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isolated neutrophils was similar between Ido™* and Ido ™/~ mice

analyzed by a bactericidal-capacity assay (data not shown). These
results suggest that the increase in recruited peritoneal-cavity cir-
culating neutrophils and mononuclear cells may be involved in
containment of the infection to the local focus and that Ido has an
inhibitory effect on the recruitment of neutrophils and mononu-
clear cells, resulting in progression to sepsis.

CLP increased Ido mRNA expression in CD11b™ peritoneal
cells. We hypothesized that the Ido induced by CLP in peritoneal
cells inhibits its recruitment because inhibition of Ido increased
the recruitment of neutrophils and mononuclear cells to the peri-
toneal cavity after surgery. Indeed, expression of Ido mRNA was
significantly increased in peritoneal cells isolated from Ido™"
mice by CLP (Fig. 4A). Furthermore, Ido mRNA was expressed in
the CD11b™ and CD11c™ cells isolated from the peritoneal cells
after CLP (Fig. 4B). Specifically, most Ido™ peritoneal cells
showed double staining for CD11b (Fig. 4C), suggesting that L-
Kyn is mainly produced by CD11b™ cells among the other perito-
neal cells. The number of CD11b™ cells in the peritoneal cavity
was increased 6 h after CLP, and CD11b™ cells were induced to a
greater extent by CLP in Ido™’~ mice than in Ido™" mice (Fig.
4D). To examine how CLP increases Ido in peritoneal cells, the
cultured peritoneal cells from mice were treated with LPS. LPS
treatment increased Ido mRNA expression in the cultured perito-
neal cells isolated from Ido™" mice (Fig. 4E). These results sug-
gest that bacterial LPS induced by CLP increases Ido expression in
the peritoneal CD11b™ cells and that increase of Ido activation
may inhibit the recruitment of neutrophils and mononuclear cells
to the infection focus.

Ido deficiency in BM-derived cells with delayed mortality
from CLP. As described above, Ido in the peritoneal CD11b™ cells
may be involved in increasing mortality rates after CLP. To ex-
plore the involvement of Ido in the BM-derived cells, we gener-
ated Ido chimeric mice by using a combination of irradiation and
BMT. The Ido ™/~ BM-transplanted Ido™* mice (donor cells,
Ido~’~ BM cells; recipient animals, Ido*’* mice) or Ido ™/~ mice
(donor cells, Ido™/~ BM cells; recipient animals, Ido ™/~ mice)
showed higher survival rates following CLP than did the Ido™’*
BM-transplanted Ido™’* mice (donor cells, Ido™" BM cells; re-
cipient animals, Ido*'* mice) or Ido ™/~ mice (donor cells, Ido™*'*
BM cells; recipient animals, Ido ™/~ mice) (Fig. 5A). Serum L-Kyn
levels significantly increased 6 h after CLP in Ido™’* BM-trans-
planted Ido™* mice and Ido ™'~ mice, whereas CLP did not affect
L-Kyn levels in the Ido™/~ BM-transplanted Ido™* mice or
Ido ™~ mice (Fig. 5B). Thus, Ido in BM-derived cells, which in-
clude CD11b™ cells, is involved in the progression to sepsis
after CLP.

Ido is involved in chemokine production at the infection fo-
cus. To examine how Ido regulates recruitment of neutrophils and
mononuclear cells to the site of infection, we measured the levels
of chemotactic chemokines in Ido™/* and Ido ™/~ mice after CLP.
Expression levels of CXCL-2 and CXCL-1 mRNA in the peritoneal
cells from Ido ™/~ mice were significantly higher than those from
Ido™*’* mice 6 h after CLP (Fig. 6A), and the expression level of
IL-17 mRNA in peritoneal cells from Ido ™/~ mice tended to in-
crease compared to that from Ido™* mice. Similarly, serum
CXCL-2 levels after CLP in Ido ™/~ mice were also higher than
those in Ido ™" mice (Fig. 6B). Moreover, the increase of CXCL-2
in Ido ™/~ mice after CLP was prevented by pretreatment with
L-Kyn (Fig. 6B). In addition, LPS administration to the isolated
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FIG 4 Ido mRNA was increased in peritoneal cells by CLP. Ido™* and Ido ™/~
mice underwent CLP. The animals were humanly killed at the indicated times.
(A) mRNA expression levels of Ido in peritoneal cells isolated from sham- or
CLP-operated mice at 6 h after surgery were determined by quantitative real-
time RT-PCR. (B) Cell fractionation was performed with the indicated anti-
bodies and MACS magnetic beads from peritoneal cells isolated from sham- or
CLP-operated mice 6 h after surgery. (C and D) Peritoneal cells were isolated
from sham- or CLP-operated mice 6 h after surgery. Expression of CD11b
(green), Ido (red), and DAPI nuclei (blue) in peritoneal cells was examined by
immunofluorescent staining. The merged images are shown on the right. The
CDI11b* cells were counted. (E) Peritoneal cells isolated from Ido™* or
Ido™'~ mice were treated or not with LPS (0.1 wg/ml) for 6 h, and mRNA
expression levels of Ido were determined. The data are median IQR values
from at least 5 independent experiments, with error bars indicating the range.
* P < 0.01 compared with Ido™’~ mice; #, P < 0.05 compared with Ido™/*
CLP-operated mice; and T, P < 0.001 compared with sham-operated mice
using ANOVA.

cultured peritoneal cells increased CXCL-2 and CXCL-1 mRNA,
and the increase was greater in cultured Ido ™/~ peritoneal cells
than in Ido™™* cells (Fig. 6C), suggesting that Ido induction by
LPS has inhibitory effects against chemokine production by LPS
in peritoneal cells. In addition to increased chemokine production
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FIG 5 Ido of bone marrow-derived cells is involved in mortality after CLP.
Ido™" or Ido™’~ bone marrow cells (5 X 10°) were injected into lethally
irradiated Ido™ ™ or Ido ™ recipient mice. The chimeric mice were subjected
to CLP 4 weeks after BMT. (A) Survival curves of animals after CLP. Statisti-
cally significant differences between the groups were determined using a log-
rank test. The P values compared with Ido™/* donor mice are shown. (B) The
animals were humanely killed 6 h after surgery, and serum L-Kyn levels were
measured. The data are means and SD from at least 5 independent experi-
ments. *, P < 0.05 using ANOVA; ns, not significant.

by LPS in peritoneal cells, the number of CD11b ™ cells in perito-
neal cells was higher in Ido ™/~ mice, as described above (Fig. 4E).
These findings suggest that Ido inhibits chemokine production in
peritoneal cells due to synergistic effects of reduced productivity
and cell numbers in its source. Indeed, LPS-induced CXCL-2 and
CXCL-1 production and secretion into the medium were higher
in peritoneal cells isolated from Ido™’~ mice after CLP than in
those from Ido™’* mice (Fig. 6D). These results suggest that re-
duction of chemokine production in peritoneal CD11b* cells oc-
curs due to L-Kyn production by Ido induction after CLP and that
it may reduce the recruitment of neutrophils and mononuclear
cells to the peritoneal cavity.

DISCUSSION

The present study investigated the contribution of Ido to the pro-
gression of sepsis due to CLP-induced bacterial peritonitis. The
results indicate that Ido increases mortality rates through reduc-
tion of recruited neutrophils and mononuclear cells into the in-
fection focus.

It has been reported that Ido plays a pivotal role in immune
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tolerance and that Ido is expressed in various types of cells, includ-
ing astrocytes (17), epithelial and endothelial cells (18), tumor
cells (19, 20), DCs (16), and macrophages (21, 22, 38). In CLP-
induced bacterial peritonitis, Ido expression was increased in
CD11b™ peritoneal cells, but not in neutrophils or NK cells,
whereas its inhibition reduced mortality. LPS increased Ido ex-
pression in peritoneal cells in vitro, and Ido*™ BM-derived cells
were involved in increasing mortality rates. Thus, Ido expression
in CD11b™ peritoneal cells has important roles in immune regu-
lation in this model. Various functions of Ido for immune regu-
lation have been reported. Activation of Ido in DCs suppresses T
cell responses (39) and induces the generation of regulatory T cells
(Tregs) via Trp metabolites in experimental autoimmune enceph-
alomyelitis (40). Ido inhibits IL-17 production and promotes cy-
totoxic potential in mucosal NK cells during SIV infection (41).
IFN-vy-induced Ido is involved in the suppression of Th17 in CIA,
and the suppression of Th17 by IFN-y was abolished with 1-MT
(42). Furthermore, inhibition of Ido enhances T-cell response to
influenza virus infection (43) and increases IL-10 production in
BM-derived DCs (44).

In this study, we found that Ido decreased the number of
CD11b™ peritoneal cells and the productivity of CXCL-2 and
CXCL-1 in peritoneal cells. Chemokine production by LPS is reg-
ulated by NF-kB signaling (45, 46), and L-Kyn metabolites inhibit
NE-kB activation by specifically targeting phosphoinositide-de-
pendent protein kinase 1 (47). Thus, LPS stimulates both NF-kB
and Ido, and the produced L-Kyn inhibits NF-kB, resulting in the
reduction of CXCL-2 and CXCL-1 production. Indeed, pretreat-
ment with L-Kyn prevented the increase of CXCL-2 and CXCL-1
production in Ido ™/~ mice. Moreover, pretreatment with L-Kyn
reversed the mortality of Ido ™'~ mice. It is known that the down-
stream metabolites of Trp, including 1-Kyn, suppress immune
reactivity (28, 29). L-Kyn also functions as an endogenous ligand
for the aryl hydrocarbon receptor, which modulates the functions
of immune cells (48). In addition to the increased metabolites
from Trp, Ido activation induces breakdown of Trp, which sup-
presses immune cell proliferation by reducing the availability of
this essential amino acid under local tissue microenvironments
(49). Although Ido depletion could explain the increase of
CD11b™ cell recruitment in the peritoneal cavity via cell prolifer-
ation, the precise underlying mechanisms remain unclear, and
further studies are needed to clarify these mechanisms.

It has been reported that Ido potentially has a dual role. Patho-
gens may reduce their growth by Ido-mediated tryptophan deg-
radation (50). On the other hand, it may modulate immune cell
recruitment and function and thus be detrimental to the host (32).
Although Ido has both beneficial and disadvantageous effects in
various cells, disadvantageous effects of Ido have been reported in
immune cells (19-22, 51, 52). In this study, blockage of Ido in
CD11b™ peritoneal cells reduced mortality after CLP, as well as
increasing the rate of neutrophil and mononuclear cell recruit-
ment into the infection focus. Similarly, another study found that
1-MT administration improves the survival rates of mice with
sepsis induced by injection of cecal content (44). '

As local infection progresses to sepsis, Ido shows further dis-
advantageous effects, including impaired endothelial function,
decreased endothelial nitric oxide, and impaired immune func-
tions (53). Recent studies have described Ido activity in the plasma
as a prognostic factor in bacteremic patients and as a risk factor for
posttraumatic sepsis (54, 55). There are many other pathways that
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produce leukocyte trafficking into the local focus. For example,
granulocyte colony-stimulating factor (G-CSF) is known to cause
extreme leukocytosis. A case of G-CSF-producing lung cancer
with marked leukocytosis rapidly led to severe acute respiratory
distress syndrome after pneumonia developed (56). Thus, inhibi-
tion of Ido may improve immune response to bacterial infection
from the local infection focus to a systemic inflammatory response
and may be more useful than other immunomodulatory strate-
gies.

The experiment was restricted to a lethal model of CLP. It is
therefore uncertain that Ido function would be the same in a sub-
leathal model or with antibiotic therapy. Moreover, it is possible
that the mechanism by which Ido functions in an intravenous-
infection model is very different from the CLP model. Further
studies are needed to resolve these uncertainties. In conclusion,
we observed that Ido activation in peritoneal CD11b™ cells aggra-
vated peritonitis and sepsis. Thus, blockade of Ido plays a critical
role in host protection during bacterial peritonitis and sepsis.
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