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Abstract

Alcoholic liver disease (ALD) is a major cause of mor-
bidity and mortality worldwide. In developed countries,
ALD is a major cause of end-stage liver disease that
requires transplantation. The spectrum of ALD includes
simple steatosis, alcoholic hepatitis, fibrosis, cirrhosis,
and hepatocellular carcinoma. Alcohol abstinence is
the most effective therapy for ALD. However, targeted
therapies are urgently needed for patients with severe
ALD (/.e., alcoholic hepatitis) or those who do not ab-
stain from alcohol. The lack of studies and the availabil-
ity of animal models that do not reflect all the features
of this disease in humans inhibit the development of
new drugs for ALD. In ALD-associated fibrosis, hepatic
stellate cells are the principal cell type responsible for
extracellular matrix production. Although the mecha-
nisms underlying fibrosis in ALD are largely similar to
those observed in other chronic liver diseases, oxidative
stress, methionine metabolism abnormalities, hepato-
cyte apoptosis, and endotoxin lipopolysaccharides that
activate Kupffer cells may play unique roles in disease-
related fibrogenesis. Lipogenesis during the early stag-
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es of ALD has recently been implicated as a risk factor
for the progression of cirrhosis. Other topics include
osteopontin, interleukin-1 signaling, and genetic poly-
morphism. In this review, we discuss the basic patho-
genesis of ALD and focus on liver fibrogenesis.

®© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Stellate cell; Kupffer cell; Steatohepatitis;
Fibrosis; Cytokine; Oxidative stress

Core tip: Alcoholic liver disease (ALD) is a major cause
of preventable morbidity and mortality worldwide. In
ALD-associated fibrosis, hepatic stellate cells are the
principal cell type responsible for extracellular matrix
production. Although the mechanisms underlying ALD-
associated fibrosis are largely similar to those observed
in other chronic liver diseases, oxidative stress, ab-
normal methionine metabolism, hepatocyte apoptosis,
and endotoxin lipopolysaccharides that activate Kupffer
cells play unique roles in fibrogenesis in ALD. Recently,
lipogenesis during the early stages of ALD has been
implicated as a risk factor for progression of cirrhosis.
Other critical factors include osteopontin, interleukin-1
signaling, and genetic polymorphisms.

Fujii H, Kawada N. Fibrogenesis in alcoholic liver disease. World
J Gasiroenterol 2014; 20(25): 8048-8054 Available from: URL:
http:/fwww.wignet.com/1007-9327/full/v20/i25/8048 htm DOI:
http://dx.doi.org/10.3748/wjg.v20.i25.8048

INTRODUCTION

Although the incidence of alcoholic liver disease (ALD)
varies widely wotldwide, the burden of ALD and ALD-
induced death remains dominant in most countries'.
ALD is the third highest risk factor for disease and dis-
ability wotrldwide. Almost 4% of all deaths in the wotld

result from ALD, which is greater than deaths caused by
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the human immunodeficiency virus/acquired tmmune
deficiency syndrome, violence, of tuberculosis'™. Fur-
thermore, alcohol is associated with many serious social
problems, including violence, child neglect, and abuse,
and absenteeism in the workplace. A recent naticnwide
survey revealed that ALD was the third highest cause of
liver cirrhosis in Japan (13.6%)™, and the associated cost
of medical care was estimated to be 6.9% of the total na-
tional medical expenditure’”, Overall, ALD is recognized
as a major but preventable public health problem.

The spectrum of ALD is broad: asymptomatic fatty
liver, steatohepatitis, progressive fibrosis, end-stage cit-
thosis, and hepatocellular carcinoma™™. ALD may often
resolve in those who becomne abstinent. However, for pa-
tients with severe ALD and those who do not completely
abstain from alcohol, targeted therapies are urgently
needed"”,

Pattents with ALD can develop progressive liver
fibrosis because of the accumulation of extracellular ma-
teix (HCM) materials, including type [ collagen, as gence-
ated by activated hepatic stellate cells (HSCs) and hepatic
myoftbroblasts. YWhen liver injuty occurs, HSCs are ac-
tivated and differentiate into myofibroblast-like cells'®”.
Activated Kupfter cells, infiltrating monocytes, activated
and aggregated platelets, and damaged hepatocytes are
the soutces of platelet-derived growth factor and trans-
forming growth factor-f1 (TGH-B1); these cells initiate
intracellular signaling cascades leading to HSC activation.
Although the key pathways of FISC activation ate com-
mon to all forms of liver injury and fibrosis, disease-
specific pathways also exist. Some specific signaling
pathways regulating HISC activation in ALD are discussed
below (Figure 1).

CLASSICAL MECHANISMS UNDERLYING
FIBROGENESIS IN ALD

Alcohol metabolism

Approximately 90% of ingested alcohol is metabolized
in the cytosol of hepatocytes. Crtosolic alcohol dehy-
drogenase!”

! oxidizes alcohal o acetaldehyde that is then
converted to acetate by acetaldehyde dehydrogenase.
Acetaldehyde is considered the key toxin in alcohol-
mediated liver injury that includes cellular damage,
inflammation, ECM remodeling, and fibrogenesis®™.
Moreover, acetaldehyde trggers TGP-B1-dependent late-
phase response in HSCs that maintains a pro-fibrogenic
and pro-inflammatory cellular state!”. Recently, Liu e o/
indicated that, in vitro, leptin potentiates acetaldehyde-
induced HSC activation and alpha-smooth muscle actin
(SMA) expression by intedeukin-6 (IL-6)-dependent sig-
nals such as p38 and phosphorylated-extracellular signal-
regulated kinase 1/2. This report discusses the importance
of a synergistic effect of leptin and acetaldehyde in the
activation of HSCs in ALD.

Oxidative stress
Alcohol consumed in chronic and heavy drinkers is also
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oxidized s the hepatoeytic cytochrome P450 (CYP);
previously termed inducible microsomal ethanol-oxidiz-
ing system"". CYP2E1 metabolizes various substances,
including multiple drugs, polyunsaturated fatty acids,
acetaminophen, and most organic solvents, and plays
a eritical role in the generation of reactive oxygen spe-
cies (ROS), such as hydrogen peroxide and superoxide
anions' "', ROS are also generated from nitric oxide
and reduced form of nicotinamide adenine dinucleo-
tide phosphate oxidase by Kupffer cells"”. ROS trigger
inflammatory cascades and recruit neutrophils and other
immune cells to the site of alcohol-induced hepatocyte
damage, increasing levels of circulating pro-inflammatory
cytokines, notably tumor necrosis factor (INF)-o™.

Accumulation of lipid peroxidation products, such
as 4-hydroxynonenal (4-HINE), has been reported both
in patients as well as animal models of ALD!"'. Several
studies have shown that the lipid peroxidation reaction in
the liver precedes the initial stages of fibrosis and is as-
sociated with the increased production of pro-fibrogenic
TGE-P1 by Kupffer cells"'. Nieto reported that ethanol-
tnduced lipid peroxidation triggers the nuclear factor
kappa B (NF-xB) transactivation of the collagen 2(I)
gene promoter in FISCs by stimulating kinase cascades,
including protein kinase C, phcsphoi:wsitidc 3 kinase
(PI3K), and protein kinase B/Aki"™.
are agreement with the findings of previous repotts, indi-
cating that 4-FINI is pro-fibrogenic for collagen produc-
tion in human HSCs'" and that oxidative steess directly
promaotes collagen syathesis in HSCs over-expressing the
CYP2EL gene!™,

| These ohservations

Methionine metabolism

Decreased intracellular levels of antioxidants such as vi-
tamin C, vitamin F, and glutathione (GSH) in the blood
and liver modify the process of alcohol-induced liver in-
jury“sl. Excessive acute aleohol intake reduces GSH syn-
thesis, and the acetaldehyde produced from alcohol me-
tabolism inhibits GSH activity. Alcohol also distutbs the
intracellular transport of GSH and preferentially depletes
mitochondrial GSH, leading to apoptosis®, Levels of
S-adenosylmethionine (SAMe), a universal methyl donor,
are also markedly reduced in ALD due to the reduced
activity of SAMe synthetase"”. This fact is clinically im-
pottant because therapy using SAMe increases survival

of patients with alcohol-induced cirrhosis"",

Hepatocyie apoptosis

Hepatocyte apoptosis is pathophysiologically important in
the progression of ALD'™. Thete are two important apop-
totic pathways: extrinsic (death receptor-mediated) and in-
trinsic (otganelle-initiated)™. Most recently, Petrasck o7 4/
revealed that intecferon regulatory factor 3 (IRF-3) medi-
ates ALD by linking endoplasmic reticulum (ER) stress
with the mitochondrial pathway of hepatocyte apoptosis.
Interestingly, ethanol induces ER stress and triggers the
association of IRF-3 with the ER adaptor, stimulator of
interferon genes, as well as the subsequent phosphoryla-
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Figure 1 Signaling pathways regulating hepatic stellate cell activation in alcoholic liver disease. Alcohol consumption causes hepatocyte damage, which sub-
sequently induces apoptosis. Alcohol dehydrogenase (ADH) oxidizes alcohol to acetaldehyde that is converted to acetate by acetaldehyde dehydrogenase (ALDH).
Acetaldehyde directly targets hepatic stellate cells (HSCs). Alcohol reduces glutathione (GSH) synthesis and acetaldehyde inhibits GSH activity in hepatocytes. Lev-
els of the S-adenosylmethionine (SAMe) are also markedly reduced. Alcohol consumption increases pemmeability of the intestine to bacterial endotoxin that in tum,
elevates serum lipopolysaccharide (LPS) levels. LPS directly enhances HSCs activation by upregulating transforming growth factor (TGF)- signaling. TGF-B1 derived
from activated Kupffer cells and damaged hepatocytes binds to TGF receptors. Phospho-Smad2/3 and Smad4 complexes translocate into the nucleus, display DNA-
binding activity, and activate expression of genes related to fibrosis. Extracellular molecules, such as LPS, tumor necrosis factor (TNF)-c, interleukin (IL)-1, and
reactive oxygen species (ROS), activate IkB kinase (IKK) that, in tum, phosphorylates 1xB, resulting in ubiquitination, dissociation of IxBe from nuclear factor kappa
B (NF-xB), and eventually, degradation of IxB by the proteasome. The activated NF-xB is then translocated into the nucleus and binds to specific DNA response
elements. NF-B-dependent pathways are involved in the expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl2). Leptin binds ObRb, activating the phos-
phoinositide 3-kinase {PI3K)/Akt pathway and inducing matrix deposition by increasing expression of tissue inhibitor of metalloproteinases {TIMPs). Leptin also inhibits
matrix degradation by decreasing expression of Matrix metalloproteinases (MMPs). Osteopontin (OPN} positively stimulates the PI3K/Akt pathway. The cannabinoid
receptor CB2 mediates antifibrotic actions; in contrast, activation of CB1 receptors positively stimulates the PI3K/Akt pathway to promote the proliferation and apopto-
sis of HSCs. TLR: Toll-fike receptor.

tion of IRF-3. Activated IRF-3 is associated with the dent factors in predicting severe fibrosis in patients with

proapoptotic molecule Bax (B-cell lymphoma 2-associated ALDP,
X protein) and contributes to hepatocyte apoptosis™
Apoptotic bodies induced by alcohol are phagocytosed  Lipopolysaccharide

by Kupffer cells and HSCs, which then produce TGF-f1
and subsequently activate HSCs"**. Finally, increased se-
rum levels of caspase-digested cytokeratin-18 fragments,
a useful matker of hepatocyte apoptosis, are indepen-
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Increased serum lipopolysaccharide (LPS) levels are
commonly found in patients with ALD™. Toll-like re-
ceptor (TLR) 4 is one of the multiple pattern recogni-
tion receptors that recognize both pathogen- and host-

July 7, 2014 | Volume 20 ] Issue 25 |



derived factors that modulate inflammatory signals™
LPS interacts with TLR4 to activate the MyID88-inde-
pendent toll-intesleukin-1 receptor domain-containing
adaptor-inducing interferon-B/IRF-3 signaling pathway
that produces oxidative stress and proinflammatory cy-
tokines (including TNI-¢1) causes hepatocellular damage
and contributes to alcoholic steatohepatitis'***, Re-
cent studies have revealed that activation of TLR4 and
complement factors also stimulates Kupffer cells to pro-
duce hepatoprotective cytokines, such as [L-6, and anti-
inflammatory cytokines, such as IL-10"""% These
cytokines activate signal transduction and activator of
transcription 3 in hepatocytes and macrophages/Kupffer
cells, respectively, to prevent alcohol-induced liver injury
and inflammation™ ™, On the other hand, previous
studies have reported that activation of TLRA4 signaling
in HSCs and liver sinusoidal endothelial cells (LSECs)
promoted liver ﬁbméule%w“’za and that activation of
TLR4 signaling in LSECs regulates angiogenesis through
the MyDD88-cffector protein that regulates extracellular
protease production, in turn, results in the development
of liver fibrosis'™".

Experimental models of ALD have revealed that
translocation of bacterial products across the intestinal
barrier to the portal circulation triggers inflammatory re-
sponses in the liver and contributes to steatohepatitis”™ .
Most recently, Hartmann ef a™ mvestigated the role of
the intestinal mucus layer and found that mucin (Muc) 2
was involved in the development of alcohol-associated
liver discase. The authors reported that M2 mice
have significantly lower plasma levels of LPS than wild-
type mice aftes aleohol administration. In addition, it was
shown that Mue?” mice are effectively protected from
intestinal bactetial overgrowth and thf, mictobiome in
tesponse to alcohol administration™. This smdy clmriy
showed that the alcohol-associated alteration in the mi-
crobiome, and in particnlas, the overgrowth of intestinal
bacteria contributes to the progression of ALD.

EMERGING MECHANISMS UNDERLYING
FIBROGENESIS IN ALD
L!pogenests in the early stages of ALD

The development of steatosis due to chronic alcohol
consumption is an nnpmtant contributor to the pro-
gression of hepatic fibrogenesis" ™. Recent studies have
found that direct or indirect alcohol exposure regulates
transcription factors associated with lipid metabolism.
Alcohol also stimulates lipogenesis and inhibits fatty
acid oxidation®". There are two well-known pathways
of lipogenesis: sterol regulatory element binding protein
(SREBP)-1 activation and adenosine monophosphate ki-
nase (AMPK) inhibition!>”".

Alcohol consumption directly upregulates SREBP-
1c gene expression through its metabolite acetaldehyde™™”
ot indirectly upregulates activating processes and factors
such as ER stress"?, adenosine™ e

1 endocannabinoids™,
LPS signaling »ia TLR4, and its downstream proteins,
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such as IRF-3, carly growth response-1, and TNF-g

AMPE is a key player in cellular and organism sur-
vival in metabolic strcss through its ability to maintain
metabolic homeostasis™. Chronic ethanol exposure in-
hibits AMPIK activity, which increases activity of acetyl-
CoA catboxylase and suppresses the rate of palmitic acid
oxidation through the inhibition of liver kinase B1 phos-
phorylation”"",

The endocannabinoids, which are similar to the ma-
jor active ingredient in marijuana, are endogenous lipid
mediators that participate in the complex neural circuitry
that controls energy intake™”. There are at least two dif-
ferent cannabinoeid receptors: CB1 and CB2. Recent stud-
ies indicate that while CB2 receptors mediate antifibrotic
actions, the activation of CB1 receptors contbute to the
development of fibrosis”"*. Both cannabinoid receptors
are expressed in FISCs, and the inactivation of CB1 recep-
tors decrease fibrogenesis by lowering TGEF-f1 levels and
reduce the accumulation of fibrogenic cells vz downregu-
lation of the PI3K/Akt signaling pathway 7 . Intriguingly,
alcoholic liver steatosis is mediated mainly through HSC-
derived endocannabinoids and their hepatocytic recep-
tor™". Chronic alcohol consumption stimulates FISCs
to produce 2-arachidonoylglycerol and its interaction with
the CB1 receptor upregulates the expression of SREPB1c
and fatiy acid synthase, but downregulates the activities of
AMPK and carnitine palmitoyltransferase 1777,

Osteopontin

Osteopontin (OPN) is a secreted, 44-66 kDa adhesive gly-
cophosphoprotein that has involvement in both nozx-
mal processes, such as bone development and immune
system tegulation, and pathologic processes, such as
inflammation, cell trapsformation, tumor invasiveness,
and metastasis™’, OPN plays additional toles in ALD. In
animal models, hepatic mRNA levels of OPN increased
in ALD"™ and stimulated HISC activation in an autocrine
and paracrine fashion®. Recenty, Urtasun e 2/ investi-
gated the mechanism of OPN in HSC activation. Recom-
binant OPN upregulated type [ collagen production in
primary HSCs in a TGF-§ independent fashion, whereas
it down-regulated matrix metalloprotease (MMP)-13.
OPN mduction of type I collagen occutred vig mtegrin
B3 engagement and activation of the PI3K/pAkt/NE-
kB-signaling pathway"®. On the other hand, recent stud-
ies indicate that OPN participates in the pathogenesis
of hepatic steatosis, inflammation, and the fibrosis that
results from non-alcoholic steatohepatitis™, OPN regu-
lates steatohepatitis by stimulating the Hedgehog-signal-
ing pathway™. In human ALD, hepatic mRNA levels of
OPN correlate with hepan'c neutrophil infiltration and
the severity of fibrosis™. Finally, immunohistochemical
detection of OPN is used as a prognostic biomatker to
discriminate outcomes in some transplant patients with
hepatocellular carcinoma derived from ALD™.

iL-1 signaling
Emerging data have provided evidence for the role of
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IL-1 signaling in acute and chronic liver injury resulting
from various causes, including acetaminophen-induced
liver damage™, nonalcoholic steatohepatitis" ", liver fi-
brosis™, and immune-mediated liver injury™. However,
the significance of IL-1 signaling in ALD has yet to be
evaluated. A recent study from Petrasek ez af” showed
that activation of inflammasome-IL-1 signaling also plays
a ctitical role in ethanol-induced livet injury in mice. Us-
ing IL-1 receptor antagonist-treated mice as well as 3
different mouse models deficient in regulators of IL-15
activation [caspase-1 (Casp-1) and ASC] or signaling (IL-1
receptot), they showed that IL-1f signaling is required
for the development of alcohol-induced liver steatosis,
inflammation, and injury. Interestingly, several fibrotic
markers such as procollagen [l N-terminal propeptide
(PIINP), tissue inhibitor of matrix metalloproteinase 1
(TIMP-1), and hyaluronic acid were downregulated in
ethanol-fed Casp-1 knockout mice or in response to IL-
1Ra treatment. Although the roles of inflammasome in
HSC activation are not fully elucidated®, it is suggested
that targeting the inflammasome and/or IL-1 signaling
pathways have therapeutic potential in ALD manage-
ment. However, further studies are required to discover
direct evidence of the telationship between IL-1 signaling
and fibrogenesis in ALD.

Genetic variants associated with the fibrosis of ALD
With the genotyping technique becoming more widely
available, a great number of genetic case-control studies
have evaluated candidate gene-variants that code pro-
teins involved in the hepatic fibrosis™. Although two
fibrosis-associated genes, including TGF-f and MMP
3, were evaluated in ALDP, these genotypes are not as-
sociated with alcoholic liver cirrhosis®™ . Recent whole
genome analyses of large numbers of genetic variants
have identified novel yet unconsidered candidate genes®™.
Romeo ¢ af*? reported that the single-nucleotide poly-
morphism [rs738409(G), encoding 1148M] in the patatin-
like phospholipase domain-containing (PINPLA) 3 gene is 2
significant risk factor for increased hepatic fat accumulation
and inflammation in nonalcoholic fatty liver disease. Subse-
quently, the strong association between the PNPLA3 1148
M allele and an increased risk of clinically evident alcoholic
cirthosis and liver cancer were confirmed in tndividual
studies® . Most recently, Burza ez a/”" reported that an
increased age at onset of at-tisk alcohol consumption and
the PNPLA3 1148 M allele were independent risk factors
for alcoholic liver cirrhosis (HR = 2.76; P < 0.01 #5 1.53;
P=0.021).

CONCLUSION

In this review, several aspects potentially contributing
to the mechanisms underlying fibrogenesis in ALD are
discussed. Since there are no FDA-approved treatments
for ALD at present, development of novel therapies for
inhibiting inflammation and/or fibrogenesis associated
with early stages of ALD will be beneficial for slowing

fg
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disease progtession and improving patient outcomes®".

To achieve these objectives, animal models that accurately
reflect the metabolic and histological characteristics of
human ALD ate needed.
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Interactions of Stellate Cells with Other
on-Parenchymal Cells

Norifumi Kawada' and Maurizio Parola®

'Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan

Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, School of Medicine,
University of Torino, Torino, Iraly

12.1 HEPATIC STELLATE CELLS: INTRODUCTORY REMARKS

Hepatic stellate cells (HSCs), formerly known as Ito cells, fat-storing cells, or lipocytes,
reside in the space of Disse in the hepatic sinusoid, encapsnlate sinusoidal endothelial
cells with their well-branching dendritic processes on one side, and face hepatocytes
on the other side [1]. In physiological conditions, the principal function of quiescent
HSCs is storing vitamin A in their cytoplasm; 50-80% of vitamin A in the body is
accumulated in the liver and 90% is stored in HSCs. Quiescent HSCs express neu-
ral crest markers, such as glial fibrillary acidic protein (GFAP) and neurotrophins and
their receptor (p75), and an intermediate filament, desin. Quiescent HSCs secrete
extracellular matrix materials (ECMs) including laminin, proteoglycan, and type
IV collagen, which form basement membrane-like structure |2—4]. Because HSCs
function also as liver-specific pericytes, their contractility in response to endothelin-1
(ET-1), angiotensin-11, and relaxation by nitric oxide (INO) controls the diameter of the
sinusoidal lumen and regulates the local microcirculation [5].

Following liver injury caused by hepatitis virus B or C (HBV or HCV) infection,
alcohol abuse, drug toxicity, autoimmunity, or steatosis, HSCs undergo activation and
transdifferentiate to myofibroblast (MF)-like cells [8]. These MF-like cells are charac-
terized by a loss of vitamin A droplets, increased expression of q-smooth muscle actin
(0t-sma) and growth factor receptors, augmented contractile activity, and increased gen-
eration of multiple ECMs, largely types 1 and III collagens [2—4]. Activation of HSCs
is triggered by paracrine stimulation by hepatic constituent cells, including sinusoi-
dal endothelial cells, Kupffer cells (liver macrophages), hepatocytes, and cholangio-
cytes as well as platelets and following interactions with cells of the immune systern.
Activated HSCs secrete profibrogenic transforming growth factor f§ (TGF-B) as their
autocrine stimulant and liver sinusoidal endothelial cells (LSECs) participate in con-
version of TGF-f from its latency associated peptide-binding form to active form
[6]. Cholangiocytes and platelets are also a source of platelet-derived growth factor

Stellate Cells in Henlth and Disease © 2015 Elsevier Inc.
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(PDGF), TGF-B, and epidermal growth factor (EGF). Hepatocytes constitute another
source of fibrogenic lipid peroxides and their apoptosis initiates the activation of HSCs
via a process mediated by Fas and tumor-necrosis factor (TINF)-related apoptosis-
inducing ligand (TRAIL). Apoptotic fragments derived from hepatocytes stimulate
HSC activation in culture, and phagocytosis of apoptotic hepatocytes by MFs stim-~
ulates their fibrogenic activity via reduced nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase 2 and the janus kinase/signal transducer and activator of
transcription (STAT) and phosphoinositide 3-kinase/Akt pathways [7,8].

Activation of HSC is controlled by transcription factors, such as activated protein-1,
Jun D, Sp1, Kruppel-like factor 6, and nuclear factor kappa B (NF-kB), leading to
transcriptional upregulation of latent TGE-p [9]. In this process, intracellular signal-
ing molecules, such as Smad, Ras, Raf-1, and mitogen-activated protein (MAP) kinase,
play important roles [10]. In addition, augmented production of the tissue inhibitor
of matrix metalloproteinases (TIMPs) hampers the degradation of ECMs and con-
versely stimulates their accumulation in the inflamed liver [11]. Involvement of leptin
and other adipocytokines in the HSC activation process is also notable [12]. Activated
HSCs are also characterized by an increased expression of receptors for several
polypeptides, including PDGE TGF-f, vascular endothelial growth factor (VEGF),
angiotensin-1I1, and ET-1 [13].

Along these lines, chronic activation of wound-healing reaction and of hepatic MFs
is then essentially sustained by several growth factors, cytokines, and chemokines, as
well as several additional mediators and environmental conditions (i.e., hypoxia). Thus,
the development of progressive CLD may be envisaged to rely on a long-standing pos-
tulate of crosstalk/interactions between quiescent or activated HSCs and other popula-
tions of liver cells, with non-parenchymal cells playing a fundamental role.

12.2 THE CROSSTALK OF HSCs WITH MACROPHAGES
12.2.1 Liver macrophages (Kupffer cells)

Kupffer cells are resident liver macrophages adherent to sinusoidal endothelial cells
inside the sinusoid and are the largest population of innate immune cells in the liver
[14]. The principal function of Kupffer cells is to perform scavenger and phagocytic
functions to remove protein complexes, small particles, senescent red blood cells, and
cell debris from portal blood flow through pattern recognition receptors (PRRs).
Kupfter cells also perform primary immune surveillance against gut-derived toxic
materials, including endotoxin lipopolysaccharide (LPS) and pathogens from the intes-
tinal flora. Thus, Kupffer cells, the most abundant pool of macrophages in the body,
participate in the homeostasis by protecting the host and are able to trigger both
immunogenic and tolerogenic immune responses [15,16].
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Although it has been long considered that circulating monocytes contribute to
the Kupffer cell pool, Naito et al. already showed in 1997 that Kupfier cells origi-
nate from fetal yolk sac precursor and undergo self-renewal throughout adult life [17].
More recent fate~-mapping studies by Yona et al., using a mouse expressing constitu-
tive and conditional CX3CR1 promoter-driven Cre recombinase, demonstrated that
Kupffer cells are established prior to birth, maintained i adult steady state via self-
renewal, and are independent of the input of bone marrow-derived monocytes [18].
Thus, Kupffer cells are able to renew themselves under stimulation with granulocyte/
macrophage-colony stimulating factor (GM-CSF) and M-CSE Although a specific
marker to identify hepatic Kupffer cells is absent, human Kupffer cells are identified
by their expression of CD14, CD16, and CD68, rat Kupfter cells by CD68 or CID163
(ED1 and ED2, respectively), and mouse Kupffer cells by F4/80.

12.2.2 Kupffer cells in hepatic inflammation and fibrogenesis

Upon inflammatory stimuli, Kupffer cells become activated and initiate their biological
response. Endotoxin LPS derived from intestinal flora is a well-known stimulus of
Kupffer cell activation. LPS binds to the toll-like receptor 4 (TLR4) with co-receptor
CD14 and MD-2. TLR4 activates MyD88-dependent pathway to induce NF-xB and
p38/c-jun N-terminal kinase (JNK) activation. When activated, Kupfter cells produce
multiple bioactive substances, including cytokines such as TNF-«, interleukin 1 (IL-1),
IL-6, IL-10, and IL-18, chemokines such as macrophage influnmatory protein 2
(MIP-2, CXCL2), macrophage chemotactic protein-1 (MCP-1, CCL2), RANTES
(CCL5), MIP-1a (CCL3), MIP-13 (CCL4) and osteopontin, and reactive oxygen
species (ROS), which lead to the infiltration of inflammatory cells into the liver [19].
In addition, activated Kupffer cells generate PDGF and TGE-$1, which in turn induce
HSC activation (Figure 12.1).

In vivo macrophage depletion or blockade strategies revealed a major role for mac-
rophages in liver fibrosis. For instance, Ide et al. showed that, in an animal model,
depletion of Kupffer cells using the administration of gadolinium chloride (GdCly)
suppresses (-sma—positive MF activation and ameliorates hepatic fibrosis in response
to thioacetamide administration [20]. Rivera et al. also demonstrated that destruc-
tion of Kupfler cells with GdCly or their inactivation with glycine ameliorates liver
fibrosis induced by carbon tetrachloride (CCly) accompanied with downregulation
of a-sma, al(I) collagen mRINA and TGF-f1 protein expressions in the liver [21].
Aoyama et al. showed that CX3CR1 expression in Kupffer cells regulates HSC activa-
tion via the binding of HSC-derived CX3CL1 in CCly-induced mouse liver fibrosis
[22]. Pradere et al. also demonstrated that hepatic macrophages enhance the survival
of activated HSCs in a NF-kB-dependent manner and thereby promote liver fibrosis
induced by bile duct ligation (BDL) in mice [23]. Taken together, liver macrophages
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Figure 12.1 Simplified scheme of interactions between macrophages and HSCs in CLD. During
the course of fibrogenic progression of a CLD, inflammatory monocytes are recruited to the site of
injury/inflammation by different chemoattractants, with a major role described for MCP-1 (CCL2),
leading to a population of proinflammatory and profibrogenic macrophages (LY6"). These macro-
phages, in addition to sustained inflammation and further hepatocyte injury by releasing TNF and
IL-1p, can release mediators able to sustain fibrogenesis by favoring the process of activation/trans-
differentiation of HSC to MF-like, to regulate the related classic phenotypic responses of activated
cells and enhance their survival. Pro-resolution macrophages (LY6'°%) originate as a consequence
of signals/mediators coming either from activated MFs (possibly CX3CL1) or from other hepatic cell
populations in the scenario of chronic live injury. Pro-resolution macrophages remove cell debris and
potential profibrogenic signals and express TRAIL and MMP9 that can promote apoptosis of MFs. In
addition, these macrophages can release matrix metalloproteases such as MMP12 and MMP13 that
can degrade/remodel extracellular matrix. More details in the text.

generally participate in the augmentation of liver fibrosis through the activation of
HSCs primarily via TGF-f1 cascade.

12.2.3 Macrophage heterogeneity

Macrophage heterogeneity has been described by a diversity in cytokine production,
cell surface markers, and transcriptional profiles. Macrophages have been classified
either into M1 or M2 macrophages; M1 macrophages are linked to Th1 primed CD4
T cells and induced by IL-12, interferon (IFN)-y, and LPS, whereas M2 macrophages
associate with Th2 CD4 T cells and are controlled by IL-4, IL-13, and GM-CSE It is
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generally accepted that M1 macrophages are activated immediately as a defense against
bacteria and viruses and release pro-inflammatory cytokines, such as TNE IL-1f, IL-12,
and ROS. M2 macrophages arc generally thought to promote tissue-remodeling and
secrete immune-modulatory mediators such as IL-4 and 1L-13 via IL-4 receptor and
1L-13 receptor o1, and characterized by unique signal transducers such as STAT6, argi-
nase, or scavenger receptor (CD206) [24,25]. However, liver macrophages are shown to
express markers of M1 and M2 differentiation simultancously, indicating their ability to
change phenotype markedly in response to injury.

As mentioned earlier, resident Kupffer cells play a role in early response of liver
injury and secrcte CCLZ2 and CCL5 chemokines and multiple cytokines. HSCs,
upon activation by TLR4 ligands, are also a source of CCL2 and initiate monocyte
recruitment. While the number of Kupffer cells decreases during inflammation and
fibrogenesis, the number of monocyte-derived macrophages increases in inflamed
liver. By using a model of conditionally depleted macrophages (CD11bYF4/80™) in
CD-11b-diphtheria toxin receptor transgenic mice, Duflield et al. showed that macro-
phage depletion resulted in marked reduction of ECM deposition and of the number
of o-sma—positive MFs in CCly intoxication for 12 weeks, indicating that infiltrat-
ing monocytes exert a pro-fibrogenic role [26]. Karmark et al. tracked IY-6C, a cell
surface glycoprotein that is widely used to identify functionally discrete mouse cir-
culating monocyte population, and found that Gri* (Ly6CM) inflammatory mono-
cytes (their human counterpart is CD147CD16™ monocytes expressing CCR2,
CD64, and CDO62L) are recruited into the liver in a CCR2-dependent manner dur-
ing CCly~induced chronic liver injury in mice [27]. This interaction caused increase
in the inducible NO synthase (iNOS)-positive CD11b*F4/80" intrahepatic macro-
phages, which promote profibrogenic actions through direct activation of HSCs [28].
Thus, in the context of liver fibrogenesis in mice, infiltrating Ly6CMCD11b+F4/80"
macrophages play a central role in wound-healing response compared to
Ly6Clo"CD11b°YF4/80" matured monocyte-derived and resident Kupffer cells.

12.2.4 Role of macrophages in fibrosis regression

It is generally accepted that regression of liver fibrosis occurs clinically in patients
who achieve a sustained viral response (SVR) after the eradication of HCV by anti-
viral therapy or whose HBV viral level is well controlled by using nucleot(s)ide ana~
logs, such as entecavir or tenofovir. In addition, substantial clinical data indicate that
these treatments can not only regress cirrhosis but also promote recovery of hepatic
functions of the liver and improve the prognosis of patients. Thus, the development of
common anti-fibrotic therapy is anticipated regardless of the etiology of liver disease
[6,29]. Regression of liver fibrosis is mechanistically explained by the following four
aspects: (1) regeneration of hepatocytes, (ii) reversal of activated and MF-like HSCs to

189



150

Stellate Cells in Health and Disease

vitamin A-storing quiescent phenotype, (iii) removal of MFs by apoptosis, and (iv) lysis
of ECMs. Advanced liver fibrosis is far less reversible in humans while rodent models
exhibit induction and spontaneous resolution of fibrosis.

Macrophages are crucial in the resolution process of liver fibrosis (Figure 12.1).
They are a source of fibrolytic MMPs, including MMP-12 and MMP-13, and also
express TRAIL that promotes apoptosis of activated MFs [30]. Recent understanding
of macrophage heterogeneity, as shown by Ramachandran et al., has illustrated that
Ly6ClYCD11b%F4/80™ subset of macrophages is most abundant in the liver in a
resolution stage and represents the principle MMP-expressing subset. It is notewor-
thy that Ly6C'°" macrophages are derived from a phenotypic transition of the profi-
brogenic Ly6CM macrophages and characterized by evidence of prior phagocytosis of
dying cells [31].

Regression of liver fibrosis is also characterized by the removal of activated HSCs
and MFs from the scar. Two potential pathways, either reversal to a quiescent pheno-
type or clearance through apoptosis, are considered. While the former can be com-
pletely accomplished in culture model [32], recent studies by Troeger et al. using
genetic tracking techniques have revealed that reversal of activated HSCs toward a
more quiescent phenotype occurs in a mouse model of liver injury; approximately
50% of HSC-derived MFs adopted an intermediate phenotype and reacquired fea-
tures of quiescence [33]. On the other hand, activated HSCs express CD95, equivalent
to Fas, TNF receptor 1, p75 and TRAIL receptors, resulting in the apoptosis after the
binding of respective ligands. In fact, gliotoxin, an inducer of apoptosis of activated
HSCs in vivo, enhances the resolution of liver fibrosis [34,35].

12.3 HSC/MFs AND INTERACTIONS WITH OTHER CELLS
OF INNATE AND ADAPTIVE IMMUNITY

12.3.1 HSCs in the scenario of an immunological organ like the liver

As mentioned in the previous section, activated HSCs closely interact with liver mac-
rophages and this interaction is believed to be critical for fibrogenic progression of
CLD, regardless of the etiology. In this scenario, several laboratories have provided
compelling evidence that HSCs, in addition to the widely accepted conventional “pro-
fibrogenic” role, can serve as immune-regulatory cells because of their ability to secrete
a number of mediators and polypeptides, including critical chemokines like MCP-1
or CCL2, regulated and normal T cell expressed and secreted (RANTES or CCL5) as
well as several isoforms of MIPs. Moreover, it should be considered that HSCs express
several TLRs and chemokine receptors including CCRS5, CCR7, CXCR3, and
CXCRY7, thus also becoming a “target cell” for several pro-inflammatory mediators.
Finally, HSCs have also been reported to function as putative antigen presenting cells
(APCs) [2,36]. For these reasons, HSCs may be considered innate immune cells [3].
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The interactions between HSCs and cells of either innate or adaptive immunity
(Figure 12.2) are relevant for two main reasons: (i) they occur in the scenario of an
organ like the hiver, which is considered to be an “immunological” or “lymphoid”
organ and (i1) these interactions as well as the activation of specific immune signaling
pathways within HSC function together to promote or modulate liver fibrogenesis
13,37-39).

The definition of the liver as an “imumunological” organ relies on its unique struc-
tural and anatomical organization, with the organ receiving blood flow mostly from
the gastrointestinal (GI) tract through the portal vein. This antigen-rich blood from
the GI tract is then forced to pass through liver sinusoids where it is continuously
monitored by resident APCs (including Kupfter cells, LSECs, and dendritic cells but
also even HSCs) [3,36-39] as well as by a heterogencous lymphocyte population that
is enriched particularly in natural killer (NK) and natural killer T (NKT) cells, and B
lymphocytes as well as “conventional” T lymphocytes (CD8" and CD4T T cells). The
definition of “conventional”T lymphocytes 1s useful in order to distinguish them from
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Figure 12,2 A simplified scheme of interactions between immune cells and HSC in a CLD. Immune
cells can differently affect fibrogenesis by modulating the process of activation/transdifferentiation
of HSCs to activated and MF-like cells. In synthesis, Th2 and Th17 lymphocytes, directly by releasing
mediators like IL.-13 and MMP9 or indirectly by stimulating the expression of TGFp, can sustain the
process of activation. By contrast, Th1 and Treg cells are believed to slow down or inhibit the same
process through the release of IFNy and IL-12 and then by inhibiting/limiting Th2 response. The atypi-
cal y8 T cells, together with ROS and other cytokines and death ligands, can induce apoptosis of acti-
vated and MF-like HSC. NK cells can kill early activated HSC and senescent activated HSC but not fully
activated and MF-like HSC.
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those defined as “unconventional” T cells. The latter comprise various cell types that
can be categorized into two major populations: (i) cells that express NK cell markers,
also defined as classical NKT cells (either CD4-positive or CD4/CD8 double nega-
tive cells), which are abundant in the liver, and their migration or expansion in the
liver being controlled by NK cells and (ii) cells that do not express NK cell markers
or TCR y8 T cells (i.e., nonclassical NKT) a population representing 15-25% of all
intrahepatic T' cells; the liver is one of the richest sources of TCR y8 T cells, which are
able to recognize a limited range of antigens such as stress proteins and non-protein
antigens [37,40].

In general terms, NK and NKT cells play critical roles as first-line cellular immune
defense against invading pathogens and they also play an important role in the mod-
ulation of liver injury and in the recruitment of circulating lymphocytes [3,37-39].
Indeed, circulating lymphocytes make contact with liver resident APC displaying
antigens and can also contact hepatocytes directly, due to fenestrated sinusoidal endo-
thelium that lacks a basement membrane. This overall “hepatic” scenario is believed
to facilitate direct or indirect priming of lymphocytes as well as to modulate the
imimune response to hepatotrophic pathogens. Such interactions contribute to some of
the unique immunological properties of the liver, including its capacity to induce
antigen-specific tolerance [3,37-39].

12.3.2 NKand NKT cells: Their role in modulating HSC activity
and fibrogenesis

Interest in the role of NK and NKT cells in modulating liver fibrogenesis has recently
emerged on the basis of the fact that these cells are enriched among liver lymphocytes
and are markedly altered in CLDs of different etiology, with NK cells proposed to
prevent fibrogenic progression of CLDs and NKT cells to act by either inhibiting or
favoring liver fibrosis [41].

NK cells, which belong to the innate immune system, are able to recognize and
kill target cells by employing several cell surface receptors. NK cells detect changes
in the expression of host cell surface molecules that usually appear on either viral-
infected, transformed, or injured cells [42]. This results in NK cell activation followed
by the killing of target cell mediated by either exocytosis of perforin and granzyme
granules or through FAS ligand, TNF-a, and TRAIL [41,42]. NK cells are somewhat
strategically located in the hepatic sinusoids close to liver non-parenchymal cells and
represent a rather unique organ-associated NK cell population. They are character-
ized by a rapid turnover, with continuous substitution by bone marrow-derived cells.
NK cells, which normally account for approximately 30-50% of human liver lympho-
cytes, increase dramatically in number in pathological conditions such as those related
to viral infection as well as acute and chronic inflammation [41]. The most impor-
tant message from studies in this field (reviewed in Ref. [41]) is that liver NK cells



