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Control of RelB during dendritic cell activation
integrates canonical and noncanonical NF-kxB pathways

Vincent F-S Shih!, Jeremy Davis-Turak!, Monica Macal?, Jenny Q Huang!, Julia Ponomarenko?,
Jeffrey D Kearns!>, Tony Yu!, Riku Fagerlund!, Masataka Asagiril»4, Elina I Zuniga? & Alexander Hoffmann!

The NF-kB protein RelB controls dendritic cell (DC) maturation and may be targeted therapeutically to manipulate T cell responses
in disease. Here we report that RelB promoted DC activation not as the expected RelB-p52 effector of the noncanonical NF-kB
pathway, but as a RelB-p50 dimer regulated by canonical 1kBs, IkBa and IkBe. IkB control of RelB minimized spontaneous
maturation but enabled rapid pathogen-responsive maturation. Computational modeling of the NF-kB signaling module identified
control points of this unexpected cell type—specific regulation. Fibroblasts that we engineered accordingly showed DC-like RelB
control. Canonical pathway control of RelB regulated pathogen-responsive gene expression programs. This work illustrates the
potential utility of systems analyses in guiding the development of combination therapeutics for modulating DC-dependent

T cell responses.

DCs are specialized sentinel immune cells essential in both innate and
adaptive immunity. DC progenitors differentiate to become imma-
ture DCs that populate both nonlymphoid and lymphoid tissues and
perform immune-surveillance functions. When encountering patho-
gens or pathogen-associated molecular patterns (PAMPs), immature
DCs undergo a maturation program that determines their role in the
adaptive immune responsel. A hallmark of DC maturation is expres-
sion of major histocompatibility complex molecules (MHC), T cell
co-stimulatory molecules (CD40, CD80 or CD86) and cytokines
(for example, interleukin 23; IL-23) in addition to a gene expression
program of intracellular factors that enable effective antigen uptake,
processing and presentation, and T cell activation. In addition, pro-
duction of inflammatory molecules such as nitric oxide and cytokines
such as tumor necrosis factor (TNF) and interferon underlies DC
functions in innate immune responses®3. DCs have thus attracted
attention for engineering or modulating immune-based therapies?.
The transcription factor NF-xB protein RelB is highly expressed
in antigen-presenting cells® and is critical for DC maturation, DC
function as antigen-presenting cells® and DC-mediated immunity.
Specifically, small interfering RNA-mediated silencing of RelB expres-
sion radically alters the DC maturation process and results in blunted
antigen-specific T cell responses in vitro and in vivo’. RelB-deficient
mice have deficiencies in splenic DC subsets®? but other critical roles
of RelB in DCs may be masked by other cell types in which RelB-
deficiency leads to functionally opposite phenotype: notably, T cells
are hyperactive in these null mice, whereas DC-specific deletion of
the RelB-controlling kinase NIK results in deficient T cell responses!?.
Indeed, the extent of RelB activation determines the tolerance or

rejection of allogenic organ transplants by determining the balance
of associated activated or regulatory T cells’. These insights have
prompted investigations of cell-based therapies for autoimmune
diseases using RelB-silenced DCs!1.

Despite the potential clinical importance of RelB, the molecular
mechanisms that control its activity in DCs have remained unclear.
Mouse embryonic fibroblasts (MEFs) have served as a useful model
system for many signaling studies. Detailed biochemical studies in
MEFs have shown that unlike classical NF-xB (the RelA-p50 dimer),
RelB is not activated from a latent cytoplasmic pool via the NEMO-
dependent, ‘canonical’ signaling pathway but via the ‘noncanonical’
NE-xB pathway that involves proteolysis and processing of newly
synthesized NF-xB2 p100'2-14, Consistent with the critical role of
RelB in DCs, noncanonical signaling pathway components such as
the signaling protein NIK and Nfkb2 gene have been reported to be
required for proper DC functions!®!>. However, RelB has also been
found to be rapidly activated in DCs by canonical pathway stimuli
TNF and lipopolysaccharide (LPS)16-1°, and the canonical signaling
pathway component TRAF6 has been shown to be essential®. These
reports suggest that the mechanism by which RelB activity is control-
led in DCs may be different than what has been described in MEFs. In
DCs, the molecular control mechanisms must provide for constitutive
RelB expression to enable rapid and decisive induction of matura-
tion programs after exposure to pathogens or PAMPs but must limit
spontaneous maturation of DCs in their absence.

In this study, we elucidated the molecular mechanisms responsi-
ble for regulating RelB in DCs. We used a systems biology approach
of iterative computational modeling and quantitative experimental
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which proteins are synthesized and into which they are degraded).
O-MEF (Supplementary Note) of nuclear RelA or RelB activity (nRelA and

nRelB, respectively) induced by LPS or LT stimulation. (c) Quantification of Rela, Relb and Nfkb2 transcripts by quantitative RT-PCR (left) and of RelA,
RelB, p100 and p52 proteins by immunoblot (right); numbers per cell in resting MEFs, BMDMs and BMDCs, graphed relative to the respective value in
MEFs. (d) IKK1 and p52 abundance increase during DC differentiation. Whole-cell extracts prepared from BMDC culture during a differentiation time

course (days 1-10) were subjected to IKK1, p100 and p52 immunoblotting.

B-actin served as a loading control. (e) /n silico simulation of RelB cellular

distribution using the mathematical model version 5.0-MEF describing NF-xB activation in MEFs as in b or in model version 5.0-DC incorporating
DC-specific parameters derived from c,d (Supplementary Note). (f) Quantification of RelB molecules per wild-type (WT) BMDC distributed in cytoplasmic
and nuclear fraction. Quantification methods are described in Supplementary Figure 1. (g) RelB, RelA and p100 immunoblots of cytoplasmic extracts
prepared from the indicated cell types. Data are representative of at least three independent experiments (error bars, s.d.; n=3).

analyses of the NF-xB signaling network in DCs to reveal that RelB
activity was limited by classical IxBs, IkBorand IxBe, and regulated via
the canonical pathway. Modeling studies identified two DC-specific
control points that render RelB subject to regulation by the canonical
pathway, and we demonstrated their sufficiency by engineering MEFs
accordingly to produce DC-like RelB control. Finally, gene expression
profiling revealed that RelB-dependent gene expression programs
regulated by the canonical pathway activity control DC-orchestrated
immune responses.

RESULTS

Developing a DC-specific model for NFkB signaling

The established view of NF-xB signaling comprises two separate
pathways (Fig. 1a)!2. The canonical pathway, involving the NEMO-
dependent kinase IKK, triggers degradation of NF-xB inhibitors, the
classical TxBs: IxBo., IkBf and IxBe. Resulting activation of latent
RelA-containing and c-Rel-containing NF-xB dimers controls inflam-
matory and proliferative gene expression programs. The noncanonical
pathway, involving the kinases NIK and IKK1, triggers processing of
p100 to p52 and generation of the RelB-p52 transcription factor, which
is implicated in cell survival and maturation. To examine NF-xB RelB
signaling in DCs in a quantitative manner, we developed a math-
ematical model that describes the formation and regulation of RelA
and RelB dimers in terms of mass-action kinetics (Supplementary
Note). The first version of the model involves 41 molecular species,
132 reactions and 53 unique kinetic parameters based on published
and newly made measurements that constrain the model to a single
parameter set ensemble; it recapitulates well-documented NF-xB con-
trol in MEFs?0-22, such as prompt LPS-induced RelA activation and
delayed lymphotoxin B-mediated RelB activation (Fig. 1b).

NATURE IMMUNOLOGY VOLUME 13 NUMBER 12 DECEMBER 2012

To adapt the model to DCs, we first measured the expression
of key NF-xB proteins in bone marrow-derived DCs (BMDCs)
in comparison to that in MEFs and bone marrow-derived macro-
phages (BMDMs). Relative to the expression of the housekeeping
gene B-actin (Actb), expression of Rela mRNA was similar in BMDCs,
BMDMs and MEFs, and the relative amount of RelA protein in these
cell types correlated (Fig. 1c). In contrast, we observed threefold to
sixfold more Relb mRNA and protein expression in BMDCs than
MEFs and BMDMs (Fig. 1c and Supplementary Fig. 1a). p100,
encoded by the Nfkb2 gene, is known to inhibit RelB. We there-
fore tested whether p100 expression correlated with enhanced RelB
expression in BMDCs. We observed 3.5-fold more Nfkb2 mRNA in
BMDCs, but quantitative immunoblotting showed little difference in
the p100 protein abundance among the cell types analyzed (Fig. 1c
and Supplementary Fig. 1b). Lack of correlation between the rela-
tive p100 protein and RNA abundance suggested that p100 degrada-
tion may be elevated in BMDCs. We noted a 2.5-fold increase in the
amount of p52 in BMDCs, which suggests that both complete p100
degradation and p100 processing to p52 may occur in BMDCs (Fig. 1¢
and Supplementary Fig. 1b). Consistent with this hypothesis, protein
expression of IKK1, the kinase determining the activity of noncanoni-
cal NF-xB pathway, gradually increased during DC differentiation
with concomitant p100 processing to p52 (Fig. 1d), potentially via
the control of microRNAs?3. Our data indicate that DC differentia-
tion involves not only increased expression of RelB but also elevated
constitutive activity of the noncanonical NF-xB signaling pathway.

Based on the measurements, we made specific modifications
to the computational model to recapitulate RelB control in DCs
(Supplementary Note). First, we increased Relb and Nfkb2 expres-
sion threefold, which increased the abundance of RelB but not its
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nuclear localization. Then we destabilized p100 by the IKKI-
dependent pathway to achieve comparable p100 expression as in
MEFs (Fig. 1¢). This change resulted in a substantial increase of
nuclear RelB activity (Fig. 1e). To test experimentally whether RelB
in DCs primarily localizes into the nucleus, we separated BMDCs into
cytoplasmic and nuclear extracts but found that more than 75% of
the total RelB protein was cytoplasmic (Fig. 1f and Supplementary
Fig. 1¢,d). Indeed, whereas RelB was more abundant in the cytoplasm
of BMDCs than of MEFs or BMDMs, p100 was not (Fig. 1g). The fact
that the mathematical model, which encodes the known mechanisms
of RelB control, did not reproduce our experimental observations sug-
gested that there may be as-yet undescribed regulatory mechanisms
that sequester RelB in the cytoplasm.

IkBa restrains RelB-p50 and spontaneous DC maturation

To search for inhibitors of RelB in DCs, we immunoprecipitated
RelB from BMDC whole-cell lysates and analyzed the associated
proteins (Fig. 2a). As expected, p100, the known RelB inhibitor and
noncanonical regulator, was associated with RelB. Unexpectedly,
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IxBo and IkBe, the classical IxB inhibitors regulating the canonical
NE-xB pathway, were also immunoprecipitated with RelB, but IxBf§
and p105 were not. Substantial amounts of p50, known as the bind-
ing partner of RelA in the canonical pathway, were found in RelB
immunoprecipitates, and this complex was primarily cytoplasmic
(Supplementary Fig. 2a,b). Reciprocal immunoprecipitation of vari-
ous NF-xB inhibitors confirmed that RelB not only directly inter-
acted with p100 but also associated with IxBot and IxBe in BMDCs
(Fig. 2b and Supplementary Fig. 2¢), and RelA associated with IkBa,
as expected (Supplementary Fig. 2d). The observations that IxB
immunoprecipitates did not contain other IxB isoforms confirmed the
specificity of the antibodies used and that only one IxB isoform asso-
ciated with each RelB molecule. Analyses of the amounts of RelB cap-
tured and remaining in the flow-through after immunoprecipitation
with various IxB antibodies provides a quantitative understanding of
RelB protein distribution in BMDCs (Fig. 2¢). This analysis revealed
that 37-45% of RelB was associated with p100 and 12-17% with IxBe.
A substantial proportion of RelB (19-34%) associated with IxBao,
which prompted us to investigate the function of this interaction.

VOLUME 13 NUMBER 12 DECEMBER 2012 NATURE IMMUNOLOGY
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CpG-induced RelB activation in mathematical models, based on version 5.1-

dicating specificity of RelB antibody. (f) Computational simulations of
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NF-xB RelB DNA binding activities in BMDCs depleted for indicated proteins by knockout (KO), monitored by EMSA (left). Signals were quantified and
graphed relative to respective resting cells (right). Data shown in b,d,e,g are representative of at least three independent experiments. Data shown in ¢

are representative of two independent experiments (error bars, s.d.; n = 3).

To test whether IxBow may inhibit RelB activity in BMDCs, we
took advantage of IxkBoi-deficient mice?? and developed two strate-
gies to focus our experimental analysis on RelB activity. First, we
bred the mice onto a c-Rel-deficient background (Rel~/~); then we
modified the standard electrophoretic mobility shift assay (EMSA)
with kB site-containing probes (kB EMSA) to include shift-ablat-
ing antibodies for RelA, resulting in a specific RelB EMSA. Using
these tools, we found that RelB activity was more than twofold
elevated in IxBo-deficient BMDCs (Fig. 2d). Supershift analy-
sis with antibodies that were shown to be specific for p50 and p52
(Supplementary Fig. 2e) revealed that whereas control BMDCs
contained primarily constitutive RelB-p52 activity, ablation of IxBot
resulted in a substantial increase in active RelB-p50 dimer, render-
ing RelB-p50 the predominant NF-xB activity in IxkBoi-deficient
BMDCs (Fig. 2e). We examined the functional consequences of
RelB misregulation by monitoring the frequency of matured DCs
as indicated by surface expression of the activation markers CD86
and MHC II. IxBo deficiency resulted in an increased percentage
(42% versus 28%) of MHCIIMCD86M BMDCs in the absence of exter-
nal stimuli (Fig. 2f). Although RelB deficiency did not affect the
frequency of MHCIIMCD86M BMDCs before exposure to matura-
tion stimuli (Supplementary Fig. 2f), the inappropriate spontaneous
DC maturation phenotype of IxBo-deficient BMDCs was depend-
ent on RelB, as compound deletion of the Relb gene fully reversed
the phenotype (Fig. 2f). We then examined the antigen-presenting
functions of DCs by testing their ability to activate proliferation
and cytokine production of antigen-specific T cells in DC-T cell
cocultures (Fig. 2g-i). We found that IxkBo deficiency increased the
antigen-presenting functions in BMDC cocultures with ovalbumin
(OVA)-responsive T cells exposed to OVA peptide, and this effect was
largely but not entirely dependent on RelB (Fig. 2h), correlating with
the partial dependence on RelB of surface MHC expression (Fig. 2f).
However, when we exposed these cocultures to ovalbumin protein,
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which must be taken up and processed before being presented,
T cell activation showed a near absolute dependence on RelB (Fig. 2i),
correlating with previous studies of RelB-deficient DCs®, and sug-
gesting a specific function for RelB in regulating the antigen uptake
and processing program of antigen-presenting cells. Together, these
data demonstrate that the classical NF-xB inhibitor, IxBe, not only
restrains the expression of RelB by controlling RelA or c-Rel?*, but in
immature DCs it also has a critical functional role in restraining RelB
activity to prevent inappropriate spontaneous maturation.

TLRs activate RelB-p50 via the canonical NFkB pathway

To explore the regulatory consequences of RelB-p50 interactions
with IkBat and IkBe proteins during DC maturation, we incorpo-
rated them into the mathematical model as kinetic rate equations and
used the quantitative immunoprecipitation results as constraints in a
multidimensional parameter optimization protocol (Supplementary
Note). We simulated NF-xB regulation during Toll-like receptor
(TLR)-induced DC maturation using experimentally measured
time-course data of the NEMO-dependent IKK kinase activity as an
input. Such simulations indicated rapid and substantial activation
not only of RelA but also of RelB (Fig. 3a). To test this prediction
experimentally, we stimulated BMDCs and MEFs with the TLR9
ligand CpG, the TLR2 ligand Pam3;CSK, and the TLR4 ligand LPS
as well as an agonistic antibody to LT3R to induce the noncanoni-
cal NF-xB pathway. To specifically examine the activation profiles
of RelA-containing and RelB-containing NF-xB dimers, we used
the newly developed RelA EMSA?? and RelB EMSA using shift-
ablating antibodies for activation domain-containing Rel proteins
(Supplementary Fig. 3b). RelA activation was similar in BMDCs and
MEFs stimulated with TLR ligands (Fig. 3b). We observed rapid RelB
activation in response to TLR stimuli in BMDCs but not in MEFs,
although MEFs activated RelB at later time points when stimulated
with anti-LT{3R (Fig. 3b and Supplementary Fig. 3¢). Similarly, we
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