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Background: Host factors regulating hepatitis B virus (HBV) entry receptors are not well defined.
Results: Chemical screening identified that retinoic acid receptor (RAR) regulates sodium taurocholate cotransporting poly-

peptide (NTCP) expression and supports HBV infection.

Conclusion: RAR regulates NTCP expression and thereby supports HBV infection.
Significance: RAR regulation of NTCP can be a target for preventing HBV infection.

cells. However,
support HBV i
the host signal

ingly, Ro41-5253
protein, We found |
the promoter activity of the human NTCP (hNTCP) gene and
that Ro41-5253 repressed ‘the hNTCP promoter by antagoniz-
ing RAR. RAR recruited to the hNTCP promoter region, and
nucleotides —112 to —96 of the hNTCP was suggested to be
critical for RAR-mediated transcriptional activation. HBV sus-
ceptibility was decreased in pharmacologically RAR-inactivated
cells. CD2665 showed a stronger anti-HBV potential and dis-
rupted the spread of HBV infection that was achieved by contin-
uous reproduction of the whole HBV life cycle. In addition, this
mechanism was significant for drug development, as antago-
nization of RAR blocked infection of multiple HBV genotypes
and also a clinically relevant HBV mutant that was resistant to

: ; _,,abIeto combat
t, interferon (IFN)-based drugs,

;:mcludmg IFN« and egylated-IFNa, modulate “host immune

function and/or directly inhibit HBV replication in hepatocytes
(7, 8). However, the antiviral efficacy of IFN-based drugs is
restricted to less than 40% (9, 10). Second, nucleos(t)ide ana-
logs, including lamivudine (LMV), adefovir, entecavir (ETV),
tenofovir, and telbivudine suppress HBV by inhibiting the viral
reverse transcriptase (11, 12). Although they can provide
significant clinical improvement, long term therapy with nucle-
os(t)ide analogs often results in the selection of drug-resistant
mutations in the target gene, which limits the treatment out-
come. For example, in patients treated with ETV, at least three
mutations can arise in the reverse transcriptase sequence of the
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Retinoids Reduced HBV Susceptibility by Down-regulating NTCP

polymerase L180M and M204V plus either one of Thr-184,
Ser-202, or Met-250 codon changes to acquire drug resistance
(13). Therefore, development of new anti-HBV agents targeting
other molecules requires elucidation of the molecular mecha-
nisms underlying the HBYV life cycle.

HBYV infection of hepatocytes involves multiple steps. The
initial viral attachment to the host cell surface starts with a low
affinity binding involving heparan sulfate proteoglycans, and
the following viral entry is mediated by a specific interaction
between HBV and its host receptor(s) (14). Recently, sodium
taurocholate cotransporting polypeptide (NTCP) was reported
as a functional receptor for HBV (15). NTCP interacts with
HBV large surface protein (HBs) to mediate viral attachment
and the subsequent entry step. NTCP, also known as solute
carrier protein 10A1 (SLC10A1), is physiologically a sodium-
dependent transporter for bile salts located on the basolateral
membrane of hepatocytes (16). In the liver, hepatocytes take up
bile salts from the portal blood and secrete them into bile for
enterohepatic circulation, and NTCP-mediated uptake of bile
salts into hepatocytes occurs largely in a sodium-dependent
manner. Although N
mary hepatocytes, i
cell lines such as
port HBV infectic
tocytes, prima
cells, which are susceptib
cant levels of NTCP (1

/ Or no longer expressed in mos

reduced HBV infec
by repressing the pi
(hNTCP) gene. Retinoic acid receptor (RAR) played a crucial
role in regulating the promoter activity of hNTCP, and Ro41-
5253 antagonized RAR to reduce NTCP transcription and con-
sequently HBV infection. This and other RAR inhibitors
showed anti-HBV activity against different genotypes and an
HBYV nucleoside analog-resistant mutant and moreover inhib-
ited the spread of HBV. This study clarified one of the mecha-
nisms for gene regulation of NTCP to support HBV permissive-
ness, and it also suggests a novel concept whereby manipulation
of this regulation machinery can be useful for preventing HBV
infection.

EXPERIMENTAL PROCEDURES

Reagents—Heparin was obtained from Mochida Pharmaceu-
tical. Lamivudine, cyclosporin A, all-trans-retinoic acid (ATRA),
and TO901317 were obtained from Sigma. Entecavir was
obtained from Santa Cruz Biotechnology. Ro41-5253 was
obtained from Enzo Life Sciences. PreSl-lipopeptide and
FITC-labeled preS1 were synthesized by CS Bio. IL-13 was pur-

2 JOURNAL OF BIOLOG/CAL CHEMISTRY

is abundant in freshly isolated pri-

chased from PeproTech. CD2665, BMS195614, BMS493, and
MM11253 were purchased from Tocris Bioscience.

Cell Culture—HepaRG cells (BIOPREDIC) and primary
human hepatocytes (Phoenixbio) were cultured as described
previously (19). HepG2 and HepAD?38 cells (kindly provided by
Dr. Christoph Seeger at Fox Chase Cancer Center) (22) were
cultured with DMEM/F-12 + GlutaMAX (Invitrogen) supple-
mented with 10 mm HEPES (Invitrogen), 200 units/ml penicil-
lin, 200 pg/ml streptomycin, 10% FBS, and 5 pg/ml insulin.
HuS-E/2 cells (kindly provided by Dr. Kunitada Shimotohno at
National Center for Global Health and Medicine) were cultured
as described previously (23).

Plasmid Construction—phNTCP-Gluc, pTK-Rluc was pur-
chased from GeneCopoeia and Promega, respectively. pPRARE-
Fluc was generated as described (25). For constructing
phNTCP-Gluc carrying a mutation in a putative RARE (nt
—491 to —479), the DNA fragments were amplified by PCR
using phNTCP-Gluc as a template with the following primer
sets: F1, 5'-CAGATCTTGGAATTCCCAAAATC-3' and 5'-
GAGGGGATGTGTCCATTGAAATGTTAATGGGAGCT-
GAGAGGATGCCAGTATCCTCCCT 3’ and primer sets 5’-

GATTC 3, 5'- CACACTCAGTGGATTGCAAAATATAGA—
AATAAGCCCAGAAGCAGCAAAGTGACAAGGG-3', and
R6 for —179 to —167; F1 and 5'-AGCTCTCCCAAGCTCAA-
AGATAAATGCTAGTTTCCTGGGTGCTACTTGTACTC-
CTCCCTTGTC-3', 5'-GTAGCACCCAGGAAACTAGCAT-
TTATCTTTGAGCTTGGGAGAGCTAGGGCAGGCAGAT-
AAGGT-3', and R6 for —112 to —96, respectively. For constr-
ucting the hANTCP promoter carrying these five mutations (5-
Mut), five DNA segments were amplified using the primers as
follows: segment 1, F1 and 5'-GAGGGGATGTGTCCATG-
ACC-3'; segment 2, 5'-AGCTCCTTTCACTCTCATGGGT-3’
and 5'-TCCTTTTCCCAGCTCCGC-3'; segment 3, 5'-GAG-
CTGGGAAAAGGAGCTGC-3' and 5'-CCACTGAGTGTG-
CCTCATGG-3"; segment 4, 5'-AGGCACACTCAGTGGA-

'GGG-3 and 5'-CTGGGTGCTACTTGTACTCCTCC-3'; and

segment 5, 5'-CAAGTAGCACCCAGGAATCCA-3' and Ré.
For producing a deletion construct for the hNTCP promoter,
phNTCP (—53 to +108)-Gluc, DNA fragment was amplified
using the primer sets 5'-GGTGAATTCTGTTCCTCTTTGG-
GGCGACAGC-3' and 5'-GGTGGTAAGCTTTCCTTGTTC-
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TCCGGCTGACTCC-3 and then inserted into the EcoRI and
HindIII sites of phNTCP-Gluc.

HBYV Preparation and Infection—HBV was prepared and
infected as described (19). HBV used in this study was mainly
derived from HepAD38 cells (22). For Fig. 8, A~F, we used
concentrated (~200-fold) media of HepG2 cells transfected
with an expression plasmid for either HBV genotypes A, B, C, D
or genotype C carrying mutations at L180M, S202G, and
M204V (HBV/Aeus, HBV/Bj35s, HBV/C-AT, HBV/D-IND60,
or HBV/C-AT(L180M/S202G/M204V)) (24) and infected into
the cells at 2000 GEq/cell in the presence of 4% PEG8000 at
37 °C for 16 h as described previously (19). HBV for Fig. 8F
(genotype C) was purchased from Phoenixbio.

Real Time PCR and RT-PCR—Real time PCR for detecting
HBV DNAs and cccDNA was performed as described (19). RT-
PCR deétection of mRNAs for NTCP, ASBT, SHP, and GAPDH
was performed with one-step RNA PCR kit (TaKaRa) following
the manufacturer’s protocol with primer set 5'-AGGGAGGA-
GGTGGCAATCAAGAGTGG-3' and 5'-CCGGCTGAAGA-
ACATTGAGGCACTGG-3' for NTCP,5'-GTTGGCCTTGG-
TGATGTTCT-3"and 5’ CGACCCAATAGGCCAAGATA 3

previously (19).
ImmunoblotA 7

dilution), anti-RAR« (Santa’ Cruz Blotechnology) (1:6000 dilu-
tion), anti-RARB (Sigma) (1:6000 dilution), anti-RARy
(Abcam) (1:2000 dilution), anti-RXR« (Santa Cruz Biotechnol-
ogy) (1:8000 dilution), and anti-actin (Sigma) (1:5000 dilution)
antibodies were used for primary antibodies.

Flow Cytometry—1 X 10° primary human hepatocytes were
incubated for 30 min with a 1:50 dilution of anti-NTCP anti-
body (Abcam) and then washed and incubated with a dye-la-
beled secondary antibody (Alexa Fluor 488, Invitrogen) at 1:500
dilution in the dark. Staining and washing were carried out at
4 °Cin PBS supplemented with 0.5% bovine serum albumin and
0.1% sodium azide. The signals were analyzed with Cell Sorter
SH8000 (Sony).

FITC-preS1 Peptide-binding Assay—Attachment of preS1
peptide with host cells was examined by preS1 binding assay
essentially as described previously (28). HepaRG cells treated
with or without Ro41-5253 (28) for 24 h or unlabeled preS1
peptide for 30 min were incubated with 40 nm FITC-labeled
preS1 peptide (FITC-preS1) at 37 °C for 30 min. After washing
the cells twice with culture medium and once with phosphate-

ASASBMB

buffered saline (PBS), the cells were fixed with 4% paraformal-
dehyde. Then the cells were treated with 4% Block Ace (DS
Pharma Biomedical) containing DAPI for 30 min.

Reporter Assay—HuS-E/2 cells were transfected with phNTCP-
Gluc (GeneCopoeia), a reporter plasmid carrying the NTCP
promoter sequence upstream of the Gaussia luciferase (Gluc)
gene, and pSEAP (GeneCopoeia), expressing the secreted alka-
line phosphatase (SEAP) gene, together with or without expres-
sion plasmids for RARe, RARB, RARvy, with RXRa using Lipo-
fectamine 2000 (Invitrogen). At 24 h post-transfection, cells
were stimulated with the indicated compounds for a further
24 h. The activities for Gluc as well as for SEAP were measured
using a Secrete-Pair Dual-Luminescence assay kit (Gene-
Copoeia) according to the manufacturer’s protocol, and Gluc
values normalized by SEAP are shown.

pRARE-Flug, carrying three tandem repeats of RAR-binding
elements upstream of firefly luciferase (Fluc), and pTK-Rluc
(Promega), which carries herpes simplex virus thymidine
kinase promoter expressing Renilla luciferase (Rluc) (25), were
used in dual-luciferase assays for detecting Fluc and Rluc. Fluc
and Rluc were measured with Dual-Luciferase Reporter Assay
ystem (Promega) ding to the manuf:

digested w1th micrococcal nuclease, and 1mmunoprec1p1tated
with anti-FLAG antibody (Sigma) or normal IgG. Input samples
were also recovered without immunoprecipitation. DNA
recovered from the immunoprecipitated or the input samples
was amplified with primers 5'-CCCAGGGCCCACCTGAAT-
CTA-3" and 5'-TAGATTCAGGTGGGCCCTGGG-3' for de-
tection of NTCP.

RESULTS

Anti-HBV Activity of Ro41-5253—We searched for small
molecules capable of decreasing HBV infection in a cell-based
chemical screening method using HBV-susceptible HepaRG
cells (29). As a chemical library, we used a set of compounds for
which bioactivity was already characterized (19). HepaRG cells
were pretreated with compounds and then further incubated
with HBV inoculum in the presence of compounds for 16 h (Fig.
1A). After removing free HBV and compounds by washing, the
cells were cultured for an additional 12 days without com-
pounds. For robust screening, HBV infection was monitored by
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FIGURE 1. Ro41-5253 decreased susceptibility to HBV infection. A, sche-
matic representation of the schedule for treatment of HepaRG cells with com-
pounds and infection with HBV. HepaRG cells were pretreated with com-
pounds for 2 h and then inoculated with HBV in the presence of compounds
for 16 h. After washing out the free HBV and compounds, cells were cultured
in the absence of compounds for an additional 12 days followed by quantifi-
cation of secreted HBs protein. Black and dashed bars indicate the interval for
treatment and without treatment, respectively. B, chemical structure of Ro41-
5253. C-E, HepaRG cells were treated with or without 10 um Ro41-5253 or 50
units/ml heparin according to the protocol shown in A, and HBs (C) and HBe
(D) antigens in the culture supernatant were measured. Cell viability was also
examined by MTT assay (E). F-H, HBc protein (F), HBV DNAs (G), and cccDNA
(H) in the cells according to the protocol shown in A were detected by immu-
nofluorescence, real time PCR, and Southern blot analysis. Red and blue in F
show the detection of HBc protein and nuclear staining, respectively. / and J,
primary human hepatocytes were treated with the indicated compoundsand
infected with HBV in the presence (/) or absence (J) of PEG8000 according to
the protocol shown in A. The levels of HBV DNA in the cells (/ and J) and HBe
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ELISA quantification of HBs antigen secreted from the infected
cells at 12 days postinfection. This screening revealed that HBs
was significantly reduced by treatment with Ro41-5253 (Fig.
1B) as well as heparin, a competitive viral attachment inhibitor
that served as a positive control (Fig. 1C) (14). HBe in the
medium (Fig. 1D) as well as intracellular HBc protein (Fig. 1F),
HBYV replicative (Fig. 1G), and cccDNA (Fig. 1H) were consis-
tently decreased by treatment with Ro41-5253, without serious
cytotoxicity (Fig. 1E). This effect of Ro41-5253 was not limited
to infection of HepaRG cells because we observed a similar
anti-HBV effect in primary human hepatocytes (Fig. 1/). The
anti-HBV effect of Ro41-5253 on HBV infection of primary
human hepatocytes was also observed in the absence of
PEG8000 (Fig. 1)), which is frequently used to enhance HBV
infectivity in vitro (14, 29). These data suggest that Ro4l-
5253 treatment decreases hepatocyte susceptibility to HBV
infection.

Reduced HBV Entry in Ro41-5253-treated Cells—Ro041-5253
decreased HBs secretion from infected cells in a dose-depen-
dent manner without significant cytotoxicity (Fig. 2A4). We next
mvestlgated which step in the HBV hfe cycle was blocked by

féplication
otinFig. 2B.

" Moreover, Ro41-5253 had little effect on HBV transcription,

which was monitored by a luciferase activity driven from the
HBV enhancer I, II, and the core promoter (Fig. 2B, middle
panel), and by the HBV RNA level in HepG2.2.15 cells, persis-
tently producing HBV (Fig. 2B, right panel) (36). We then
examined whether Ro41-5253 pretreatment affected viral
attachment to host cells. To this end, HepaRG cells were
exposed to HBV at 4 °C for 3 h, which allowed HBV attachment
but not subsequent internalization (19) (Fig. 2D). After washing
out free viruses, cell surface HBV DNA was extracted and quan-
tified to evaluate HBV cell attachment (Fig. 2D). Pretreatment
with Ro41-5253 significantly reduced HBV DNA attached to
the cell surface, as did heparin (Fig. 2D). In a preS1 binding
assay, where FITC-labeled preS1 lipopeptide was used as a
marker for HBV attachment to the cell surface, Ro41-5253-

antigen in the culture supernatant (/) were quantified. The data show the
means of three independent experiments. Standard deviations are also
shown as error bars. Statistical significance was determined using Student’s ¢
test (¥, p < 0.05; **, p < 0.01).
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peptide, 100 ng/mi IL-13, or 20 um Ro41-5253) for 24 h were used for the HBV infection assay, where HBV was inoculated for 16 h in the absence of the

compounds. Statistical significance was determined using Student’s t test (¥, p < 0.05, and **, p < 0.01).

treated cells showed a reduced FITC fluorescence measuring
viral attachment (Fig. 2E). Thus, Ro41-5253 primarily
decreased the entry step, especially viral attachment. Next, to
examine whether Ro41-5253 targeted HBV particles or host
cells, HepaRG cells pretreated with compounds were examined
for susceptibility to HBV infection in the absence of com-
pounds (Fig. 2F). As a positive control, HBV infection was
blocked by pretreatment of cells with an NTCP-binding lipo-
peptide, preS1(2—48)™" (preS1 peptide) (15), but not by hepa-
rin, which binds HBV particles instead (Fig. 2F, 2nd and 3rd
lanes) (14). HBV infection was also diminished in HepaRG cells
pretreated with IL-1B, which induced an innate immune
response (Fig. 2F, 4th lane) (37). In this experiment, Ro41-5253-
pretreated HepaRG cells were less susceptible to HBV infection
(Fig. 2F, 5th lane), suggesting that the activity of Ro41-5253 in
host cells contributed to the inhibition of HBV entry.

£ZASBMB

R041-5253 Down-regulated NTCP—Next, we examined how
treatment of hepatocytes with Ro41-5253 decreased HBV sus-
ceptibility. Recently, NTCP was reported to be essential for
HBYV entry (15). Intriguingly, we found that Ro41-5253 decreased
the level of NTCP protein in HepaRG cells (Fig. 34). Flow
cytometry showed that NTCP protein on the cell surface was
consistently down-regulated following treatment with Ro41-
5253 (Fig. 3B, compare red and blue). Semi-quantitative RT-
PCR revealed that mRNA levels for NTCP, but not apical
sodium-dependent bile salt transporter (ASBT, also known as
NTCP2 or SLC10A2), another SLC10 family transporter, were
reduced by Ro41-5253 in HepaR@G cells (Fig. 3C). Thus, Ro41-
5253 could reduce NTCP expression. When endogenous
NTCP and RAR was knocked down by siRNA, the anti-HBV
effect of Ro41-5253 was significantly diminished (Fig. 3D), sug-
gesting that the inhibitory activity of Ro41-5253 to HBV infec-
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FIGURE 3. Ro41-5253 reduced NTCP expression. A, HepaRG cells were treated or untreated with 10 and 20 uM Ro41-5253 or 50 units/ml heparin for 12 h, and
the levels of NTCP (upper panel) and actin (lower panel) were examined by Western blot analysis. The relative intensities for the bands of NTCP measured by
densitometry are shown below the upper panel. B, flow cytometric determination of NTCP protein level on the cell surface of primary human hepatocytes
treated with 20 um Ro41-5253 (red) for 24 h or left untreated (blue). The black line indicates the background signal corresponding to the cells untreated with the
primary antibody. C; RT-PCR determination of the mRNA Ievels for NTCP (upper panel), ASBT (middle pane/), and GAPDH (lower panel) in cells treated with 20 um
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showed up to ~4
had little effect on tl cp induces its down-
promoter (Fig. 44, rig panel), suggesting that Ro41-5253 spe-: ‘stream small heterodimer partner (Shp), ‘another nuclear
cifically repressed hNTCP promoter activity. As reported pre-  receptor, and Shp recruits to the rNtcp promoter to repress the
viously (38), Ro41-5253 specifically inhibited RAR-mediated promoter activity (39). Then we examined whether RAR
transcription (Fig. 4, B and C). RARa, RARB, and RARy are affected the expression of human SHP. As shown in Fig. 54,
members of the nuclear hormone receptor superfamily, which  although an FXR agonist GW4064 remarkably induced SHP
are ligand-activated transcription factors that regulate the tran-  expression as reported (39), RAR did not have a remarkable
scription of specific downstream genes by binding to the RAR-  effect on the SHP level in HepaRG cells (Fig. 54). To assess the
responsive element (RARE) predominantly in the form of ahet-  direct involvement of RAR in hNTCP regulation, the ChIP
erodimer with RXR. We therefore asked whether RAR could assay showed that RAR was associated with the hNTCP pro-
regulate the hNTCP promoter. As shown in Fig. 4D, hANTCP moter both in the presence and absence of ATRA (Fig. 5B),
promoter activity was stimulated by overexpression of either consistent with the characteristic that RAR/RXR binds to
RARe, RARB, or RARY together with RXRe, and transcription RARE regardless of ligand stimulation (40). The Genomatix
augmented by RAR could be repressed by Ro41-5253 (Fig. 4D). software predicts that the hNTCP promoter possesses five
Knockdown of endogenous RARa, RXRa, or both dramatically  putative RAREs in nt —1143 to +108 (Fig. 5C). Introduction of
impaired the activity of the hNTCP promoter (Fig. 4E). These mutations in all of these five elements lost the promoter activa-
results suggest that RAR/RXR is involved in the transcriptional  tion by RAR/RXR overexpression (Fig. 5C, 5-Mut). Although
regulation of the hNTCP gene. Consistently, an RAR agonist, the promoters mutated in the motif nt —491 to —479, —368 to
ATRA, induced NTCP mRNA expression (Fig. 4F). —-356, —274 to —258, or —179 to —167 were activated by

Importantly, endogenous expression of RARa was more ectopic expression of RAR/RXR and this activation was can-
abundant in differentiated HepaRG cells, which are susceptible ~celled by Ro41-5253 treatment, the hNTCP promoter with
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FIGURE 4. RAR could regulate hNTCP promoter activity. A, left panel, HuS-E/2 cells were transfected for 6 h with an hNTCP reporter construct with —1143/+108 of
the hNTCP promoter region cloned upstream of the Gluc gene (upper panel, phNTCP-Gluc), together with an internal control plasmid expressing SEAP (pSEAP). Cells
were treated or untreated with various concentrations of Ro41-5253 (5-40 um) for 48 h. The Gluc and SEAP activities were determined, and the Gluc values normalized
by SEAP are shown. Right panel, HuS-E/2 cells transfected with a reporter construct carrying the herpes simplex virus thymidine kinase promoter (pTK-Rluc) were
examined for luciferase activity in the presence or absence of Ro41-5253 (1040 um). B, HuS-E/2 cells transfected with a Fluc-encoding reporter plasmid carrying three
tandem repeats of RARE (upper panel, pRARE-Fluc), and Rluc-encoding reporter plasmid driven from herpes simplex virus thymidine kinase promoter (pTK-Rluc) were
treated with or without 20 um Ro41-5253 in the presence or absence of an RAR agonist, ATRA, 1 um for 24 h. Relative values for Fluc normalized by Rluc are shown.
HuS-E/2 cells transfected with pRARE-Fluc and pTK-Rluc with or without expression plasmids for RARs (RARq, RARB, or RARy) and RXRa were treated with (black) or
without (white) Ro41-5253 for 48 h. Relative values for Fluc/Rluc are shown. D, HuS-E/2 cells were cotransfected with phNTCP-Gluc and pSEAP with or without the
expression plasmids for RARs (RARa, RARB, or RARY) and RXRaq, followed by 24 h of treatment or no treatment with 20 um Ro41-5253. Relative Gluc/SEAP values are
shown. E, phNTCP-Gluc and pSEAP were transfected into HuS-E/2 cells together with siRNAs against RARa (si-RARa), RXRa (si-RXRa), si-RARa plus si-RXRe, or random-
ized siRNA (si-control) for 48 h. Relative Gluc/SEAP values are indicated. Endogenous RARa, RXRe, and actin proteins were detected by Western blot analysis (fower
panels). F, mRNA levels for NTCP and GAPDH were detected in differentiated HepaRG cells treated with or without ATRA (0.5 and 1 um) for 24 h. G, protein levels for
endogenous NTCP (upper panel), RARa (middle panel), and actin (lower panel, as an internal control) were determined by Western blot analysis of differentiated
HepaRG, undifferentiated HepaRG, and HepG2 cells. Statistical significance was determined using Student’s t test (*, p < 0.05).
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mutations in nt —112 to —96 had no significant response by
RAR/RXR (Fig. 5C). These data suggest that thent —112 to —96
region is responsible for RAR-mediated transcriptional activa-
tion of hANTCP.

HBV Susceptibility was Decreased in RAR-inactivated Cells—
We further investigated the impact of RAR antagonization on
HBYV infectivity. BMS195614, BMS493, and MM11253, which
repressed RAR-mediated transcription (Fig. 6A), all decreased
the susceptibility of HepaRG cells to HBV infection (Fig. 6B)
without significant cytotoxicity (Fig. 6C). These data confirmed
that HBV infection was restricted in RAR-inactivated cells.
Among these, CD2665, a synthetic retinoid that is known to
inhibit RAR-mediated transcription (Fig. 74), had more potent
anti-HBV activity than Ro41-5253 (Fig. 7B), which was accom-
panied by the inhibition of the hNTCR promoter (Fig. 7C) and
down-regulation of NTCP protein (Fig. 7D).

CD2665 Showed a Pan-genotypic Anti-HBV Effect—W e then
examined the effect of CD2665 on the infection of primary

8 JOURNAL OF BIOLOGICAL CHEMISTRY

human hepatocytes with different HBV genotypes. CD2665 sig-
nificantly reduced the infection of HBV genotypes A, B, C, and
D, as revealed by quantification of HBs and HBe antigens in the
culture supernatant of infected cells (Fig. 8, A—D). Additionally,
this RAR inhibitor decreased the infection of the ETV- and
LMV-resistant HBV genotype C clone carrying mutations in
L180M, S202G, and M204V (Fig. 8, E and F). Thus, CD2665
showed pan-genotypic anti-HBV effects and was also effective
on an HBV isolate with resistance to nucleoside analogs.

We further investigated whether RAR inhibitors could pre-
vent HBV spread. It was recently reported that HBV infection
in freshly isolated primary human hepatocytes could spread
during long term culture through production of infectious viri-
ons and reinfection of surrounding cells (41). As shown in Fig.
8G, the percentage of HBV-positive cells increased up to 30
days postinfection without compound treatment (Fig. 8G, pan-
els a—d). However, such HBV spread was clearly interrupted by
treatment with Ro41-5263 and CD2665 as well as preS1 peptide
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DISCUSSION

In this study, we screened a chemical library using a
HepaRG-based HBV infection system and found that pretreat-
ment with Ro41-5253 decreased HBV infection by blocking
viral entry. HBV entry follows multiple steps starting with low
affinity viral attachment to the cell surface followed by specific
binding to entry receptor(s), including NTCP. NTCP is
reported to be essential for HBV entry (42). So far, we and other
groups have reported that NTCP-binding agents, including
cyclosporin A and its derivatives, as well as bile acids, including
ursodeoxycholic acid and taurocholic acid, inhibited HBV
entry by interrupting the interaction between NTCP and HBV
large surface protein (19, 35). Ro41-5253 was distinct from
these agents and was found to decrease host susceptibility to
HBV infection by modulating the expression levels of NTCP.
These results suggest that the regulatory circuit for NTCP
expression is one of the determinants for susceptibility to HBV
infection. We previously showed that the cell surface NTCP

SASBMB

k plays a crucial role in regulatmg the activity of the ANTCP pro-

-mediated trans 1pt10n This strongly suggests that RAR

moter (Fig. 9). We consistently found that RAR was abundantly
expressed in differentiated HepaRG cells susceptible to HBV
infection, in contrast to the low expression of RAR in undiffer-
entiated HepaRG and HepG2 cells, which were not susceptible
to HBV (Fig. 4E). RARE is also found in the HBV enhancer I
region (45). RAR s likely to have multiple roles in regulating the
HBYV life cycle.

So far, only transcriptional regulation of rat Ntcp has been
extensively analyzed (39, 46, 47). However, the transcription of
hNTCP was shown to be differently regulated mainly because of
sequence divergence in the promoter region (48), and tran-
scriptional regulation of hNTCP remains poorly understood.
Hepatocyte nuclear factor (HNF)1a and HNF4«, which posi-
tively regulated the rat Ntcp promoter, had little effect on
RNTCP promoter activity (48). HNF38 bound to the promoter
region and inhibited promoter activities of both hNTCP and rat
Ntcp. CCAAT /enhancer-binding protein also bound and regu-
lated the hNTCP promoter (44, 48). A previous study, which
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Freshly isolated primary human hepatocytes were pretreated with or without indicated compounds (1 um preS1 peptide, 10 um Ro41-5253, or 10 um CD2665)
and inoculated with HBV at day 0. After removing free viruses, primary human hepatocytes were cultured in the medium supplemented with the indicated
compounds for up to 30 days postinfection. At 12, 18,24, and 30 days postinfection, HBc protein in the cells (left panels, red) and HBs antigen secreted into the
cuiture supernatant (right graph) were detected by immunofluorescence and ELISA, respectively. Red and blue signals in the left panels show the detection of
HBc protein and nucleus, respectively. Statistical significance was determined using Student’s t test (¥, p < 0.05, and **, p < 0.01).

Ro41-5283
Co2gas
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FIGURE 9. Schematic representation of the mechanism for RAR involvement in the regulation of NTCP expression and HBV infection. Left panel,
RAR/RXR recruits to the promoter region of NTCP and regulates the transcription. The expression of NTCP in the plasma membrane supports HBV infection.

Right panel, RAR antagonists, including Ro41-5253 and CD2665, repress the transcription of NTCP via RAR antagonization, which decreases the expression level
of NTCP in the plasma membrane and abolishes the entry of HBV into host cells.
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was mainly based on reporter assays using a construct of the
region from —188 to +83 of the hNTCP promoter, concluded
that RAR did not affect hNTCP transcription (48). By using a
reporter carrying a longer promoter region, our study is the first
to implicate RARs in the regulation of hN7TCP gene expression
(Fig. 9). The turnover of NTCP protein was reported to be
rapid, with a half-life of much less than 24 h (49). Consequently,
reduction in the NTCP transcription by RAR inhibition could
rapidly decrease the NTCP protein level and affect HBV
susceptibility.

NTCP plays a major role in the hepatic influx of conjugated
bile salts from portal circulation. Because NTCP knock-out
mice are so far unavailable, it is not known whether loss of
NTCP function can cause any physiological defect in vivo.
However, no serious diseases are reported in individuals carry-
ing single nucleotide polymorphisms that significantly decrease
the transporter activity of NTCP (50, 51), suggesting that
NTCP function may be redundant with other proteins. Organic
anion transporting polypeptides are also known to be involved
in bile acid transport. Moreover, an inhibition assay using Myr-
cludex-B showed that the IC,, value for HBV infection was
~0.1 nM (52), although or NTCP trans orter functlon was

NTCP expression
anti-HBV agents.
assay using an N’ TCP romoter driven repo
by this study, will be useful for identifying more anti- HBV
drugs.
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Abstract

Background & Aims: Precisely what type of cells mainly contributes to portal
fibrosis, especially in chronic viral hepatitis, such as hepatic stellate cells
(HSCs) in the parenchyma or myofibroblasts in the portal area, still remains
unclear. It is necessary to clarify the characteristics of cells that contribute to
portal fibrosis in order to determine the mechanism of portal fibrogenesis
and to develop a therapeutic target for portal fibrosis. This study was under-
taken to examine whether LRAT+/CRBP-1+ HSCs contribute to portal fibro-
sis on viral hepatitis. Methods: Antibodies to lecithin:retinol acyltransferase
(LRAT), cellular retinol-binding protein-1 (CRBP-1) and widely ascertained
antibodies to HSCs (alpha-smooth muscle actin, neurotrophin-3) and endo-
thelial cells (CD31) were used for immunohistochemical studies to assess the
distribution of cells that contribute to the development of portal fibrosis with
the aid of fluorescence microscopy. A quantitative analysis of LRAT+/CRBP-
1+ HSCs was performed. Results: The number of LRAT+/CRBP-1+ HSCs
was increased in fibrotic liver in comparison with normal liver in the portal
area and fibrous septa. The number of double positive cells was less than
20% of all cells/field in maximum. Conclusion: This study provides evidence
that functional HSCs coexpressing both LRAT and CRBP-1 that continue to
maintain the ability to store vitamin A contribute in part to the development
of portal fibrogenesis in addition to parenchymal fibrogenesis in patients
with viral hepatitis.

that the cellular origin of fibrogenic myofibroblasts is

Hepatic stellate cells (HSCs), also referred to as Ito cells
or fat-storing cells, have been regarded as essential cells
for liver fibrogenesis. In a normal liver, HSCs store 80—
90% of the hepatic retinoid in characteristic lipid drop-
lets as fat-storing cells. When activated in the presence of
liver damage, HSCs release cytokines, primarily TGF-p,
and transform into myofibroblasts lacking fat droplets.
They then produce excessive extracellular matrix and
disrupt the liver cytoarchitecture, eventually leading to
cirrhosis and liver failure (1).

Hepatic myofibroblasts are transdifferentiated from
heterogeneous cell populations in response to a variety
of fibrogenic stimuli. Recently, there have been reports

Liver International (2014)
© 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

HSCs, portal fibroblasts (6), other mesenchymal cells (6,
7), bone marrow cells (2-5), epithelial-like cells such as
hepatocytes or cholangiocytes (8-11) and endothelial
cells (12). Although these reports are credible, it is
unclear whether this cellular transformation occurs in
actual human liver diseases. The current consensus is
that hepatic myofibroblasts, myofibroblasts generated in
parenchymal injury appear to originate from HSCs and
myofibroblasts generated in portal injury may originate
from portal fibroblasts (13). However, most of these
results were obtained using cultured cells or rodent
models. There are few reports that examined the origin
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Contribution of HSCs to portal fibrosis

of myofibroblasts in actual human liver diseases, espe-
cially in portal injury. Therefore, it is important to
determine which type of cells contributes to portal
fibrosis in human diseased livers.

One of the candidates that can serve as a marker of
quiescent HSCs, which store retinoids in the space of
Disse, is lecithin:retinol acyltransferase (LRAT). LRAT
activity is strongly expressed in the liver, retinal pigment
epithelial (RPE) cells, intestinal mucosa, basal keratino-
cytes, testis, lungs, efc. LRAT has been defined to play
the following roles: storing systemic retinoid in the liver,
incorporating retinol into the retina and adjusting its
concentration in the retinal pigment epithelium to
maintain visual function, adjusting the regional concen-
tration of retinoid to differentiate the epithelium in the
skin and lungs and regulating the concentration of
retinoid to maintain a level optimal for maturation of
spermatozoa in the testis (14-20).

Lecithin retinol acyltransferase is also the physiologi-
cal retinol esterification enzyme which stores retinoid in
the liver, Retinyl esters are biosynthesized by removing
the fatty acid at position sn-1 of lecithin, using cellular
retinol-binding protein-1 (CRBP-1)-bound retinol as a
substrate. The expression of LRAT in the liver is regu-
lated by the vitamin A status. Whereas hepatic LRAT
activity is low in the livers of vitamin A deficient rats,
the decreased LRAT activity is rapidly elevated by
repletion with retinol, retinoic acid or RAR-agonists
(21-23). Furthermore, LRAT activity is higher in the
non-parenchymal cell fraction than in the hepatocyte
fraction, and it is estimated that in the liver, the LRAT
activity is specifically distributed in HSCs (15). We
previously generated antimouse and antihuman LRAT
antibodies using peptides of the amino acid sequence of
mouse hepatic LRAT and human RPE LRAT, respec-
tively, and reported that these proteins were expressed
in quiescent HSCs and endothelial cells of rodent and
human normal livers (24).

Cellular retinol-binding protein-1, one of retinol-
binding proteins, is present in a variety of tissues, and is
most highly expressed in the liver, kidneys and proximal
epididymis (25, 26). CRBP-1 is highly expressed in the
liver: hepatocytes account for more than 90% of hepatic
CRBP-1, while the concentration of the protein (per
protein unit) in HSCs is 22 times greater than in
hepatocytes (27). In the liver, CRBP-1 mediates retinol
esterification to retinyl esters (28). CRBP1-bound reti-
nol is also the substrate of LRAT (29) and the interac-
tion between LRAT and CRBP-1 is required for this
enzymatic reaction (30). In an immunohistochemical
study, it was shown that quiescent rat HSCs express
CRBP-1 (31-33) and quiescent HSCs and myofibro-
blasts in human normal and diseased livers also express
CRBP-1, in addition to hepatocytes and cholangiocytes
express CRBP-1 (34, 35).

As described above, both LRAT and CRBP-1 are key
molecules involved in the retinoid metabolism in the
liver, and in this work we regarded cells coexpressing
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LRAT and CRBP-1 as functional HSCs that have the
ability to store vitamin A.

In this study, the in situ distribution of functional
HSC:s that expressed both LRAT and CRBP-1 was exam-
ined in human normal and pathological livers, particu-
larly livers of patients with hepatitis C and B, in order to
clarify the contribution of HSCs to portal fibrosis.

Materials and methods
Human liver specimens

Human liver samples were obtained from 24 patients.
They corresponded either to percutaneous liver biopsies
(n = 20) or large surgical specimens (n = 4). Four cor-
responded to histologically normal livers and 20 to
pathological specimens (Table. 1) with various fibrotic
stages. Non-tumourous areas in specimens resected for
liver metastasis of colon cancer and in specimens of hae-
mangioma of the liver were studied as histologically
‘normal’ livers. The stage of fibrosis and the grade of
inflammatory activity were classified according to the
METAVIR score (36). This work was performed with
the permission of the Ethics Committee for Biomedical
Research of the Jikei University School of Medicine.

Table 1. Pathological specimens

Age Sex Fibrosis*  Activityt  Aetiology
1 43 F FO A0 Metastatic liver tumor
2 60 F FO A0 Metastatic liver tumor
3 35 F FO A0 Liver hemangioma
4 83 F FO AO Metastatic liver tumor
5 55 M F1 Al HCV
6 63 F F1 A2 HCV
7 52 F F1 Al HCV
8 25 M F1 Al HBV
9 51 F F1 A2 HBV
10 58 F F2 A3 HCV
11 51 F F2 A2 HCV
12 62 M F2 A2 HBV
13 40 M F2 A2 HBV
14 63 M F2 Al HCV
15 55 M F3 Al HCV
16 36 M F3 A3 HBV
17 40 M F3 A2 HBV
18 28 M F3 A2 HBV
19 64 F F3 A2 HCV
20 39 M F4 A2 HCV
21 47 M F4 A3 HCV
22 72 M F4 A2 HCV
23 57 M F4 Al HBV
24 70 M F4 A2 HCV

HBV, hepatitis B virus; HCV, hepatitis C virus.

*FQ, no fibrosis; F1, portal fibrosis without septa; F2, portal fibrosis with
rare septa; F3, numerous septa without cirrhosis; F4, cirrhosis.

+A0, no activity; A1, mild activity; A2, moderate activity; A3, severe
activity. No. 1-4: non-tumourous area in the livers with metastasis or
haemangioma.
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Tissue sampling and processing

A portion of the fresh tissue samples was routinely
utilized to prepare 10% buffered neutral formalin-
fixed and paraffin-embedded sections for liver pathol-
ogy diagnosis; these samples were also used for this
study. Three micrometer-thick paraffin sections of
each sample were stained with haematoxylin-eosin,
Masson’s trichrome and silver impregnation for the
diagnostic purposes.

Antibodies, immunostaining and observation

An antibody specific for human RPE LRAT (Immuno-
Biological Laboratories, Gunma, Japan), a rabbit poly-
clonal antibody against human cellular retinol-binding
protein-1 (CRBP-1) (FL-135) (sc-30106; Santa Cruz
Biotechnology, Inc., California, CA, USA), a mouse
monoclonal antibody against human smooth muscle
actin (SMA) (IgG2a) (Clone 1A4; Dako A/S, Denmark),
a rabbit polyclonal antibody against neurotrophin-3
(NT-3) (N-20) (sc-547; Santa Cruz Biotechnology,
Inc., California, CA, USA) and a mouse monoclonal

Contribution of HSCs to portal fibrosis

antibody against CD31 (IgGl, kappa) (Clone JC70A;
Dako A/S, Denmark) were used for the immunohisto-
chemical studies.

The formalin-fixed specimens were embedded in par-
affin, and 3 pum-thick sections were cut for immunohis-
tochemical examination. After deparaffinization, the
sections of human liver were microwave-treated in
10 mM citrate buffer (pH 6.0) for 10 min at 95°C to
activate the antigens, then samples were allowed to cool
at room temperature for 15 min. The sections were then
rinsed with PBS, and endogeneous peroxidase was
inhibited by 0.3% hydrogen peroxide in methanol for
30 min at room temperature. After blocking the samples
with 5% goat whole serum (Immuno-Biological Labora-
tories)/PBS, the sections were incubated with antibodies
diluted in PBS against human LRAT (1:20), human
CRBP-1 (1:50), human SMA (1:500) and human NT-3
(1:50) for 60 min at room temperature. The sections
were then rinsed in PBS, and the epitopes were detected
with the Envision + system by horseradish peroxidase
detection of antirabbit or antimouse (Dako, Carpinteria,
CA, USA) for 60 min at room temperature. The immu-
noreaction was visualized by using 0.5% 3, 3'-diam-

porfal 'Bfahch :

Fig. 1. (A, B): Masson-Trichrome staining of the normal and cirrhotic human liver sections. A total of 3 random fields each in the paren-
chyma, portal area and fibrous septa (only F3, F4) were used for the quantitative analysis of each case. *portal area, **parenchyma,
***fihrous septa (C) Double immunofluorescence staining for LRAT (green labelling) and CRBP-1 (red labelling) of human liver sections. Each
area was automatically measured using a VH analyzer, using the Keyence software program for quantitative analysis, according to the
formula: all field - (parenchyma area + portal branch area) = portal area.

Liver international (2014)
© 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

245

- 144 -



