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FIGURE LEGENDS
Figure 1. Patient inclusion criteria. “De novo HCC” is a typical HCC that developed at
sites in which no nodules had been seen on the initial gadoxetic

acid-enhanced MRI.

- Figure 2. Cumulative incidence rates of typical HCC development in the non-clean and

clean liver groups.

Figure 3. Cumulative incidence rates of typical HCC at sites in which no nodules had

been seen on the initial gadoxetic acid-enhanced MRI, i.e. ’de novo HCC”.

Figure 4. Stratified analyses of the non-clean liver as a risk factor for typical HCC

development.

] B
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Table 1. Baseline patient characteristics.

24

Total Non-clean liver ~ Clean liver

' Characteristics n=127 n=18 n=109 p value
 Agein years 65 (30-88) 68 (46-82) 64 (30-88) 0.15
2 Iﬁale/female 68/59 10/8 58/51 1.00
Non-cirrhosis/cirrhosis 59/68 6/12 53/56 031
BV/HCV 26/101 5/13 21/88 0.53
:”’:&::"’T‘Piatelet count (x10°L) 122 (30-410) 102 (46-187) 125 (30-410)  0.07
ALT (IU/L) 32 (7-206) 32 (14-95) 32 (7-206) 0.97
31 (9-305) 31 (13258)  31(9-305) 0.68
4 (1-582) 8 (2-181) 4 (1-582) 0.19

Note: Continuous data are shown as medians (range).
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1 Table 2. Variables that predict HCC development: univariate and multivariate analyses.
| Univariate Multivariate
Varlables Hazard ratio (95% CI)  p value Hazard ratio (95% CI) p value
N Ale 0.56 (0.29-1.95) 0.755
- Age erveny 106 (100-1.12) 0.039 1.08 (1.01-1.16) 0.024
s c ,,i;rhOSiS 14.37 (1.90-108.44)  0.009 3.54(0.37-33.77) 0231
HCV (vs. HBV)  439(0.58-33.17)  0.151
“ l"’l"é’t{teletlgount 1.19 (1.06-1.33) 0.003 1.17 (1.03-1.35) 0.017
(per 10°°/L)
= ALT (per TU/L) 1.00 (0.99-1.02) 0.423
YGTP (perIUL)  1.00 (0.99-1.01) 0.688
AFP> 10ng/mL  3.98 (1.47-10.77) 0.006 1.47 (0.49-4.33) 0.486
Non—clean liver 12.36 (4.68-32.61) <0.001 9.41 (3.47-25.46) <0.001
3
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Fig.3 100
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Abstract

Exomethylene acycloguanine nucleosides 4, 6 and its monophosphate derivatives 5, 7
and 8 have been synthesized. Mitsunobu-type coupling of
2-N-acetyl-6-O-diphenylcarbamoylguanine (11) with the primary alcohols proceeded
regioselectively to furnish the desired N’-substituted products in moderate yield.
Evaluation of 4-8 for anti-HBV activity in HepG2 cells revealed that the phosphonate
derivative 8 was found to exhibit moderated activity (ECso value of 0.29 uM) but

cytotoxicity (CCsp value of 39 uM) against the host cells was also observed.
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Introduction

Hepatitis B is one of the most prevalent viral diseases in the world and is known to be
a major cause of chronic disease, leading to cirrhosis/hepatocellular carcinoma."
Among the most frequently used drugs for treatment of the disease,z) are the nucleoside

325 and the nucleotide analogue adefovir )Y (Figure 1).

analogue entecavir (1)
Entecavir 1 is especially considered as one of the best choices for chronic patients due
to its lack of significant adverse effects.” Entecavir is structurally a carbocyclic
analogue of 2’-deoxyguanosine. The exomethylene functionality at the 5’-position of 1
would appear to be an important pharmacophore for the significant antiviral activity
because the potency of carbocyclic dG that truncates the double bond is ten times less
than that of 1.*¥ In the meantime, adefovir 2 is the phosphonate analogue of the
monophosphate of acycloadenine nucleoside. The feature of this class of nucleotide
analogues is that the requisite first phosphorylation, which is a crucial step for the
activation of biologically-active nucleoside derivatives, has been by-passed.

Further studies on the structure-activity relationship of these classes of nucleosides
should increase our knowledge of the structural requirements for developing novel

antiviral agents for HBV, and will aid in the search for better anti-HBV agents. In this

context, we have envisioned combining the above two structural features in one
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molecule and designed the exomethylene acyclic guanine nucleosides and its
monophosphate derivatives as shown in Figure 2. The initial target molecules are
exomethylene propyl- (4, MEP-G) and butyl- (6, MEB-G) guanine nucleosides. The
number of constituted atoms (1" to 4’-position) in the acyclic side chain of MEB-G 6
correspond to the structure consisting of C1’, C5’, C4’ and C7’ in entecavir 1 whereas
MEP-G truncates one-carbon atom in the acyclic moiety. L-Ala-P-MEP-G 5 and
L-Ala-P-MEB-G 7 are the respective phosphoalaninate pro-drugs of the monophophates
of 4 and 6. Moreover, the phosphonate analogue Piv-P-MEP-G 8 of 5 was also designed.
The phosphonate 8 has a one-carbon elongated side chain (C1” to C5") compared with
that of adefovir 2. Herein, we describe the results of the synthesis of 4-8 and evaluation

of their anti-HBV activity.

0 NH,
N N J
NH N
6, ¢ ILL AL
7' P P
HO N N*NHZ Ho_ OH NT N
Ll /P O\J|
4 "/ 1 g \‘1(3, 5 1
HO'®
entecavir (1) adefovir (2)

Figure 1. Structure of entecavir (1) and adefovir (2).
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Figure 2. Structure of A-MEP (3) and the target molecules (4-8).

Results and Discussion

Chemistry

Initially, synthesis of G-MEP (4) was carried out (Scheme 1). Synthesis of the
adenine counterpart 3 (A-MEP) of the target molecule 4 has been reported.” Therefore,
according to the literature procedure, 2-methylenepropane-1,3-diol (9) was utilized as a
starting material. Compound 9 was converted into
2-O-(tert-butyldimethylsilyloxymethyl)prop-2-en-1-ol (10). The literature procedure for
the coupling of adenine with the acyclic moiety involved the mesylation of 10 followed

by nucleophilic substitution of the respective mesylate with the nucleobase under the
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basic reaction conditions. To reduce the synthetic steps to the target G-MEP 4,
Mitsunobu-type reaction of 10 with 2-N-acetyl-6-O-diphenylcarbamoylguanine (11)7)
was examined. Thus, when 10 was reacted with 11 in the presence of DIAD/Phs;P in
THF at 70 °C, the desired protected acyclopurine nucleoside 12 could be obtained in
53% yield. Removal of the protecting groups in the base moiety was carried out by
treatment of 12 with ammonium hydroxide in methanol to give guanine derivative 13 in
88% isolated yield. In the HMBC spectra of 13, the correlation between CH,-1" / C-4
and CH,-1" / C-8 was observed, by which 13 was assigned as N’-isomer. Compound 13
was converted to MEP-G 4 in 33% yield by treating with BusNF. Finally, 4 was
transformed into the phosphoalaninate pro-drug 5 (16%) by reaction with methyl

chlorophenylphosphoryl P— N-L-alaninate and N-mehtylimidazole in pyridine.?
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Scheme 1. Synthesis of G-MEP (4) and its monophosphate pro-drug L-ala-P-MEP-G (5)

Next, synthesis of G-MEB (6) was performed (Scheme 2). Initially,
4-(tert-butyldiphenylsilyloxy)-2-methylenebutan-1-ol (16) was prepared from 14 in 3
steps; 1) silylation of 13, 2) epoxidation of the resulting silylated alkene, 3)
B-elimination  of the  obtained epoxide 15  with  diethylaluminium
2,2.,6,6-tetramethylpiperidide.” When 16 was reacted with 11 under the above
mentioned reaction conditions, the desired N’-substituted 17 was obtained in 69%
isolated yield as a single regio-isomer. Compound 17 was converted into 18 in 81%

yield by ammonolysis in methanol and its HMBC spectra revealed the correlation
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between CH,-1" / C-4 and CH,-1" / C-8. Desilylation of 18 gave G-MEB (6) in 60%

yield. As described above for 4, MEB-G 6 was transformed into phosphoralaninate

11
— TBDPSO/\)I\/OH P ———

pro-drug 7 in 57% yield.

/\/U\ 1) TBDPSCI /\;&
HO 2) mCPBA TBDPSO
14 15
0
OJ\Nth
N
¢ " NHy/MeOH
/\/Lk/N N/)\NHAC
TBDPSO
17
(69%)
o 0
<N NH Me0,C” N1 Cl
4 [ <
Ph
N /)\
HO/\/U\/ N™ “NH,

N-mehtylimidazole
© go/ ) pyridine

Scheme 2. Synthesis of G-MEB (6) and L-ala-P-MEB-G (7).
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“Ph

7
(57%)

Finally, synthesis of the phosphonate analogue 8 of L-ala-P-MEB-G 7 was

accomplished as illustrated in Scheme 3. Phosphonate alcohol 19 was prepared from 9

according to the published procedure.” Reaction of the alcohol 19 with 11 under the

identical conditions for the synthesis of 17 gave the desired 20 in 62% isolated yield.

Treatment of 20 with aqueous ammonia in methanol provided acycloguanine

phosphonate derivative 21 in 54% yield and at this stage, the regiochemistry was
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