proliferation rates. This can be
interpreted that one should instead use primary epithelial cells as
recipient cells. Alternatively, it may be that BART miRNAs should
cooperate with viral oncoproteins to induce phenotypic changes
in infected epithelial cells. Importantly, it is known that the viral
major oncoprotein LMP1 encoded by NPC-derived EBV is func-
tionally different from that encoded by the B95-8 strain EBV (65);
therefore, it may be critical to examine the roles of BART miRNAs
in the presence of NPC-derived LMP1 protein. The EBV-BAC
technology described in the present study should be useful for
further clarifying the mechanism of EBV-mediated epithelial car-
cinogenesis.
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Abstract. The level of immunoglobulin G (Ig() lacking the
terminal galactose, referred to as agalactosyl 1gG, was found
to be increased in chronic inflammatory diseases, such as
rheumatoid arthritis and inflammatory bowel disease (IBD),
particularly in Crohn's disease, which is suggested to have a
genetic component. This oligosaccharide modification of IgG
is mainly regulated by the expression of glyco-genes; however,
the association between genetic factors and changes in the IgG
glycosylation has not been fully elucidated. The aim of the
present study was to assess the role of genetics in this process
by comparing the serum agalactosyl IgG levels between
members of monozygotic and dizygotic twin pairs who
underwent medical check-ups at the same time. The serum
agalactosyl 1gG level was assayed using high-performance
liquid chromatography. Hematological and biochemical
markers, including y-glutamyltranspeptidase (yGTP), alanine
aminotransferase (ALT) and white blood cell (WBC) count,
were also measured. Although the serum yGTP levels (and, to
a lesser extent, ALT and WBC levels) exhibited a correlation
within monozygotic twin pairs, agalactosyl 1gG levels were not
found to be correlated between members of either type of twin
pairs. Thus, the role of genetic factors in determining serum
agalactosyl 1gG levels may be less significant compared to the
effect of environmental factors or the onset of inflammatory
disease.
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Introduction

Immunoglobulin G (IgG) possesses complex-type biantennary
N-linked oligosaccharides at asparagine 297 of the Cy2 domain
of the Fc fragment (1). Some of these oligosaccharides have
bisecting N-acetylglucosamine (GIcNAc), core-fucose, galac-
tose and sialic acid residues (2,3). Patients with rheumatoid
arthritis (4) and other chronic inflammatory diseases, such as
systemic lupus erythematosus, Sjogren's syndrome and tuber-
culosis (5,0), exhibit elevated serum levels of agalactosyl IgG,
an 1gG oligosaccharide that lacks the terminal galactose. We
recently reported that serum agalactosyl 1gG levels may be a
novel diagnostic marker for the activity and clinical course of
inflammatory bowel disease (IBD) (7) and developed a method
to determine agalactosyl IgG using a lectin-antibody ELISA (8).
Furthermore, we demonstrated the pathophysiological role of
agalactosyl IgG in IBD using a mouse model of experimental
colitis that is deficient in -1 4-galactosyltransferase (9). Those
experiments indicated that the increase in agalactosyl 1gG
levels in patients with IBD may be associated with the host's
defense against inflammation, rather than the etiology of IBD.

We previously evaluated the levels of agalactosyl 1gG
by measuring the ratio of agalactosylated to fucosylated
IgG oligosaccharides (GOF/G2F) (7) and demonstrated that
GOF/G2F is a marker of IBD clinical activity and prognosis
of recurrence. However, some patients with Crohn's disease
do not exhibit elevated agalactosyl 1gG levels, despite severe
disease activity, suggesting that genetic factors may dictate
1gG galactosylation. Furthermore, the level of I1gG agalac-
tosylation was shown to increase with age (10) and may be
regulated by a variety of environmental factors, including
food and infection; therefore, the relative effect of genetic and
environmental factors has not been clearly determined. To
determine the effect of genetic factors on the agalactosylation
of 1gG, we investigated the correlations of GOF/G2F and other
biochemical data within pairs of monozygotic and dizygotic
twins who underwent simultaneous medical check-ups.

Materials and methods
Subjects. The characteristics of the participants are summa-

rized in Table I. Sixteen monozygotic twin pairs (14 males and
18 females, aged 40.8+19.3 years) and 13 dizygotic twin pairs
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Figure 1. Analysis of 2pyridylamino (PA)-labeled IgG oligosaccharides with high-performance liquid chromatography. (A) Structural patterns of N-linked
neutral oligosaccharides on IgG. (B) Representative profiles of 2PA-labeled oligosaccharides derived from IgG under neutral conditions.
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Figure 2. Scatterplots of GOF/G2F ratios for (A) monozygotic twins; (B) dizygotic twins; and (C) unrelated pairs. In (A) and (B), the higher GOF/G2F ratio

within the pair was plotted on the horizontal axis.

Table 1. Subject participant characteristics (means + SD).

Monozygotic  Dizygotic
Characteristics twins twins
Pairs (n) 16 13
Male/female 14/18 10/16
Age (years) 40.8+19.3 42.5+16.9
v-glutamyltranspeptidase (IU/l) 2544257 22.8+354
Alanine aminotransferase (IU/1)  16.8+9.01 14.8+9.30
White blood cells/pu1 5909+1,819 5276+1,505
GOF/G2F ratio 1.10+0.68 1.07+£0.55

(10 males and 16 females, aged 42.5+16.9 years) who under-
went simultaneous medical check-ups as pairs between 1984
and 1994 were enrolled in this study. All the participants were
healthy. Written informed consent was obtained from each
subject and the study protocol was approved by the Ethics
Committee of Osaka University. We also randomly selected
unrelated pairs from this pool of participants and a total of
145 unrelated pairs were analyzed to serve as controls for
genetic association.

IgG purification. Serum IgG was purified using protein G
sepharose (Amersham Pharmacia Biotech, Buckinghamshire,
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Figure 3. Scatterplots of serum levels of (A) y-glutamyltranspeptidase (yGTP); (B) alanine aminotransferase (ALT); and (C) white blood cell (WBC) count for

monozygotic twins, dizygotic twins and unrelated pairs.

UK). Briefly, serum diluted 1:1 with phosphate-buffered
saline (PBS) was loaded onto a protein G sepharose column.
The column was subsequently washed with a minimum of
10 column volumes of PBS, followed by the same volume
of 10 mM ammonium bicarbonate. Column-bound IgG was
eluted using 0.1% trifluoroacetic acid.

Analysis of IgG oligosaccharides. The pyridylaminated
N-linked oligosaccharide of IgG was analyzed using
reverse-phase high-performance liquid chromatography
(HPLC). N-linked oligosaccharides were released from
serum IgG and labeled with 2-aminopyridine as previously
described (7). Briefly, N-linked oligosaccharides were
released from purified 1gG samples following overnight
incubation with 0.5 mU glycopeptidase F (Takara Bio, Inc.,
Sigma, Japan) at 37°C. The oligosaccharides were then incu-
bated with 0.5 mM ammonium acetate (pH 4.0) for 30 min,

Iyophilized and labeled with 2-aminopyridine using Glycdlag
(Takara Bio, Inc.) according to the manufacturer's instruc-
tions. Excess reagent was removed with a cellulose cartridge
glycan preparation kit (Takara Bio, Inc.,) and the oligosaccha-
rides were incubated with 2 M acetic acid at 80°C for 2 h to
remove sialic acids. The pyridylamino (PA)-oligosaccharides
from 1gG were analyzed with reverse-phase HPLC
(Hitachi High-Technologies Corporation, Tokyo, Japan)
using a LaChrom Ultra C18 (2-ym) column (Hitachi
High-Technologies Corporation) with 10 mM sodium phos-
phate (pH 4.4, solvent A) and 10 mM sodium phosphate plus
0.5% 1-butanol (solvent B) at a flow rate of 0.5 ml/min at
40°C. The glycans were separated with a gradient of 0-50%
solvent B for 30 min, followed by 50% solvent B for 10 min.
The PA-oligosaccharides were detected using a fluorescence
detector (LaChrom Elite, Hitachi) at wavelengths of 320 nm
for excitation and 400 nm for emission.
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Statistical analysis. The patient characteristics are presented
as mean + SD. The Spearman's rank correlation coefficient
was used to assess the correlation of continuous variables
within each pair. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

IgG oligosaccharide profiles. The normal oligosaccharide
structures of neutral human IgG contain 12 major structural
variants (Fig. 1A). We analyzed the profiles of IgG neutral
oligosaccharides using HPLC in combination with fluores-
cent labeling of oligosaccharides. In our previous study (7),
the GOF/G2F ratio was described as the ratio of the peak
height of GO (agalactosylated IgG) to G2 (fucosylated 1gG
oligosaccharide group II) (Fig. 1B). Since the majority of IgG
oligosaccharides belong to group II, the GOF/G2F ratio repre-
sents the total agalactosylation of IgG.

GOF/G2F ratio. We measured the GOF/G2F ratio of IgG oligo-
saccharides in 32 monozygotic and 26 dizygotic twin pairs.
The GOF/G2F ratio was not found to be significantly corre-
lated within monozygotic twin (R=0.215935), dizygotic twin
(R=-0.21377), or unrelated pairs (R=-0.0369) (Fig. 2A-C).

Correlations of different markers within pairs. The correla-
tions in serum vy-glutamyltranspeptidase (yGTP) levels were
higher within monozygotic twin (R=0.955181) compared
to those within dizygotic twin (R=0.21293) and unrelated
pairs (R=0.00177) (Fig. 3A). Alanine aminotransferase levels
(R=0.525267 for monozygotic, R=0.460332 for dizygotic and
R=0.001406 for unrelated pairs) and white blood cell (WBC)
count (R=0.524062 for monozygotic, R=0.295489 for dizy-
gotic and R=-0.002164 for unrelated pairs) did not exhibit a
strong correlation within twin pairs, although both were found
to be significant in monozygotic twin pairs (P=0.0367 and
P=0.0372, respectively) (Fig. 3B-C).

Discussion

The agalactosylation of IgG increases with age and is associ-
ated with a number of inflammatory diseases. Although the
present study included a limited number of twin pairs, the
results clearly demonstrated that IgG agalactosylation was
not significantly affected by genetics. Of note, yGTP levels
were found to be significantly correlated in the 16 pairs of
monozygotic twins investigated. Since yGTP levels are often
associated with alcohol consumption, this finding suggests
that taste and metabolism of alcohol are associated with
genetic factors. Although the WBC count is known to vary
under different conditions, it was similar between the mono-
zygotic twins in this study. Therefore, compared to WBC, the

AZUMA et al: AGALACTOSYLATION OF IgG IN TWINS

agalactosylation of IgG appears to be less affected by genetic
and more by environmental factors. Furthermore, our studies
indicated that twin studies may not a suitable approach to
glycobiology investigations.

As the HPLC analysis of IgG oligosaccharides is costly and
time-consuming, high-throughput systems, such as ELISA,
are required to investigate large numbers of monozygotic/dizy-
gotic twins. Although the lectin-antibody ELISA that we
recently developed (8) may be a suitable tool for large-scale
analysis of IgG oligosaccharides, it is difficult to evaluate the
normal levels of IgG agalactosylation using this method.

To summarize, although the ABO blood type is completely
regulated by genetic factors, our results indicated that IgG
oligosaccharides are more closely associated with environ-
mental factors and genetic factors do not play a significant
role. There are several reports available on the epigenetic regu-
lation of glycosyltransferase genes (8,11) and further studies
are required to investigate the epigenetic and environmental
factors affecting the agalactosylation of IgG.
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Abstract

Background N-Acetylglucosaminyltransferase V (GnT-
V), an enzyme that catalyzes the B1-6 branching of
N-acetylglucosamine on asparagine-linked oligosaccha-
rides of cellular proteins, enhances the malignant behaviors
of carcinoma cells in experimental models. The aim of this
study was to determine clinical significance of GnT-V
expression in human pT, gallbladder carcinoma with
simple in vitro experiments.

Methods Ninety patients with pT, gallbladder carcinoma
were included for this study. The in vitro and in vivo
biological effects of GnT-V were investigated using gall-
bladder carcinoma cells with variable GnT-V expression
levels induced by a small interfering RNA.

Results  Of the 90 cases, 57 showed positive staining and
the remaining 33 demonstrated negative staining, the
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subcellular localization in the 57 cases was classified into
the granular-type in 31 cases and the diffuse-type in 26
cases. In 76 cases with curative resection, postsurgical
survival was significantly poorer in those showing positive
staining than in those showing negative staining
(P = 0.028). In all of the 76 cases, postsurgical recurrence
was significantly more frequent in those showing diffuse-
type localization than in those showing negative staining.
Experimental analyses demonstrated that the down-regu-
lation of GnT-V expression in gallbladder carcinoma cells
induced suppression of cell growth in vitro. The expression
levels of GnT-V in the cells were highly correlated with the
rapid in vivo growth coupled with the enhanced angio-
genesis, and the tendency to form liver metastasis.
Conclusions GnT-V expression in the subserosal layer of
pT, gallbladder carcinoma is correlated with the aggres-
siveness of the disease.
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Abbreviations

mAb Monoclonal antibody

GalNAc-T N-acetylgalactosaminyltransferase
GnT-V N-acetylglucosaminyltransferase
pT Pathological tumor stage
Introduction

Gallbladder carcinoma has always been associated with a
dismal overall prognosis, and this is because the disease is
usually detected at an advanced stage [1-5]. The clinical
course of gallbladder carcinoma has been thought to
depend on the depth of tumor invasion. The 5-year post-
surgical survival rates were decreased with tumor invasion:
86—100 % for pathological tumor stage 1 (pT;) carcinoma,
56-85 % for pT, carcinoma, 40-57 % for pT5 carcinoma,
and 9-19 % pT, carcinoma [6-8]. Despite a theoretical
advantage for pT, gallbladder carcinoma (a tumor invading
the perimuscular connective tissues but not extending
beyond the serosa or into the liver), the prognosis of the
disease is not necessarily favorable. The parameters of
histopathological malignancies such as lymphatic perme-
ation and venous permeation in the subserosal layer are not
correlated with either the mode of recurrence or postsur-
gical prognosis of pT, gallbladder carcinoma [9]. These
findings are attributed to various mechanisms in which pT,
gallbladder carcinoma progresses and to the fact that
prognostic factors affecting the progression of less-
advanced lesions such as pT, gallbladder carcinoma have
not been fully elucidated.

Recent advances in glycomics have revealed the scope
and scale of the functional roles of oligosaccharides and
their effect on human diseases [10]. It is a well-known fact
that oligosaccharide structures are dramatically changed in
carcinogenesis including malignant transformation. Oligo-
saccharides are synthesized by a set of several glycosyl-
transferases, whose genes are approximately 1 % of the
human genome. N-Acetylglucosaminyltransferase V (GnT-
V) is one of the most important among several kinds of
glycosyltransferases, which are enzymes involved in carci-
nogenesis and tumor metastasis [11-13]. GnT-V is involved
in the synthesis of B1-6 GIcNAc branching formation on
N-glycans. A study of GnT-V-deficient mice clearly showed
that GnT-V was essential for tumor growth and metastasis
[14]. The mechanisms underlying how GnT-V regulates
tumor metastasis involve the up-regulation of signaling of

many growth factor receptors on the cell surface by sup-
pressing their endocytosis [15], the enhancement of certain
kinds of protease activity [16], and the stimulation of
angiogenesis as a co-factor [17]. However, immunohisto-
chemical studies of GnT-V showed that GnT-V expression
is correlated with poor prognosis of certain kinds of cancer
[18, 19], but inversely correlated with other types of cancers
[20, 21]. This discrepancy might be dependent on whether or
not cancer cells have target proteins of GnT-V or a protease
involved in GnT-V cleavage. Although GnT-V has been
shown to induce tumor angiogenesis by at least 2 different
pathways [16, 17] as well as growth of tumor cells through
the up-regulation of growth factor receptors [15], combi-
nation studies of clinical and experimental aspects have not
yet been performed. Furthermore, pathological investiga-
tion of GnT-V products showed that aberrant localization of
glycoproteins bearing f1-6 GlcNAc branching is a sign of
poor prognosis in melanoma cells [22].

In this retrospective analysis, the immunohistochemical
expression of GnT-V was investigated in formalin-fixed,
paraffin-embedded surgical specimens from patients with
pT> gallbladder carcinoma. In 90 cases of pT, gallbladder
carcinoma, correlations of GnT-V immunostaining at the
deepest invading sites in the subserosal layer, as a predictor
of invasive/metastatic potential, with the clinicopathologi-
cal findings, mode of recurrence, and postsurgical survival
were investigated. Furthermore, the biological effects of
GnT-V on in vitro and in vivo models were studied using
gallbladder carcinoma cells with variable GnT-V expres-
sion levels induced by a small interfering RNA (siRNA).

Materials and methods
Patients

Specimens from 186 patients (20 normal gallbladder, 19
gallbladder stones, 17 pT; gallbladder carcinoma, 90 pT,
gallbladder carcinoma, 20 pT3 gallbladder carcinoma and
20 pT, gallbladder carcinoma) were included in this study.
In the 90 patients with pT, gallbladder carcinoma (40 men
and 50 women), 76 were curatively resected with a free
surgical margin. The mean age of the patients was 67 years
(range, 36-83 years). The patients were diagnosed as
having gallbladder carcinoma and underwent surgery
between 1983 and 2008 in the Department of Surgery,
Institute of Gastroenterology, Tokyo Women’s Medical
University Hospital. Gallbladder carcinoma was diagnosed
on the basis of histological findings and classified accord-
ing to the Tumor-Node-Metastasis classification of the
American Joint Committee on Cancer [23]. According to
the institutional surgical treatment strategy for pT, gall-
bladder carcinoma, simple cholecystectomy was performed
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in 50 patients, cholecystectomy combined with bile duct
resection in 9 patients, cholecystectomy combined with
bile duct resection and hepatic resection in 12 patients,
cholecystectomy combined with bile duct resection and
pancreatoduodenectomy in 10 patients, and cholecystec-
tomy combined with pancreatoduodenectomy together with
bile duct resection and hepatic resection in 9 patients.
Histological examination revealed that all cases of pT,
gallbladder carcinoma had neither hepatic infiltration nor
invasion into the hepatoduodenal ligament.

The follow-up periods until February 2008 ranged from
2.3 to 241.9 months (median time 64 months). Of the 76
patients who had undergone the curative resection with a
free surgical margin, 60 were alive as of May 2008, 13 had
died from peritoneal dissemination, distant organ metas-
tasis, lymph nodes metastasis and/or local recurrence, and
3 had died from other diseases (cerebral infarction in 1,
pseudomixoma in 1, and pneumonia in 1). The latter 3
patients were treated as lost cases.

Cell lines and culture conditions

The gallbladder carcinoma cell lines Mz-ChA-1 and
Mz-ChA-2 [24] were obtained from Dr. Alexander Kruth
(Johaness-Gutenberg University, Mainz, Germany). The
gallbladder carcinoma cell lines TGBC-1-TKB, TGBC-2-
TKB, and TGBC-44-TKB (TG44) [25] were obtained from
Dr. Takeshi Todoroki (University of Tsukuba, Ibaraki,
Japan). The cells were maintained in Dulbecco’s modified
Eagle’s medium containing 10 % heat-inactivated fetal calf
serum (Hyclone Laboratories Inc., Logan, UT, USA) in a
humidified atmosphere with 5 % carbon dioxide at 37 °C.

Immunoblot analysis of GnT-V

Immunoblot analysis of GnT-V was performed using the
lysates of either frozen tissue specimens or cultured cells as
described previously [26]. In brief, after 20~30 pg of pro-
teins were electrophoresed on 10 % SDS-PAGE, and then
transferred onto a polyvinylidine difluoride (PVDF) mem-
brane. The membranes were incubated overnight in 2 %
bovine serum albumin (BSA) in phosphate buffered saline
(PBS) at 4 °C and then mixed with a mAb against GnT-V
24D11 (Fuji-revio, Tokyo, Japan) diluted in 2 % BSA
(1:500) for 2 h. Each membrane was again probed with a
mAb against B-actin (Sigma-Aldrich Co., St. Louis, MO,
USA) dilutedin2 % BSA (1:1000). After washing with PBS,
the membranes were incubated with goat anti-rabbit or anti-
mouse IgG labeled with horseradish peroxidase (Zymed
Laboratories Inc., San Francisco, CA, USA) for 40 min. The
membranes were then washed with PBS and treated using
enhanced chemiluminescence (ECL) (Amersham, Buck-
inghamshire, UK) to visualize bound antibodies.
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Lectin blot analysis

For lectin blot analysis, the membranes were blocked with
3 % BSA in TBST, followed by incubation with 10 pg/ml
biotinylated LgPHA lectin (Seikagaku Corp., Tokyo,
Japan). Reactive bands were detected using the ECL
system.

Immunostaining of GnT-V and CD31

Gallbladder carcinoma tissues that had been preserved in
10 % formalin and then embedded in paraffin were serially
sectioned at 2 um thickness, mounted on silane-coated
slides, and deparaffinized. The slides were immersed for
20 min in 0.3 % hydrogen peroxide in methanol to deplete
endogenous peroxidase. After washing with PBS, the slides
were incubated with a protein blocking agent for 5 min at
room temperature in a humidity chamber. The slides were
then stained by the indirect immunoperoxidase method
using an anti-GnT-V antibody, 22G12 (Fuji-revio, Tokyo,
Japan) at a 1:3000 dilution rate. A negative control was
made using BSA instead of the mAb. Detail procedure was
described previously [18].

Evaluation of sections was performed by a single
pathologist who was blinded to the clinical characteristics
and pathological grade of response. The total number of
cancerous epithelia in each section was evaluated. The
immunohistochemical localization of GnT-V was classified
into the granular-type and diffuse-type based on the pre-
dominant subcellular distribution: the granular-type was
defined as GnT-V showing granular staining and being
restricted predominantly in the supranuclear area of the
cancerous epithelia; the diffuse-type was defined as GnT-V
showing no granular staining and being found in the
cytoplasm of the cancerous epithelia. GnT-V localization
was judged to be either the granular or diffuse type when
50 % of the total number of cancerous epithelia in each
section showed granular-type or diffuse-type subcellular
distribution, and the localization was examined in both the
mucosal or proper muscle layers (surface site) and the
subserosal layer (invading site).

To investigate the association of GnT-V expression with
tumor angiogenesis in gallbladder carcinoma, microvessels
(capillaries and venules) around the cancerous epithelia
were counted. Microvessels were highlighted by staining
the endothelial cells with mAb raised against CD31
(Abcam, Cambridge, MA, USA) according to the standard
immunoperoxidase technique [27]. Areas representative of
the invasive component of the carcinoma were selected
from the hematoxylin and eosin-stained sections. Micro-
vessel density was assessed without prior knowledge of
GnT-V staining. Microvessels were carefully counted (per
100x field) and the microvessel density in each field was

— 350 —



J Gastroenterol (2014) 49:702-714

705

defined as the mean number of microvessels containing
high levels of CD31-stained microvessels.

Construction of GnT-V knockdown gallbladder
carcinoma cells

Suppression of GnT-V expression in TG44 cells was
achieved using a siRNA duplex. A retrovirus, which
encodes a siRNA against GnT-V, was obtained from Dr.
Naoyuki Taniguchi [28]. TG44 cells were infected with the
retrovirus, and then the cells were selected with 0.8 mg/ml
G418 for 2-3 weeks. Stable GnT-V knockdown TG44 cells
were cloned and confirmed by immunoblot analysis as
described earlier.

Construction of gallbladder carcinoma cells expressing
luciferase

To establish TG44 cells expressing luciferase (TG44-luc),
TG44 cells were infected with a retrovirus encoding
luciferase and enhanced green fluorescent protein (EGFP),
which was generated by Dr. Masafumi Onodera [29, 30],
and the resulting cells were cultured for 3-7 days. Cell
lysates were prepared and subjected to luciferase assay
(Promega, Madison, WI) to confirm luciferase expression.

Enzyme assay of GnT-V

GnT-V enzyme activity was determined as described
previously [31].

Cell viability assay

The in vitro effects of GnT-V on the growth viability of
gallbladder carcinoma cells were determined by a cell
viability assay using a WST-8 reduction assay kit (Dojin
Laboratories, Tokyo, Japan) according to the manufac-
turer’s instructions. Gallbladder carcinoma cells were pla-
ted at 1 x 10° cells per well in 96-well microtiter plates.
WST-8 was added and cell viability was determined by
reading optical density values from a microplate reader at
an absorption wavelength of 450 nm. All assays were
performed twice. The ICsy value, at which 50 % cell
growth inhibition compared with that of the dimethyl
sulfoxide control was obtained, was calculated.

Subcutaneous xenografted tumor model

Four-week-old female BALB/c nu/nu athymic mice
(Sankyo Labo Service, Tokyo, Japan) were quarantined for
1 week. The animal experiment protocols were approved
by the Institutional Animal Care and Use Committee of
Tokyo Women’s Medical University. A gallbladder

carcinoma xenograft model was prepared by injecting
1 x 107 TG44 cells induced by a siRNA in 100 pl of PBS
into the left flank of each mouse. Tumor size was measured
using a Vernier caliper and tumor volume was calculated as
0.5 x longest diameter x width®.

Persplenic hepatometastatic tumor model

A persplenic hepatometastatic tumor model injected with
2 x 10° TG44-luc cells induced by a siRNA was prepared
as previously described [32]. In the mice, photon counting
was conducted once a week. Bioluminescence images were
used to monitor the dynamics of intrahepatic tumor growth.
Immediately before imaging, 150 mg/kg D-luciferin
(Alameda, CA, USA) was intraperitoneally administered to
the mice. After 15 min, photons from whole bodies were
counted using the IVIS imaging system (Xenogen, CA,
USA) in accordance with the manufacturer’s instructions.
Total flux (photons/sec) of emitted light was used as a
measure of the relative number of viable tumor cells in the
peritoneal tumor. Data were analyzed using LIVING
IMAGE 3.0 software (Xenogen).

Statistical analysis

Values are presented as mean + SE (standard error). Sta-
tistical evaluations of data were analyzed using the y? test for
independence test, Student’s ¢ test, and one-way ANOVA
followed by the Tukey—Kramer test. Survival curves of the
postsurgical outcome of the 76 curative resection cases of
pT> gallbladder carcinoma and animals in the hepatometa-
static tumor model were analyzed using the Kaplan-Meier
method. Differences in the survival of the 76 curative
resection cases of pT, gallbladder carcinoma and animals in
the subgroups were analyzed by the log-rank test. Several
clinicopathological factors were subjected to multivariate
regression analysis using the Cox proportional hazards
regression model. Cox regression was accessed using the
statistical program SPSS. A P value of less than 0.05 was
considered to indicate a statistically significant difference.

Results

Immunoblot analysis of GnT-V in gallbladder
carcinoma tissues

GnT-V protein was included in the lysates of the specimens
of gallbladder carcinomas and normal gallbladders
(Fig. 1a). GnT-V protein levels were increased at varying
degrees in the tissue specimens of pT;—pT; gallbladder
carcinomas compared with the GnT-V protein levels in the
specimens of normal gallbladders (Fig. 1a).

@ Springer

— 3561 —



706

J Gastroenterol (2014) 49:702-714

Fig. 1 A Immunoblot analysis
of GnT-V in normal
gallbladders and gallbladder
carcinoma tissues. Protein was
normalized to P-actin. GnT-V
transfected WiDr cells (a colon
carcinoma cell line) was used as
a positive control (P.C). Lanes 1
and 2 lysates of normal
gallbladders, Lane 3 lysate of
pT, gallbladder carcinoma
tissue, Lanes 4 and 5 lysates of
pT, gallbladder carcinoma
tissues, Lane 6 lysate of pT;
gallbladder carcinoma tissue.

B Immunohistochemical
localization of GnT-V in the
epithelia of normal gallbladder
(a), in those of gallbladder
associated with gallstones (b),
and those of pT, gallbladder
carcinoma (¢, d). GnT-V
localization was mostly the
granular-type for normal
epithelia and noncancerous
pathological epithelia of the
gallbladders. However, GnT-V
localization was heterogeneous:
granular- (¢) and diffuse-

(d) types for the cancerous
epithelia of gallbladder
carcinoma. Bars 100 pm.

C Immunostainings of CD31
and GnT-V in the epithelia of
pT, gallbladder carcinoma. Bars
100 pm (a). Quantification of
data of microvessel density in
tissue sections. A tissue section
was prepared from each case of
gallbladder carcinoma patients.
Five photographs were taken for
each tissue section and
analyzed. Microvessels showing
CD31 immunoreactivity was
counted. Microvessel density
for each of the 5 photographs of
the tissue section was averaged.
The averaged densities were
compared in terms of GnT-V
expression levels (b). Columns
and bars represent means and
SE of the microvessel densities
in each group, respectively.
Significant differences between
the 2 groups are indicated by
*P < 0.05
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Immunohistochemical staining and localization
of GnT-V in gallbladder carcinoma

The immunohistochemical staining and localization of
GnT-V in pT,-pT,4 gallbladder carcinomas, those in normal
gallbladders and those in gallbladders associated with
gallstones, were investigated (Table 1). The expression rate
of GnT-V was significantly higher in pT;—pT, gallbladder
carcinomas (69 %) and gallbladders associated with gall-
stones (63 %) than in normal gallbladders (5 %). The
expression rate of GnT-V was not significantly different
from pT; gallbladder carcinoma in the early stage to pT;
and pT, gallbladder carcinomas in the advanced stage.
Consistent with the increased GnT-V protein levels
detected by immunoblot analysis (Fig. 1a), GnT-V immu-
nostaining was found to be more intense in the cancerous
epithelia than in the normal epithelia of the gallbladders
(Fig. 1b). GnT-V localization was heterogeneous in gall-
bladder carcinomas with the granular- or diffuse-type of
subcellular distribution, in contrast with GnT-V localiza-
tions in normal gallbladders and gallbladders associated
with gallstones, which were solely the granular-type
(Fig. 1b). Notably, the proportion of the diffuse-type
localization of GnT-V at the deepest invading sites was
increased significantly in pT,, pTs, and pT4 gallbladder
carcinomas compared with the proportion in the noncan-
cerous epithelia.

Moreover, CD31 immunostaining was performed in 83
cases of pT, gallbladder carcinoma and the microvessels

Table 1 The immunohistochemical localization of GnT-V in normal
epithelia and that in gallbladder stones and pT,—pT, gallbladder
carcinomas

Negative Positive Localization type

Granular Diffuse

Normal (n = 20) 19 1 1 0

Gallbladder stone 7 12 12 0
(n=19)

Gallbladder carcinoma 46 101° 55 46°
(n = 147) (pT1-pTs)

pT; (n = 17) 5 12 9 3

pT (n = 90) 33 57 31 26°

Curative resection case 30 46 27 19
(n = 76)

Non-curative resection 3 11 4 7
case (n = 14)

pTs (n = 20) 3 17* 10 7°

pT4 (n = 20) 5 15° 5 10>°

# P < 0.01, significantly different from normal epithelia

b P < 0.01, significantly different from gallbladders associated with
gallstones

¢ P < 0.05, significantly different from pT; carcinoma

around the cancerous epithelia were counted to investigate
the association of GnT-V expression levels with tumor
angiogenesis (Fig. 1c). The number of microvessels was
significantly higher in 52 cases with positive expression
(25 £ 3 per 100 x power field) than in 31 cases with
negative expression (16 & 3). Moreover, in terms of GnT-
V localization type, the numbers of microvessels were
23 £ 5 in 26 cases in the granular-type locatization group
and 27 = 3 in 26 cases in the diffuse-type localization
group. The number of microvessels was significantly
higher in the diffuse-type localization group than in the
negative expression group.

Relationship between clinical findings and GnT-V
expression in patients with pT, gallbladder carcinoma

The 76 curative resection cases of pT, gallbladder carci-
noma were divided into 2 groups based on GnT-V staining
at the deepest invading sites in the subserosal layer. A
comparison of positive and negative groups was made with
special reference to the clinical features, that is, gender,
age, gallstones, tumor size, preoperative serum CEA, and
CA19-9 (Table 2). The results revealed no significant dif-
ferences in the clinical features between the 2 groups. A
comparison was also made in terms of GnT-V localization
(Table 2). The results showed no significant differences in
the clinical features between the 2 groups.

Relationship between parameters of pathological
malignancies and GnT-V expression in patients
with pT, gallbladder carcinoma

A comparison of positive and negative groups was also
made with special reference to the parameters of patho-
logical malignancies, that is, histological grade, lymphatic
permeation, venous permeation, and lymph node metasta-
sis (Table 3). The results revealed no significant differ-
ences in the parameters of pathological malignancies
between the 2 groups. A comparison was also made in
terms of GnT-V localization (Table 3). The results showed
no significant differences in the parameters of pathological
malignancies between the 2 groups.

Relationship between mode of recurrence in patients
with pT, gallbladder carcinoma and GnT-V expression
in the specimens

The postsurgical recurrent mode in 76 curative resection
cases of pT, gallbladder carcinoma was compared in terms
of GnT-V expression (Table 4). Of the 46 cases showing
positive staining, 7 had distant organs metastasis and 6 had
lymph node metastasis. In contrast, of the 30 cases showing
negative staining, 1 had peritoneal dissemination and 1 had
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Table 2 Relationship between

clinical findings and Negative Positive Localization type
immunohistochemical Granular Diffuse
expression of GnT-V in curative
resection cases of pT2 Number 30 46 27 19
gallbladder carcinoma Gender (M/F) 11/19 2026 10/17 10/9
Age 65 + 12 682 - 9.8 67.6 9 68.9 £ 10
Gallstones () 14/16 24/22 14/13 10/9
Tumor size (mm) 3254 18 32.1 £ 20.5 30.9 + 18.7 335+ 226
CEA 4.17 £ 82 437 £ 6.6 3.99 4 6.77 4.65 £+ 691
CA19-9 34.2 + 493 414.9 + 1228 686.7 = 1640 29.1 4 31.9

Table 3 Correlation between histopathological findings and immu-
nohistochemical localization of GnT-V in pT, gallbladder carcinomas

Negative Positive Localization type
Granular Diffuse

Number 30 46 27 19
Histlogical grade

Gl 17 33 20 13

G2-4 13 13 7 6
Lymphatic permeation

+ 18 34 19 15

- 12 12 8 4
Venous permeation

+ 16 18 12 6

- 14 28 15 13
Lymph node metastasis

+ 11 19 10 9

- 19 27 17 10

There is no significant difference between immunohistochemical
localization of GnT-V and histopathological findings of the 76
curative cases of pT, gallbladder carcinomas

distant organs metastasis. Note that in pT, gallbladder
carcinoma, postsurgical recurrence in distant organs tended
to be more frequent in patients in the positive staining
group (15 %) than in patients in the negative staining group
(3 %). Moreover, postsurgical recurrence in distant organs

Table 4 Postsurgical recurrent modes in pT, gallbladder carcinoma

was found to be significantly more frequent in the diffuse-
type localization group (26 %) than in the negative staining
group (3 %; P < 0.05). Therefore, the diffuse-type locali-
zation of GnT-V at the deepest invading sites may be an
important biological predictor of postsurgical recurrence of
pT, gallbladder carcinoma.

Relationship between synchronous metastasis
in the liver of patients with pT,, pT; or pT, gallbladder
carcinoma and GnT-V expression in the specimens

GnT-V expression at the deepest invading sites was com-
pared in pT,, pT3 and pT, gallbladder carcinoma patients
with synchronous liver metastasis at the time of surgery and
those without metastasis (Table 5). Of 130 patients, 14 had
synchronous liver metastasis and the remaining 116 had
none. Synchronous liver metastasis was found to be signifi-
cantly more frequent in the diffuse-type localization group
(19 %) than in the negative staining group (5 %; P < 0.05).

Relationship between postsurgical survival of patients
with pT, gallbladder carcinoma and GnT-V expression
in the specimens

The overall postsurgical survival rate in the 76 patients with
pT> gallbladder carcinoma was compared in terms of GnT-V
expression (Fig. 2a). The survival rate of patients in the

Immunohistochemical Total Peritoneal Distant Lymph Local
localization of GnT-V dissemination organs® Nodes recurrence
Negative (n = 30) 5 1 0 3

Positive (n = 46) 16 0 7 6! 3
Granular-type (n = 27) 7 0 2 4 1
Diffuse-type (n = 19) 9° 0 5 2 2

? Distant organs included the liver in 6 patients, lung in 1 patient and bone in 1 patient

b P < 0.05, significantly different from negative staining group
¢ P < 0.05, significantly different from negative staining group
4 P < 0.05, significantly different from negative staining group
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