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with VSV. The expression of mRNA of ISG15 at 4, 8, 12, and 24 h posttreatment (hpt) was determined by qPCR and standardized by that of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). (B) Huh?7, parental FU97, and cured FU97 (clone 7-1) cells cotransfected with pIFN-B-Luc and pRL-SV40 were infected
with VSV at an MOI of 1 at 24 h posttransfection (left). Cells cotransfected with pISRE-Luc and pRL-SV40 were infected with VSV at an MOI of 1 or stimulated
with 100 IU/ml of IFN-« at 24 h posttransfection (right). Luciferase activities were determined at 24 h posttreatment. (C) Huh7, parental FU97, and cured FU97
(clone 7-1) cells were infected with VSV at an MOI of 1 or stimulated with 100 IU/ml of IFN-«, fixed with 4% PFA at 18 h posttreatment, and subjected to
immunofluorescence assay using anti-IRF3 and -STAT? antibodies. Cell nuclei were stained by DAPI. Asterisks indicate significant differences (¥, P < 0.05; **,

P < 0.01) from the results for control cells.

(2a) (34), and S310 strain (3a) (63) were established, the construc-
tion of infectious clones of other genotypes has not succeeded yet.

Because permissive cell lines for HCVcc infection in vitro had
been limited to Huh7 cells due to cell tropism and the narrow host
range (13, 14), the establishment of a novel cell culture system
supporting HCV propagation is needed for further HCV analyses.
Previous reports have demonstrated that HepG2, Hep3B, and
HEK?293 cells permit HCVcc propagation (16, 17, 64). However,
exogenous expression of host factors is necessary for complete
propagation of HCVcc in these cell lines. In HepG2 and Hep3B
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cells, overexpression of miR-122 is essential for efficient replica-
tion of HCV RNA (16, 17). In HEK293 cells, the exogenous ex-
pression of CLDN1, miR-122, and ApoE was required for infec-
tious particle formation upon infection with HCVcc (64). On the
other hand, JHH-4 and FU97 cells permit complete propagation
of HCVcc without any exogenous expression of the host factors
required for propagation of HCVcc. JHH-4 cells grown in a three-
dimensional radial-flow bioreactor were successfully infected fol-
lowing inoculation with plasma from an HCV carrier and trans-
fection of HCV RNA transcribed from full-length cDNA (44). In
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FIG 6 Expression of miR-122 is one of the determinants for HCV RNA abun-
dances. (A) Total RNA was extracted from Huh7 and parental and cured FU97
(clones 5-1 and 7-1) cells, and the relative expression of miR-122 was deter-
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express GFP were used as a control. (C) FU97 cell lines expressing various
concentrations of miR-122 were infected with HCVcc at an MOI of 1, and
HCV RNA abundances were determined at 12, 24, 48, and 72 h postinfection
(hpi) by qRT-PCR. Asterisks indicate significant differences (*, P << 0.05; **,
P < 0.01) versus the results for control cells.
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addition, JHH-4 cells were suggested to possess some host factors
involved in the enhanced translation of HCV RNA (64, 65). Fur-
thermore, high susceptibility of FU97 cells to HCVee/JFH-2 infec-
tion compared to Huh7 cells raises the possibility of using FU97
cells for the propagation of HCVcc derived from other genotypes,
including the H77, TN, and S310 strains.

AFP-producing gastric cancer (AFPGC) cell lines, FU97 and
Takigawa cells (66), which were identified by using a cDNA array
database, were shown to express high levels of liver-specific fac-
tors. AFPGC is a rare case and exhibits a worse prognosis and the
characteristics of early hepatic metastasis (67). It is hypothesized
that production of AFP, which is suppressed in mature hepato-
cytes, is induced in HCC by the dedifferentiation of cancer cells or
the increase in oval cells in the oncogenic pathway (68). Oval cells
are believed to be capable of producing AFP, are candidates for
hepatic stem cells, have bipotentiality to differentiate into hepato-
cytes and bile duct epithelial cells, and play an important role in
liver regeneration (69, 70). These hypotheses suggest that cancer
cells acquired a new function, such as the ability to produce AFP
through an alteration in differentiation status. Although the
mechanism of AFP production in gastric cancer remains un-
known, hepatic dedifferentiation might be induced in gastric can-
cer. Furthermore, previous reports have proposed the concept of
“hepatoid adenocarcinoma” based on the differentiation of
AFPGC into hepatocyte-like cells (71, 72), suggesting that FU97
and Takigawa cells obtained the hepatocyte-like characteristics
required for HCV propagation through dedifferentiation during
the oncogenic process. In addition, recent studies demonstrated
that hepatocyte-like cells derived from induced pluripotent stem
cells (iPS cells/iPSCs) express high levels of miR-122 and VLDL-
associated proteins and support propagation of HCVec and HCV
derived from patient serum (28-30). These results suggest that
hepatic differentiation required for hepatic functions plays crucial
roles in HCV propagation. In accord with these observations, our
data suggest that cancer cell lines differentiated into hepatocyte-
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FIG 7 HCV particles produced in FU97 cells exhibit similar characteristics to those in hepatic cells. HCV particles in the culture supernatants of Huth7.5.1 and
FU97 cells were harvested at 72 h postinfection with HCVcc and analyzed by using iodixanol density gradient centrifugation. HCV RNA and infectious titers of
each fraction were determined by qRT-PCR and focus-forming assay, respectively. Buoyant density was plotted for each fraction (upper panels). Expression of
ApoE in each fraction was detected by immunoblotting using anti-ApoE antibody (lower panels).
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FIG 8 Effects of anti-HCV drugs on the propagation of HCVcc in FU97 cells. (A) Effect of DAAs on the propagation of HCVcc in Huh7 and FU97 cells. Cells
infected with HCVcc at an MOI of 1 were treated with BMS-790052, PSI-7977, and BILN 2061 at 3 h postinfection (identifications in right-hand panels). (B)
Effect of HCV inhibitors targeting host factors on the propagation of HCVcc in Huh7 and FU97 cells. Cells infected with HCVcc at an MOI of 1 were treated with
IFN-o, RBV (middle), and cyclosporine (CsA) at 3 h postinfection (identifications in right-hand panels). Intracellular HCV RNA levels were determined by
qRT-PCR at 48 h postinfection (bar graphs), and cell viability was determined as a percentage of the viability of cells treated with 0.1% dimethyl sulfoxide
(DMSO) at 48 h posttreatment (line graphs). From the assay results, the 50% effective concentration (ECg,) of each reagent was determined. Asterisks indicate
significant differences (¥, P < 0.05; **, P < 0.01) versus the results for control cells.
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2,24,48,and 72 h postinfection. (B) Huh7, FU97, and FU97 cured 7-1 cells were
pernatants were determined by focus-forming assay. (C) Huh7, FU97, and FU97

cured 7-1 cells were infected with HCVec/JFH-2 at an MOI of 1, fixed with 4% PFA at 72 h postinfection, and subjected to immunofluorescence assay using
antibodies against NS5A or core. Lipid droplets and cell nuclei were stained with BODIPY and DAPI, respectively. (D) In vitro-transcribed JFH-1 and JFH-2
RNAs were electroporated into Huh7, FU97, and FU97 cured 7-1 cells. The infectious titers of JFH-1 and JFH-2 in the culture supernatants from these cells were
determined by focus-forming assay up to 14 days postransduction. Asterisks indicate significant differences (*, P < 0.05; **, P < 0.01) versus the results for

control cells.

like cells to gain hepatic functions could permit complete propa-
gation of HCVcc.

Treatment with DAAs including BMS-790052 (NS5A inhibi-
tor) (73), PSI-7977 (NS5B polymerase inhibitor) (74), and BILN
2061 (NS3/4A protease inhibitor) (75) inhibited propagation of
HCV in both Huh7 and FU97 cells infected with HCVcc without
any cell toxicity. Antiviral effects of BMS-790052 and BILN 2061
were significantly different between Huh7 and FU97 cells, sug-
gesting that efficacies of DAAs are varied, depending on cell lines.
Although anti-HCV drugs targeting host factors including IFN-a,
RBV, and cyclosporine also inhibited propagation of HCVccin a
dose-dependent manner in both Huh7 and FU97 cells, treatment
with RBV and cyclosporine produced cell toxicity at higher con-
centrations than treatment with DAAs. Although the antiviral
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mechanism of RBV against HCV has not been well elucidated yet
(53), inhibitory effects of RBV against HCV infection were signif-
icantly higher in Li23 cells than those in Huh7 cells (76, 77), and
RBV also exhibited a low inhibitory effect upon infection with
HCVecc in Huh7 cells compared to that in FU97 cells. Although
adenosine kinase (ADK) was shown to be a determinant for the
sensitivity of RBV (78), the expression levels of ADK in Huh7 and
FU97 cell lines were comparable (data not shown).

The IL28B genotype is associated with the sensitivity of IFN
treatment for chronic hepatitis C patients (79-81), and patients
with the minor IL28B genotype exhibit lower susceptibility to the
treatment than those with major genotypes. Although FU97 cells
showed lower sensitivity to the IFN-a treatment than Huh7 cells,
FU97 and Huh?7 cells possess major and minor IL28B genotypes
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(data not shown), respectively. Furthermore, induction of ISG15
by treatment with IFN-o was almost comparable between Huh7
and FU97 cells (Fig. 5A), and expression levels of IFN-a receptor
in the cell lines were the same (data not shown), suggesting the
involvement of other factors in the difference in the IFN responses
between FU97 and Huh7 cells.

Cyclophilins possess peptidyl-prolyl cis/trans isomerase
(PPIase) activity and are involved in protein folding and assembly.
Cyclophilin A (CypA), the most abundant cyclophilin, localizes in
the cytoplasm and interacts with the immunosuppressive drug
cyclosporine (82). In addition, CypA has been shown to be in-
volved in the propagation of human immunodeficiency virus (83,
84), hepatitis B virus (85, 86), influenza A virus (87), and HCV
(88). Replication of HCV RNA was inhibited by suppression of the
PPIase activity of CypA by treatments with cyclosporine, muta-
tion in the active site of CypA, and knockdown of CypA (55, 89—
91). The same level of CypA expression in Huh7 and FU97 cells
(data not shown) suggests that the difference in inhibitory effect of
cyclosporine in the cell lines may be attributable to other reasons,
such as a difference in PPlase activity of CypA in these cell lines.
The differences in the efficacy of anti-HCV drugs between Huh7
and FU97 cells were small; however, FU97 cells have the possibility
to possess antiviral activity different from that of Huh7 cells.

In summary, we identified novel permissive cell lines for com-
plete propagation of HCVcc without any artificial manipulation.
In particular, gastric cancer-derived FU97 cells exhibited a much
higher susceptibility to HCVcc/JFH-2 infection than observed in
Huh7 cells, suggesting that FU97 cells would be useful for further
investigation of the HCV life cycle, as well as the development of
therapeutic agents for chronic hepatitis C.
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Abstract: The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases
throughout the world. In EBV-associated gastric carcinoma, all tumor cells harbor the clonal
EBV genome. Gastric carcinoma associated with EBV has distinct clinicopathological
features, occurs predominately in men and in younger-aged individuals, and presents a
generally diffuse histological type. Most cases of EBV-associated gastric carcinoma exhibit a
histology rich in lymphocyte infiltration. The immunological reactiveness in the host may
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represent a relatively preferable prognosis in EBV-positive cases. This fact highlights the
important role of EBV in the development of EBV-associated gastric carcinoma. We have
clearly proved direct infection of human gastric epithelialcells by EBV. The infection was
achieved by using a recombinant EBV. Promotion of growth by EBV infection was observed
in the cells. Considerable data suggest that EBV may directly contribute to the development
of EBV-associated GC. This tumor-promoting effect seems to involve multiple mechanisms,
because EBV affects several host proteins and pathways that normally promote apoptosis
and regulate cell proliferation.

Keywords: Epstein-Barr virus; gastric carcinoma; DNA methylation

1. Introduction

The Epstein-Barr virus (EBV) is associated with a variety of tumors derived from B cells, T cells,
natural killer (NK) cells, and epithelial cells. Burkitt lymphoma [1], post-transplant lymphoproliferative
disease [2], and Hodgkin’s disease [3] are B-cell tumors. Peripheral T-cell lymphomas [3] and NK/T-cell
lymphomas are T-cell tumors and NK-cell tumors, respectively. Nasopharyngeal carcinoma [1] and
gastric carcinoma (GC) [3] are epithelial tumors.

Existence of the EBV genome in GCs was first detected in 1990 by Burke ef al. using the polymerase
chain reaction (PCR) technique [4]. Since then, about 10% of GCs have been identified as EBV positive.
In each EBV-positive case of GC, almost all carcinoma cells are infected with the virus [5,6], and tumor
cells exist as a monoclonal proliferation of EBV-infected cells [7,8]. These facts suggest the significance
of EBV in the development of GCs.

Gastric cancer is the second leading cause of cancer-related deaths globally, and 60% of these deaths
occur in East Asia, which includes Japan [9]. The worldwide occurrence of EBV-associated GC
is estimated at more than 50,000 cases per year [10]; therefore, EBV-associated GC is the most common
cancer among EBV-related malignancies.

2. Definition

In addition to the detection of the EBV genome in GCs using PCR [4], EBV-encoded small RNA 1
(EBER1) was also detected using in situ hybridization (ISH). Various studies in the early 1990s indicated
that EBV-associated GC comprises about 10% of all GCs worldwide [5-8]. EBER1 is highly abundant
(10 million copies per cell) in individual infected cells. Typically, EBER1 can be detected in the
nuclei of tumor cells; however, the EBER1 signal is negative in reactive lymphoid infiltrate cells or
normal gastric mucosa cells (Figure 1). To make the diagnosis of EBV-associated GC before treatment,
EBERI1-ISH should be applied to gastric mucosal biopsy samples from patients who have undergone
upper gastrointestinal endoscopy. Patients with EBV-associated GC have elevated levels of serum
antibodies against EBV early antigen and EBV capsid antigen. However, EBV nuclear antigen (EBNA) 1
antibody titers do not show significant difference between patients and healthy counterparts [7].
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Figure 1. Lymphoepithelioma-like subtype of Epstein-Barr virus (EBV)-associated gastric
carcinoma. (a) H & E staining; (b) EBV-encoded small ribonucleic acid 1 (EBER1) in situ
hybridization demonstrates positive nuclei in the carcinoma cells, which are surrounded by
infiltrating lymphocytes.

3. Epidemiology

GC is one of the most common malignancies in Japan. Among the various histological types from
Japanese gastric cancer cases, the incidence of EBV-positive cases was 7.0% in 1994 [7]. In contrast to
Burkitt lymphoma and nasopharyngeal carcinoma, which are distributed endemically in equatorial
Africa and Southeast Asia, respectively, EBV-associated GC is distributed worldwide in a similar
proportion [10]. Regional difference in the incidence of EBV-associated GC is also reported. The
incidence of EBV-associated GC in all cases of gastric cancer ranges from a high of 16%-18%
in the USA and Germany to a low of 4.3% in China. The regional difference in the incidence of
EBV-positive cases in gastric cancers indicates that the prevalence EBV-associated GC is inversely
related to the incidence of GC [11].

EBV-associated GC has distinct clinicopathological features, is present predominately in men and in
younger-aged individuals, and presents a generally diffuse histological type [12,13]. Most studies have
not shown evident age dependence in the frequency of EBV-associated GC. Almost all of the studies
showed male predominance of EBV-associated GC, suggesting that risks related to lifestyle or
occupational factors may exist among males [14]. An interview study in Japan showed that salty food
intake and exposure to wood dust and/or iron filings, which may induce mechanical injury to the gastric
epithelia, are related to a higher risk of EBV-associated GC [15]. Camargo et al. recently showed that the
association of smoking with gastric cancer is stronger for EBV-positive than EBV-negative tumors [16].

4. Pathology

EBV-associated GC has definite histological relevance to GC with lymphoid stroma (GCLS) [17-19],
which was originally described by Watanabe ef al. as a subtype of the carcinoma [20]. GCLS is a poorly
differentiated adenocarcinoma with diffuse and intense lymphocyte infiltration similar to EBV-associated
nasopharyngeal lymphoepithelioma. More than 80% of lymphoepithelioma-like GC is infected with
EBV [17-19] (Figure 1), whereas ordinary-type GC, comprising 5%—10% of all cases of GC, shows features
of moderately or poorly differentiated adenocarcinoma with various degrees of lymphocytic infiltration.
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Further infiltration of the carcinoma (tumor cells) into the submucosa is occasionally accompanied by
EBV-associated GC generally exhibiting a characteristic histology referred to as GCLS [21].

EBV-associated GC has a null or gastric phenotype as determined by the expression pattern of the
mucin molecules MUCS5AC and MUC6 [22,23] and is characterized by a relative lack of intestinal
phenotypic expression, including Cdx2 [24]. According to these findings, the targets of EBV infection
and their subsequent transformation are seemingly the precursor cells possessing intrinsic differentiation
potential toward the gastric cell type.

5. Clinical Features

The most useful modality for the diagnosis of GC is endoscopy. In one analysis, 124 GCs from
117 patients were examined by EBERI-ISH. Of the 124 tumors, 12 (9.7%) were identified as
EBV-associated tumors [25]. It is of note that EBV-associated GC predominantly localizes in the
non-antrum part of the stomach (Figure 2) and appears as superficial depressed or ulcerated lesions.
A histological feature of EBV-associated GC is a diffuse-type carcinoma accompanied by abundant
lymphocyte infiltration (i.e., GCLS). In some patients, endoscopic ultrasound reveals a hypoechoic mass
in the third hyperechoic layer reflecting submucosal nodules of lymphoid stroma, which is composed of
carcinoma cells and infiltrating lymphocytes [26].

Figure 2. Endoscopic image of an Epstein-Barr virus-associated gastric carcinoma in the
upper gastric body. The tumor shows a protruded shape probably because of the abundant
lymphocyte infiltration.

It is known that Helicobacter pylori is strongly related to cancer and is an etiological agent of chronic
gastritis and intestinal metaplasia. It is distinctive that H. pylori-related gastritis frequently initiates in
the antrum. In the case of EBV-associated GC, tumors are frequently located near the mucosal atrophic
border, where mild to moderate atrophy is common [27]. We have frequently detected both EBV and
H. pylori in the mucosa of patients with moderate chronic atrophic gastritis, where inflammatory cell
infiltration is abundant, and not in the mucosa with marked atrophic gastritis, where inflammatory cell
infiltration is scarce [28].

Gastric remnant cancer arises after distal gastrectomy for benign disease, which includes refractory
gastric or duodenal ulcer disease and recurrent ulcer with gastric outlet obstruction. The incidence of
gastric remnant cancer ranges from 1% to 7% of all GCs and is still increasing [29]. Gastric remnant
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carcinoma is frequently (25% to 41.2%) associated with EBV infection. It is considered that the reflux
of bile and pancreatic juice causes regenerative atypia and cell proliferation in epithelial cells [30].
Atrophic change of remnant gastritis in Billroth-II anastomoses is frequently accompanied by
EBV-positive gastric remnant carcinoma [31]. Gastritis cystica polyposa, frequently observed in the
remnant stomach, is a suspected precursor lesion of EBV-associated GC, but no direct evidence of EBV
imfection in these lesions has been found [32].

6. Treatment and Prognosis of EBV-Associated GC

The current therapy for EBV-associated GC does not use any special methods. Because
undifferentiated-type cancer is prevalent in EBV-associated GC, most of these tumors are removed by
surgical resection. Early EBV-associated GC has a low frequency of lymph node metastasis. Endoscopic
treatment can be applied in such cases. The authors experienced a case of early EBV-associated GC with
submucosal invasion in which palliative endoscopic treatment was performed. No recurrence was
observed in the patient for more than 4 years [33]. A clinicopathological study in The Netherlands
showed that EBV-associated GC has a significantly low frequency of lymph node metastasis compared
with EBV-negative stomach cancer, resulting in a better prognosis than that with the EBV-negative
cases [34]. A recent meta-analysis revealed that EBV-associated GC showed an infrequent tendency
toward lymph node metastasis. After adjustment for TNM stage and other prognostic indicators,
EBV positivity was associated with lower mortality [35]. Further studies are needed to identify the
mechanisms underlying this prognostic association.

7. Growth-Promoting Effects of EBV in Epithelial Cells
7.1. Models of EBV Infection of Gastric Epithelial Cells

EBYV infects both B lymphocytes and epithelial cells because the virus has been discovered in Burkitt
lymphoma cells, Hodgkin cells, nasopharyngeal carcinoma cells, and GC cells. Experimental EBV
infection of B cells is very efficient because EBV uses CD21, a high-affinity receptor, for its entry into
the cell [36,37]. However, epithelial cells are CD21 negative, and infection of epithelial cells could not
be achieved for a long time, not until CD21 expression was overcome by gene transfer [38,39]. Infection
of EBV with human gastric epithelial cells was experimentally proved by our group [40], and EBV-infected
gastric cells (AGS) have been established by Marquitz et al. [41]. A recombinant EBV with a neomycin
resistance gene [42,43] was used for epithelial infection, and thus, epithelial cells, which do not express
a CD21 EBV receptor, could be infected with EBV. This infection of CD21-negative epithelial cells was
not blocked by anti-CD21 monoclonal antibody [40]. Next, EBV was efficiently transferred to epithelial
cells by mixing epithelial cells with recombinant EBV-producing B cells [44]. There are several
epithelial cell lines, such as CNE1 and HONEI, which can achieve experimental infection with EBV.
Instead of these cell lines, SNU-719 cells [45], NCC24 cells [46], and KT cells [47] are a few of the cell
types that retain the same clonal EBV genome and the pattern of EBV gene expression (type I EBV) as
that in the original tumor biopsy. The KT cell is a good in vivo model of EBV-associated GC and
expresses high IL-1p compared with EBV-negative gastric tumor cells [48].
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7.2. Growth-Promoting Effects of EBV

EBV immortalizes B cells in vitro. EBNA 2 and latent membrane protein 1 (LMP1) appear to play
the most important roles in the immortalization of lymphocytes. However, they are not expressed
in EBV-associated GC, raising doubts about the importance of the presence of EBV. We attempted to
infect gastric primary culture cells with EBV [49]. Primary gastric epithelial cells from healthy gastric
mucosal biopsies were infected with recombinant EBV carrying a neomycin resistance gene, and
infected cells were selected for using G418. As a result, we repeatedly separated cell clones that could
be maintained for at least 300 generations. The selected EBV-infected cells expressed Qp-driven EBNA 1,
EBER, BARTs, and latent membrane protein 2A (LMP2A). The pattern of latent gene expression was
similar to EBV-associated GC. The EBV-infected clones had higher proliferation rates and at least twice
the cell saturation density compared with non-infected clones into which the neomycin resistance gene
had been introduced as a control, and the malignant phenotype was confirmed by colony formation in
soft agar and tumorigenicity in SCID mice. EBV infection also promoted growth of gastric cancer cell
lines NU-GC-3 and AGS [41,49].

8. Virus and Host Interactions at the Molecular Level
8.1. Genetic Alterations in EBV-Associated GC

In EBV-associated GC, studies of genetic alteration are limited. Van Rees et al. [50] and Chong et al. [51]
reported that chromosomal losses were extremely rare in EBV-associated GC in contrast to the high
frequency in EBV-negative GC. Chromosomal aberrations in EBV-associated GCs were globally tested
by comparative genomic hybridization. Zur Hausen ef al. showed that loss of chromosomes 4p, 11p, and
18q was distinct in EBV-associated GCs [52]. 18q harbors the DCC and SMAD4 genes, which are
known tumor-suppressor genes. Chan et al. reported that gains in chromosome 11 copy numbers are
common in EBV-associated malignancy including EBV-positive GC, lung cancer, and lymphoma [53].
As well, microsatellite instability is not common in EBV-associated GC [54]. Similarly, p53 mutation
and overexpression are not frequent in EBV-associated GCs [55,56]. These findings indicate that genetic
abnormality is not the major pathway to the development of EBV-associated GC.

8.2. DNA Hypermethylation in EBV and Host Genomes

Methylation of the tumor suppressor gene is a key abnormality in EBV-associated GC [57-59]. In
tumor cells of EBV-associated GC, CpG island methylation is frequently observed at promoters of
various tumor-related genes, which must take important parts in the development and progression of
gastric cancer [60]. Methylation frequencies of several tumor suppressor genes, APC, PTEN, and
RASSF1A, and cell adhesion molecules, THBS1 and E-cadherin, were reported to be significantly
higher in EBV-associated GC [61-63]. Because demethylation agents induce lytic EBV infection in
latently EBV-infected cells followed by apoptotic cell death, the therapeutic application of demethylating
agents may lead to the lysis of cancer cells [64]. These facts strongly support possible application of
demethylating agents to the medical treatment of EBV-associated GC.
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We compared methylation status between EBV-associated GCs and EBV-negative controls whose
age, sex, histology, depth of invasion, and stage were matched. EBV-associated GCs showed higher
methylation frequencies in 12 of 16 tumor-related genes compared with EBV-negative controls. The
frequency of methylation at 6 specific loci (MINT2, MINT31, pl4, pl6, p73, and RUNX3) was
significantly higher in EBV-associated GCs than in EBV-negative controls [65]. Moreover, the DNA
methylation status in the naturally derived EBV-positive gastric adenocarcinoma cell line SNU-719
was also examined by the method of methylated CpG island recovery on chip assay [66]. Expression
of several genes was regulated by DNA methylation in EBV-associated GC. The methylation
frequencies of p73, BLU, FSD1, BCL7A, MARK1, SCRN1, and NKX3.1 were significantly higher in
EBV-associated GC than in EBV-negative GC [66].

The precise molecular mechanism that induces host DNA methylation during the early stage of
EBV infection of the gastric epithelium is not fully understood. LMP2A is reported to induce
the phosphorylation of STAT3, which activates DNA methyltransferase 1 (DNMT1) transcription
and causes loss of PTEN expression through CpG island methylation of the PTEN promoter in
EBV-associated GC [67]. However, LMP2A is not expressed in every case of EBV-associated GC [68],
and EBV-associated GC patients are usually negative for LMP2A antibody [69]. LMP1 can also induce
aberrant DNA methylation by activating DNMT1 through the INK signaling pathway [70] and inducing
DNA methylation of host cells [71]. However, LMP1 is scarcely expressed, and LMP1 protein is
generally absent in EBV-associated GC [72]. Methylation of similar genes has been reported in hepatitis
B and C [73,74], suggesting that there must be a common mechanism underlying the formation of
infection-associated cancers.

The status of DNA methylation in the EBV genome was intensively investigated [75]. The expression
of EBV latent genes is strictly regulated through viral DNA methylation in EBV-infected cells. The
Cp/Wp EBNA promoters are known to transcribe all EBNAs. However, in Burkitt lymphoma and
nasopharyngeal carcinoma, the Cp/Wp promoters are methylated and the only EBNA1 promoter, Qp,
is used instead [76,77]. Moreover, in EBV-positive nasopharyngeal carcinoma, LMP1 expression is
down-regulated by methylation in its promoter region [78]. The pattern of latent gene expression in
EBV-positive GCs is similar to that of Burkitt lymphoma, in which only Qp is actively used [7]. These
results indicate that the methylation status of the EBV genome regulates the pattern of latent gene
expression in EBV-positive tumor cells. Because methylation occurs on viral DNA in EBV-associated
GC cells, methylation of host cell DNA may also occur, for example, on tumor suppressor genes that
regulate the cell cycle and apoptosis. Aberrant DNA methylation might occur in EBV-positive cells,
thus promoting the development and progression of EBV-associated GC (Figure 3).

8.3. EBV Latent Genes and Host Interaction

Iwakiri et al. reported that EBV infection promoted growth of gastric cancer cells by increased production
of insulin-like growth factor (IGF)-1 as an autocrine growth factor. It was also revealed that EBERSs are
responsible for the induction of IGF-1 [79]. The oncogenic role of EBERs has been reported for inhibition
of apoptosis in the human epithelial cell line Intestine 407 [80]. EBER was found to bind double-stranded
RNA-dependent protein kinase R, an interferon-inducible serine/threonine kinase, and abrogate its
kinase activity. These results indicate that EBER contributes to the maintenance of epitheloid malignancy.
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Figure 3. Aberrant DNA methylation might lead to the development and progression of
Epstein-Barr virus (EBV)-associated gastric carcinoma. DNMT, DNA methyltransferase.

EBV infection
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maintenance of EBV infection
evasion from immune responce

The oncogenic role of other genes such as BARF1 (BamHI A rightward open reading frame 1) [81]
and LMP2A [67,82] has also been reported. The expression of the EBV-encoded oncogene BARF1
has been reported in EBV-associated GC. Wiech et al. reported that cyclin D1 is induced in
BARF1-transfected epithelial cells and is overexpressed in EBV-associated GC [83]. LMP2A is reported
to inhibit transforming growth factor-bl-induced apoptosis in a GC cell line [84]. Recently, it was
demonstrated that LMP2A upregulated cellular survivin gene expression through the nuclear factor-kB
pathway in GC cell lines with EBV infection [82]. In addition, LMP2A upregulates cellular DNMT1 in
EBV-associated GC through the phosphorylation of STAT3, causing promoter hypermethylation of a
tumor suppressor gene, PTEN [67].

8.4. EBV microRNA and Gastric Cancer

A microRNA (miRNA) is a small (20 to 25 nucleotides) non-coding RNA derived from double-stranded
RNAs, which functions in RNA silencing and post-transcriptional regulation of gene expression. miRNA
is incorporated into the RNA-induced silencing complex (RISC) in cytosol, binds to the 3' un-translated
region (UTR) of mRNA, and then silences translation by destabilizing mRNA through shortening of its
poly A tail [85]. miRNA is found in plants, animals, and some viruses. EBV is one of the first viruses
reported to contain viral miRNA, the genome of which codes 25 miRNA precursors and produces
44 kinds of different miRNAs [86,87]. A number of mRNA targets by EBV miRNAs have been reported
mainly in B lymphocytes via the bioinformatics approach [88,89]. Recent results of EBV miRNA targets
using gastric epithelial cells are introduced in this section.

Choy et al. reported on the regulation of p53 up-regulated modulator of apoptosis (PUMA) by
an EBV miRNA, miR-BARTS5-5p, which is abundantly expressed in nasopharyngeal carcinoma and
EBV-associated GC cells [90]. Marquitz et al. showed that in vitro infection of an AGS cell line with
EBYV alters the growth properties of the cells and induces growth in soft agar in accordance with high
levels of expression of the BamHI A rightward transcript (BART) miRNAs [41]. They showed
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downregulation of a tumor suppressor gene, PTEN, cellular adhesion proteins, integrin alpha 5 and
alpha V, and signal transducer STAT6. These results suggested that the expression of EBV miRNA
highly influences the genesis of EBV-associated GC. Choi ef al. also investigated an AGS cell line
and reported that the 3' untranslated region of baculovirus inhibitor of apoptosis repeat-containing
ubiquitin-conjugating enzyme (BRUCE) was affected by EBV miR-BART15-3p [91]. miR-BART
miRNAs target many other anti-apoptotic genes; however, the precise roles of each gene for tumor
formation are still not well understood.

Many research groups reported expression of EBV miRNAs in gastric cancer cells and histological
samples from gastric cancers [92,93]. It is of note that YCCEL1 and SNU-719 cell lines are derived from a
gastric cancer patient, respectively, and maintain viral episomes. Seemingly, this is the reason why these
cell lines show expression profiles of EBV miRNAs similar to samples from gastric cancer patients [94-96].
These two cell lines are expected to become important tools for the study of EBV miRNA.

9. Summary

Considerable data suggest that EBV can increase cell proliferation and survival; and through these
effects; EBV may directly contribute to the development of EBV-associated GC. This tumor-promoting
effect seems to involve multiple mechanisms; because EBV affects several host proteins and pathways
that normally promote apoptosis and regulate cell proliferation.
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