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SUMMARY

Host innate recognition triggers key immune re-
sponses for viral elimination. The sensing mecha-
nism of hepatitis B virus (HBV), a DNA virus, and
the subsequent downstream signaling events remain
to be fully clarified. Here we found that type Il but
not type | interferons are predominantly induced in
human primary hepatocytes in response to HBV
infection, through retinoic acid-inducible gene-I
(RIG-1)-mediated sensing of the 5'-¢ region of HBV
pregenomic RNA. In addition, RIG-I could also coun-
teract the interaction of HBV polymerase (P protein)
with the 5'-¢ region in an RNA-binding dependent
manner, which consistently suppressed viral replica-
tion. Liposome-mediated delivery and vector-based
expression of this e region-derived RNA in liver
abolished the HBV replication in human hepato-
cyte-chimeric mice. These findings identify an
innate-recognition mechanism by which RiG-I dually
functions as an HBV sensor activating innate
signaling and to counteract viral polymerase in
human hepatocytes.

INTRODUCTION

Hepatitis B virus (HBV) is a hepatotropic virus of the Hepadnavir-
idae family and contains a circular, partially double-stranded
DNA genome of about 3.2 k base pairs that is replicated via
reverse transcription of a pregenomic RNA (pgRNA). HBV
causes hepatic inflammation associated with substantial
morbidity worldwide (Rehermann and Nascimbeni, 2005; Prot-

zer et al., 2012; Revill and Yuan, 2018). Around four hundred
million people worldwide are persistently infected with HBV,
which is a major causative factor associated with not only inflam-
mation but also cirrhosis and even cancer of the liver. Currently,
interferon (IFN) and nucleoside/nucleotide analogs are available
for HBV treatment (Rehermann and Nascimbeni, 2005; Hale-
goua-De Marzio and Hann, 2014). However, the long-term
response rates are still not satisfactory. Elucidation of host im-
mune response against HBV infection is crucial for better under-
standing of the pathological processes and viral elimination to
control HBV infection.

The type | IFNs, IFN-a and IFN-, are representative cytokines
that elicit host innate immune responses against viral infections.
In addition, another IFN family, type Il IFNs (IFN-2, also known as
IL-28 and IL-29) exhibits potent antiviral activity similar to IFN-a
and IFN-B (Sheppard et al., 2003; Koteriko, 2011; Kotenko et al.,
2003). Production of type | and type Il IFNs is massively induced
in many types of cells upon infection with various viruses, which
is known to be mediated by the activation of pattern-recognition
receptors (PRRs). During virus infection, virus-derived nucleic
acids (both RNA and DNA) are mainly sensed by certain PRRs,
such as retinoic acid-inducible gene-1 (RIG-) (Yoneyama et al,,
2004; Choi et al., 2009; Chiu et al., 2008; Ablasser et al., 2009),
melanoma differentiation-associated gene 5 (MDAS) (Yoneyama
etal., 2005), cyclic GMP-AMP synthase (CGAS) (Sun et al., 2013),
and IFN-y-inducible protein 16 (IF116) (Unterholzner et al., 2010).
Particularly, RIG-1 is a key PRR that can detect virus-derived
RNAs in the cytoplasm during infection with a variety of viruses,
such as influenza virus, hepatitis C virus (HCV), and measles
virus, which are closely related to human disease pathogenesis
(Rehwinkel and Reis e Sousa, 2010). Binding of RIG-1 o its ligand
RNAs, such as 5'-triphosphorylated RNA or short double-
stranded RNAs (Takeuchi and Akira, 2008; Horung et al.,
2008), activates the downstream signaling pathways in a
manner dependent on the adaptor protein mitochondrial antiviral
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signaling protein (MAVS; also known as IPS-1, VISA, or Cardif)
(Takeuchi and Akira, 2009), leading to the induction of the IFN-
regulatory factor-3 (IRF-3) and NF-kB-dependent gene expres-
sion and the subsequent production of type | and type lll IFNs
and inflammatory cytokines (Takeuchi and Akira, 2009). Thus,
RIG-I sensing of viral RNA is a crucial process to activate the
antiviral innate responses to limit viral replication and the activa-
tion of adaptive immunity (Takeuchi and Akira, 2009).

As for the viruses that are known to be the leading cause of he-
patic inflammation, RIG-1 is the major PRR that initiates innate
immune responses against HCV. RIG-I sensing of HCV is medi-
ated through its recognition of the poly-U/UC motif of the HCV
RNA genome 3’ nontranslated region, which leads to the activa-
tion of type | IFN response (Saito et al., 2008). On the other hand,
earlier studies have shown that the innate immune activation is
impaired and the induction of type | IFNs such as IFN-a or
IFN-B is hardly detected in animal models of HBV infection, as
compared with HCV infection (Wieland et al., 2004; Nakagawa
et al., 2013). However, it is still not fully clarified how HBV is
recognized by human hepatocytes and the role of type Il IFNs
as well.

Here we report that HBV infection predominately induces type
Ill, but not type |, IFN gene induction, which is mediated by RIG-|
through its recognition of the 5'-¢ region of HBV-derived pgRNA.
We also show that RIG-I can counteract the interaction of HBV
polymerase (P protein) with the 5'-¢ region of pgRNA in an
RNA-binding dependent manner, resulting in the suppression
of HBV replication. Furthermore, liposome-mediated delivery
and expression of the 5'-¢ region-derived RNA in liver sup-
pressed the HBV replication in vivo in chimeric mice with human-
ized livers. Thus, our findings demonstrate the innate defense
mechanisms based on the viral RNA-RIG-I interaction, whereby
RIG-I functions not only as a HBV sensor for the activation of IFN
response but also as a direct antiviral factor.

RESULTS

Type lli IFNs Are Predominantly Induced in Hepatocytes
during HBV Infection

To investigate the innate immune activation during HBV infec-
tion, we examined type | and type lIl IFN responses in human he-
patocytes. Consistent with the previous reports (Wieland et al.,
2004; Nakagawa et al., 2013), we hardly observed the induction
of type I IFNs, IFN-a4, and IFN-B in response to transfection with
plasmids carrying 1.24-fold the HBV genome of three major
different genotypes, Ae (HBV-Ae), Bj (HBV-Bj), and C (HBV-C)
(Figure 1A and Figure S1A available online) at least up to seven
days after transfection, aithough the expression of HBY RNAs
was detectable (Figure S1B). On the other hand, type lil IFN,
IFN-A\1, was induced in all of the three types of human hepato-
cyte cell line tested (Figures 1A and S1A). In HepG2 cells,
HBV-C shows the highest IFN-A1 response, which was also
confirmed by ELISA, albeit weakly (Figures 1A and 1B). More-
over, IFN-A1 in culture supernatant could inhibit vesicular stoma-
titis virus (VSV) replication in plaque reduction assay, as well as
HBYV replication (Figure S1C), indicating the physiological rele-
vance of the induced IFN-A1 to antiviral activities. Consistent
with these results, we observed the significant induction of not
only IFN-A1 but also IFN-A2 and -3 in primary human hepato-
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cytes (PHH) in vitro 24 hr after infection with HBV-C (Figure 1C);
however, neither of type | nor type Il IFN tested was induced (Fig-
ures S$1D and S1E). Although it is difficult to simply compare the
amount of IFN induced by different types of virus, the induction of
IFN-11, 22, and 23 mRNAs in response to HBV infection was
much weaker than that of Newcastle disease virus (NDV) infec-
tion (Figure 1C). In this regard, in order to rule out the possibility
that the IFN-A response is due to contaminants in the inocula, we
used Lamivudine (LAM), an HBYV inhibitor, in this assay. Treat-
ment with LAM inhibited IFN-A mRNA induction in response to
HBV infection in PHH (Figure 1C), suggesting that the IFN
response is actually induced by HBV replication. Furthermore,
we analyzed HepG2-sodium taurocholate cotransporting poly-
peptide (NTCP)-C4 cell line (lwamoto et al., 2014) stably ex-
pressing human NTCP, a functional receptor for HBV (Yan
et al., 2012), and confirmed that IFN-A1 and IFN-inducible genes
such as OASZ2 and RSAD2, but not IFN-f, were induced in these
cells after infection with HBV-C, and that these inductions were
abolished by treatment with LAM (Figure 1D). To next assess the
innate immune responses in vivo during HBV infection, we ex-
ploited severe combined immunodeficiency mice that carry the
urokinase-type plasminogen activator transgene controlled by
an albumin promoter (UPA**/SCID mice), in which more than
70% of murine hepatocytes were replaced by human hepato-
cytes (Tateno et al.,, 2004) (hereinafter referred to as chimeric
mice). After the chimeric mice were intravenously infected with
HBV-C, which was derived from patients with chronic hepatitis,
the expression of type lll IFN mRNAs increased in the liver tissue,
whereas IFN-a4 and IFN- mRNAs were not upregulated (Fig-
ure 1E). In parallel with this type lll IFN response, we also
observed the expression of IFN-inducible genes, such as
CXCL10, OAS2, and RSAD2, in the human liver of these infected
mice (Figure 1E). These findings indicate that a moderate type lli
but not type | or type Il IFN response is activated in human hepa-
focytes in response to HBV infection.

HBV-induced Type lil IFN Expression Depends on RIG-1

We next determined which sensor-mediated signaling pathway
is responsible for the HBV-induced type Ill IFN response. As
HBV is a DNA virus (Rehermann and Nascimbeni, 2005; Protzer
etal., 2012; Revill and Yuan, 2013), we assessed the contribution
of previously reported cytosolic DNA sensors including RIG-I
(Chiu et al., 2009; Ablasser et al., 2008; Choi et al., 2009), IFI16
(Unterholzner et al., 2010), and cGAS (Sun et al., 2013) in human
hepatocytes. Knockdown analyses revealed that IFN-A1 induc-
tion in HepG2 or Huh-7 cells by plasmid transfection for
HBV-C or HBV-Ag, respectively, was suppressed by the knock-
down of RIG-I, but not that of the other sensors (Figures 2A, S2A
and S2B). To further confirm the involvement of RIG-I in HBV-
triggered type llI IFN response, we measured IFN-A1 mRNA
expression induced by plasmid expression in Huh-7.5 cells
that carry a dominant-negative mutant RIG-I allele that prevents
RIG-1 signaling (Saito et al., 2007), as compared with Huh-7
cells that have an intact RIG-I pathway. Huh-7.5 cells failed
to induce IFN-A1 mRNA expression in response to HBV-Ae
genome plasmid transfection, as in the case of stimulation with
5'-triphosphate RNA (3pRNA), a RIG-| ligand (Takeuchi and
Akira, 2009; Hornung et al., 2008) (Figure 2B). In concordance
with this result, knockdown of tripartite motif containing protein
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Figure 1. IFN-2 Induction in Human Hepatocytes in Response to HBV Infection

(A) Quantitative RT-PCR (qRT-PCR) analysis of IFNL1 (left), IFNA4 (middle), and IFNBT {right) mRNA at the indicated times after transfection with 1.24-fold the
HBV genome (genotype Ae, Bj, or C) or empty vector (Mock) in HepG2 cells.

(B) ELISA of IFN-)1 at 48 or 72 hr after transfection with the HBV genome in HepG2 cells. The dot line indicates the minimum detectable amount (31.2 pg/mi) of
IFN-A1 by the ELISA kit. ND, not detected, indicates below the minimum detectable amount.

(C) gRT-PCR analysis of IFNLT, IFNL2, and /IFNL3 mRNA at 24 hr after infection with HBV, NDV (multiplicity of infection = 10) or mock (-), or media-treated
Lamivudine (LAM) as control in primary human hepatocytes (PHH). The mRNA copy number (+SD) of each subtype of type Il IFN per 1 ug total RNA upon HBV-C
infection is as follows: IFNLT (83,197.6 + 6,241.4) and IFNL2/3 (409,280.6 + 119,676.2).

(D) Time course analyses by gRT-PCR of IFNL1, OAS2, RSAD2, IFNB1 mRNA, and pgRNA at the indicated times after HBV infection in HepG2-hNTCP-C4 cells.
The effect of Lamivudine treatment was also analyzed.

(E) gRT-PCR analysis of IFNL1, IFNL2, IFNL3, IFNA4, IFNB1, CXCL10, OAS2, and RSAD2 mRNA of liver tissues at 4 or 5 weeks after infection with HBV-C in
chimeric mice. (-}, uninfected mice. Red lines represent the mean of each dataset. *p < 0.05 and **p < 0.01 versus control. RE, relative expression. (A-D) Data are
presented as mean and SD (n = 3) and are representative of at least three independent experiments. See also Figure S1.

25 (TRIM25), MAVS, TANK-binding kinase 1 (TBK1), and IRF-3,
all of which are signaling molecules essentially involved in the
RIG-I-mediated IFN pathway (Takeuchi and Akira, 2009), re-

sulted in the suppression of IFN-A1 mRNA induction in HepG2
cells in response to transfection with the HBV-C genome. On
the other hand, such an effect was not observed in cells treated

Immunity 42, 1-10, January 20, 2015 ©2015 Elsevier Inc. 3
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with either TRIF (also known as TICAM-1) or MYD88 siRNA (Fig-
ures 2C and S2C). In addition, we confirmed that the knockdown
of RIG-l and MAVS abolished IFN-A1 induction in PHH infected
with each genotype (Figure 2D). Furthermore, we also confirmed
by knockdown assay that the induction of IFN-A1 and OAS2
mRNA in HepG2-hNTCP-C4 cells in response to infection with
HBV-C was dependent on RIG-I (Figure S2E). These data indi-
cate that IFN-A1 gene induction during HBV infection depends
largely on RIG-I signaling pathway.

The 5'-¢ Region of HBV pgRNA Is a Key Element for
RiG-I-Dependent IFN-A1 induction

RIG-I can recognize not only virus-derived RNA but also DNA in
the cytoplasm (Yoneyama et al., 2004; Choi et al., 2009; Chiu
et al., 2009; Ablasser et al., 2009). To further clarify how RIG-!
recognizes HBV, we first examined either or both of which
nucleic acid (DNA and RNA) derived from HBV-infected cells
can activate IFN-A1 gene expression. Transfection with nucleic
acid fractions extracted from HBV infected Huh-7 cells after pre-
treatment with RNase A, but not DNase | resulied in marked
inhibition of the /FNL1 promoter activation, suggesting that
virus-derived RNAs might be candidates of the RIG-1 ligand dur-
ing HBV infection (Figure 3A).

The HBV genome comprises a partially double-stranded
3.2 kb DNA. During a life cycle of HBV in hepatocytes, its cova-
lently closed circular DNA {cccDNA) is transcribed to generate
four major RNA species: the 3.5, 2.4, 2.1, and 0.7 kb viral RNA
transcripts (Rehermann and Nascimbeni, 2005; Protzer et al.,
2012; Revill and Yuan, 2013). We created an siRNA to suppress
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Transfection Stimulation

[e2]

Figure 2. RiG-l-Dependent IFN-} Induction
in Response to HBV Infection

(A) HepG2 cells treated with control siRNA (Con-
trol) or siRNA targeting RIG-1, IFI16, or cGAS were
transfected with the HBV-C genome for 48 or
72 hr. The amount of IFN-A1 were measured by
ELISA. The dot line indicates the minimum cyto-
kine expression detected (31.2 pg/ml) of IFN-A1 by
the ELISA kit. ND, not detected, indicates below
detectable concentrations (left), and knockdown
efficiency was analyzed by immunoblotting (IB)
(right).

(B) qRT-PCR analysis of IFNL.T mRNA in Huh-7 or
Huh-7.5 cells transfected with the HBV-Ae
genome (at 24 hr after transfection) or stimulated
with 3pRNA (1 pg/mi) for 6 hr.

(C) HepG2 cells treated with control siRNA (Con-
trol) or the indicated siRNAs were transfected with
the HBV-C genome. At 48 hr after transfection,
total RNAs were subjected to gRT-PCR analysis
for IFNL1.

(D) qRT-PCR analysis of IFNLT mRNA in siRNA-
treated PHH at 24 hr postinfection with indicated
HBV genotype. Mock, empty vector-transfected.
(—), uninfected. Data were normalized to the
expression of GAPDH. Data are presented as
mean and 8D {(n = 3) and are representative of at
least three independent experiments. *p < 0.05
and *'p < 0,01 versus control in (B) or HBV-in-
fected control group in (A, C, and D). NS, not sig-
nificant. See also Figure $2.
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I Control
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the expression of all of these RNA transcripts and tested its
effect on HBV-induced IFN-A1 expression. As shown in Fig-
ure 3B, knockdown with this siRNA (Figure S3A) suppressed
IFN-)1 induction in Huh-7 cells transfected with HBV-Ae. Next,
to determine which of these HBV RNA transcripts is/are involved
in the RIG-I-mediated IFN-A1 induction, we prepared expression
vectors to express each of these four viral transcripts in
HEK293T cells that are often used to analyze RIG-I signaling
pathway in human cells. As a result, it is only the longest
3.5 kb transcript, that is, pgRNA, that has the potential to elicit
a significant induction of IFN-A1 mRNA (Figures 3C and $3B).
It was also confirmed by knockdown analysis with pgRNA-tar-
geted siRNA, which showed significant suppression of IFN-a1
induction in HepG2 cells transfected with HBV-Ae (Figure S3C).
These results suggest that 5'-1.1 kb region of HBV pgRNA is crit-
ical for the activation of RIG-| pathway to induce IFN-A1 expres-
sion. On the other hand, the remaining three transcripts, which
also contain the same sequence of part of this 1.1 kb region of
HBV pgRNA at the 3' end of their transcripts, failed to induce
IFN-A1 mRNA (Figure 3C). An artificially deleted form of pgRNA,
which lacks this overlapping sequence at the 3'-region (A3),
showed IFN-A1 induction, whereas such response was not
observed for another mutant pgRNA lacking it at the 5'-region
(A5) (Figure 3D). These data also support a possible important
role of the 5'-overlapping sequence of HBV pgRNA for RIG-I-
mediated IFN-A1 induction.

The 5'-end of HBV pgRNA is known to contain the encapsida-
tion sequence, called “epsilon (g),” which takes a stem-loop sec-
ondary structure (Junker-Niepmann et al., 1990; Pollack and
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Figure 3. RIG-I Activation Is Mediated by lts
Recognition of the §-¢ Region of HBV
pgRNA

(A) Luciferase activity of an IFN-A1 reporter
plasmid after 24 hr of stimulation * with
nucleic acids (2 pg/ml) extracted from Huh-7
cells transfected with control plasmid (Mock)
or the HBV-Ae genome with or without RNase A
or DNase | treatment. RLU, relative luciferase
units.

(B) Huh-7 cells treated with control or HBV *
RNA-targeted siRNA were transfected with the
HBV-Ae genome or mock. After 24 hr of trans-
fection, total RNAs were subjected to gRT-PCR
for IFNLT.

(C and D) A schematic representation of four types
of HBV RNAs, pgRNA (3.5 kb), 2.4 kb, 2.1 kb, and
0.7 kb RNAs in (C), and two deleted forms of
pgRNA, A5 and A3, in (D). The overlapping region
is shown in blue. gRT-PCR analysis of IFNL1
mRNA of HEK293T cells after 24 hr of transfection
with the indicated expression vectors. Data were
normalized to the amount of each HBV RNA
expression (C and D).

(E) A schematic representation of pgRNA, eRNA,
or control RNA (ContRNA) (left). HEK283T celis
treated with control or RIG-I siRNA were
unstimulated (Mock) or stimulated with ¢RNA
for 12 hr. Total RNAs were subjected to gRT-
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PCR for IFNL1 (middle). gRT-PCR analysis of IFNLT mRNA in HEK293T cells after 12 hr of stimulation with eERNA or ContRNA (right). Each of the RNAs was

prepared by in vitro transcription.

(F) HEK293T cells were transfected with each plasmid for stem-loop mutants of pgRNA (5STM, 3STM, or 5 and 3STM), and then subjected to gRT-PCR analysis
as described in (C). *p < 0.05 and **p < 0.01 versus control in {A, B, and E) or versus 3.5K in (C, D, and F). NS, not significant. See also Figure $3.

Ganemn, 1993; Knaus and Nassal, 1993; Jeong et al., 2000).
Therefore, we hypothesized that this 5'-¢ structure might confer
a possible pathogen-associated molecular pattern (PAMP) motif
for RIG-I recognition. To test this hypothesis, we stimulated
HEK293T and HepG2 cells with the ¢ region-derived RNA (here-
after called eéRNA). Consequently, IFN-A1 mRNA was signifi-
cantly induced, which was dependent on RIG-l, while such a
response was not detected upon stimulation with the equivalent
length of RNA that is derived from HBV pgRNA but does not
contain any ¢ element (ContRNA) (Figure 3E and S3D). We also
confirmed RIG-I-dependent IRF-3 activation in response to stim-
ulation with eRNA (Figures $3D and S3E). Due to the overlapping
sequence of 5'- and 3'-ends of HBV pgRNA as mentioned above,
this £ element is found at both ends of pgRNA. We next gener-
ated several mutant forms of HBV pgRNA, each of which carries
mutations within 5'- or 3'-¢ region or both to disrupt the stem-
loop structure (5STM, 3STM, or 5 and 3STM, respectively). In
concordance with the results shown in Figures 3C and 3D and
83B, IFN-A1 mRNA induction was detected upon expression
of the 3STM transcript that has an intact 5'-¢ region, as similar
to that of intact 3.5-kb pgRNA (Figure 3F). In contrast, either
58TM or 5 and 3STM did not show significant response. These
findings indicate that the 5'-¢ region of HBV pgRNA is critical
for IFN-A1 induction possibly through the recognition by RIG-I.

RIG-] interacts with the «~-Region of pgRNA

Next, we assessed the interaction of RIG-I with the ¢ region of
HBV pgRNA, that is, eRNA. Pull-down assays showed that
Flag-tagged RIG-I was coprecipitated with éRNA, but not with

ContRNA, in HEK293T cells (Figure 4A, top). Similarly, endoge-
nous RIG-I interacted with éRNA albeit weakly (Figure 4A, bot-
tom). We also demonstrated the intracellular colocalization of
RIG-I with eRNA in Huh-7.5 cells (Figure 4B). In addition, RNA-
binding protein immunoprecipitation (RIP) assay revealed that
the full length of HBV pgRNA was detected in the RIG-I-immuno-
precipitated complex, and A5 pgRNA and A3 pgRNA were also
detected (Figure S4A), which is seemingly inconsistent with the
results by the functional assay (Figures 3C, 3D, 3F and S3C).
These results suggest that the ¢ region is required for its interac-
tion with RIG-I, but only the 5'-¢ region is necessary to activate
RIG-I pathway. We further tried to determine which region of
RIG-I mediates its interaction with HBV pgRNA. Both RIP assay
and RNA pull-down assay with several deletion mutants of RIG-|
showed that the C-terminal portion of RIG-I (C-RIG) including its
helicase domain and repressor domain (RD) except for CARDs
can bind to HBV pgRNA (Figure 4C; Figures S4B and S4C). In
addition, gel shift assay showed that the interaction of HBV
eRNA or pgRNA was impaired with the RD or C-RIG mutant,
respectively, each of which carries a point mutation (K888E)
that abolishes its RNA-binding activity (Cui et al., 2008) (Fig-
ure 4D). A similar result was also obtained by RIP assay, wherein
the wild-type (WT) C-RIG, but not the K888E mutant, was coim-
munoprecipitated with HBV pgRNA (Figure $4D), like HCV RNA
that was previously reported to interact with RIG-1 (Figure S4E).
We also confirmed the interaction of HBV pgRNA with endoge-
nous RIG-f in HepG2 cells, whereas its interaction with other nu-
cleic acid sensors, such as IFI16 and MDA5 (Yoneyama et al.,
2005), was not detected (Figure 4E). These data indicate that

Immunity 42, 1-10, January 20, 2015 ©2015 Elsevier Inc. 5



Virus, Immunity (2015), hitp://dx.dol.org/10.1016/].immuni.2014.12.016

Please cite this article in press as: Sato et al., The RNA Sensor RIG- Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B

A B

ANA pull-down JEERIGL  BNAROX ERETVEE Huh-7.5
< , . 018 wx,
*
= ey

a
£
1B: c-Flagmess

ContRNA

HepG2
POHNA
*

HepG2
PulNA

Figure 4. RIG-I Interacts with the ¢ Region
of pgRNA

(A) RNA pull-down assay showing the binding
activity of the indicated RNAs to Flag-tagged RIG-|
(Flag-RIG-1) in HEK293T cells (top) or endogenous
RIG-1 in HepG2 cells (bottom).

(B) FRET analysis for the interaction of YFP-tagged
RIG-1 (YFP-RIG-l) with rhodamine (ROX)-conju-
gated eRNA (eERNA-ROX) or ContRNA (ContRNA-
ROX). Representative fluorescence images of
YFP, ROX, and FRETC/YFP (the ratio of corrected
FRET (FRET®) 1o YFP). Arrowheads indicate area
showing high FRET efficiency. Scale bar repre-
sents 20 um. Right, dot plot of FRETS/YFP ratio
(small horizontal bars, mean).

(C) RIP assay with HEK293T cell lysates express-
ing several Flag-tagged deletion mutants of RIG-|
and pgRNA expression vector by using anti-Flag
antibody. Immunoprecipitated pgRNA was quan-
titated by gRT-PCR and normalized to the amount
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g of immunoprecipated proteins (Figure S4C) and is
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i e (D) Gel-shift analysis of complex formation be-
1B:a-MDAS  tween eRNA and recombinant RIG-I RD (WT) or RD
(K8BBE). Arrowheads denote position of unbound
RNA and RNA-RIG-I complexes.

(E) RIP assay with HepG2 cell lysates prepared after 48 hr of transfection of the HBV-C genome by using anti-RIG-I, anti-IF116, anti-MDAS, or control
immunoglobulin G. The immunoprecipitated pgRNA was measured by gRT-PCR (top) as described in (C). Whole-cell expression and immunoprecipitated
amounts of RIG-, IFI16, and MDAS (bottom). Data are presented as mean and SD (n = 3) and are representative of at least three independent experiments.
*p < 0.05 and "*p < 0.01 versus control in (B and E). NS, not significant. See also Figure 54.

the 5'-¢ region of viral pgRNA functions as an HBV-associated
molecular pattern to be specifically recognized by RIG-I and
can trigger IFN-A response.

RIG-1 Exerts an Antiviral Activity by Counteracting the
Interaction of HBY Polymerase with pgRNA

We next assessed the contribution of RIG-I pathway in antiviral
defense against HBV infection. RIG-I knockdown in PHH re-
sulted in a higher HBV genome copy number at 10 days after
infection with HBV-C, as compared with PHH treated with
control siRNA (Figure 5A). A similar observation was made for
RIG-1 siRNA-treated HuS-E/2 cells (Figure S5A). These results
indicate an implicated role of RIG-l as an innate sensor to acti-
vate antiviral response against HBV infection. On the other
hand, it has been previously reported that the 5'-¢ region of
HBV pgRNA is important to serve as a binding site of viral P pro-
tein for initiating reverse transcription (Bartenschiager and
Schaller, 1992). As consistent with this, we showed that the P
protein interacts with eRNA in Huh-7.5 and HEK293T cells, by
fluorescence resonance energy transfer (FRET) analysis (Fig-
ure 5B) and RNA pull-down assay (Figure S5B), respectively.
These findings facilitated us to examine whether RIG-I could
block the access of P protein toward the e region. As we ex-
pected, recombinant RIG-I protein suppressed the interaction
of P protein with pgRNA in a dose-dependent manner (Fig-
ure 5C). Such an inhibitory effect was also observed in Huh-7.5
cells by expression of WT RIG-|, as well as its T551 (Sumpter
et al., 2005; Saito et al., 2007) or K270A (Takahasi et al., 2008)
mutant (Figures 5D and S5C), both of which are not able to
induce ligand-dependent activation of the downstream signaling
but retain their RNA-binding activities. On the other hand, the
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K888E (Cui et al., 2008) mutant could not inhibit the binding of
P protein with pgRNA (Figures 5D and S5C). In addition, treat-
ment with recombinant IFN-A1 in Huh-7.5 cells upregulated the
amount of the mutant RIG-I protein (T55]) (Figure S5D), resulting
in a partial inhibition of the P protein interaction with pgRNA, and
this inhibitory effect was abrogated by RIG-I knockdown (Fig-
ure 5E). In fact, FRET analysis showed that the P protein-eRNA
interaction was significantly suppressed by expression of the
RIG-1 RD (WT) alone, but not the mutant RD (K888E) (Figure S5E).
Furthermore, HBV replication was also suppressed by expres-
sion of the RIG-I RD (WT) in Huh-7.5 cells, wherein any IFN induc-
tion is not observed, while the mutant RD (K888E) did not affect
viral replication (Figure 5F). These findings revealed another
aspect of RIG-I as a direct antiviral factor through its interference
with the binding of HBV P protein to pgRNA in an IFN pathway-
independent manner.

The ¢RNA Restricts HBY Replication in Human
Hepatocyte-Chimeric Mice

Lastly, based on the above results, we tried to harness the ther-
apeutic potential of the P protein-interacting eRNA for the control
of HBV infection. A vector was designed to include a 63 bp DNA
oligo, which is transcribed into an ¢éRNA. We confirmed in the
in vitro experiments using Huh-7.5 cells that eRNA induced by
this vector-driven expression is capable to function as a decoy
RNA to interfere with the binding of HBV P protein to pgRNA
and to inhibit viral replication in an IFN-independent manner (Fig-
ures 6A and 6B, left). On the other hand, eRNA did not show any
difference in HCV replication as compared with control (Fig-
ure 6B, right). In order to evaluate the therapeutic efficacy of
eRNA in vivo, we exploited HBV infection model of human
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Figure 5. RIG-I Functions as an Antiviral
Factor by Counteracting the Interaction of
HBV P Protein with pgRNA

(A) gPCR analysis of copy numbers of encapsi-
dated HBV DNA (left) and qRT-PCR analysis of
RIG-I (middie) and IFNL T mRNA (right) in control or
RIG-I siRNA-treated PHH after 10 days of infection
with HBV-C. '

(B) FRET analysis for the interaction between YFP-
tagged P protein (YFP-P) or YFP and eRNA-ROX
as described in Figure 4B. Scale bar represents -
20 pum. Arrowheads indicate area showing high
FRET efficiency.

(C) HEK293T cell lysates expressing pgRNA and
HA-tagged P protein (HA-P) were incubated with
the indicated amount of recombinant RIG-I
(rRIG-1). The interaction of pgRNA with HA-P was
analyzed by RIP assay and gRT-PCR analysis as
described in Figure 4C.

(D) Cell lysates from Huh-7.5 cells expressing HBV
pgRNA, HA-P, and Flag-RIG-! or its mutants as
indicated were subjected to RIP assay for the
characterization of the capability of RIG- to
counteract the interaction of pgRNA with HA-P, as
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hepatocyte-chimeric mice. HBV-infected mice underwent intra-
venous administration with the eRNA expression vector loaded
in a liposomal carrier, a multifunctional envelope-type nanode-
vice (MEND) for efficient delivery, for 2 weeks. Treatment with
eRNA-MEND significantly suppressed the elevation of the num-
ber of viral genome copies in the sera by less than one tenth of
those for control mice (Figure 6C). Consistently, immunofiuores-
cence analyses showed that the expression of HBV core antigen
(HBcAgQ) in the liver tissues of eRNA-MEND-treated chimeric
mice was remarkably reduced as compared with those of control
mice (Figure 8D).

DISCUSSION

The innate immune system acts as a front line of host defense
against viral infection. In this step, PRRs play a crucial role in
the recognition of invading viruses. In particular, nucleic acid
sensing of viruses is central to the initiation of antiviral immune
responses. In this study, we tried to seek for a relevant nucleic
acid sensor(s) for HBV and to characterize the IFN response dur-
ing HBV infection. As a result, we have identified RIG-I as an
important innate sensor of HBV to predominantly induce type
lit IFNs in hepatocytes through its recognition of the 5'-¢ stem-

described in fFigure 4C.

(E) The effect of IFN-1 treatment on the interac-
tion of pgRNA with HA-P in Huh-7.5 cells was
assessed by RIP assay. Huh-7.5 cells expressing
both pgRNA and HA-P were treated with rIFN-)1
(100 ng/ml) for 24 hr, and subjected to RIP assay
as described in Figure 4C. RIG-I dependency was
also determined by RIG-1 knockdown analysis.
(F) Huh-7.5 cells were ftransfected with an
expression vector for RIG-1 RD (WT) or RD (K888E),
together with the HBV-Ae genome. After 72 hr of
transfection, copy numbers of encapsidated HBV
DNA were measured (left), as described in (A).
Expression of Flag-RIG-| RD (WT) and RD (K888E)
(right). *p < 0.05 and **p < 0.01 versus control. NS,
not significant. See also Figure 85.

loop of HBV pgRNA (Figures 1, 2, 3, and 4). In this respect, there
have also been several reports showing that HBV X or P protein
interacts with MAVS or competes for DDX3 binding with TBK1,
respectively (Wei et al., 2010; Wang and Ryu, 2010; Yu et al,
2010), and inhibits RIG-I-mediated type | IFN pathway, which
possibly enables HBV to evade from antiviral innate immune
response. This would mirror the important role of RIG-I-mediated
signaling for antiviral defense against HBV infection, although
further investigation will be required to determine whether other
sensing molecules except for RIG-| are engaged in the activation
of innate responses in other cell types including dendritic cell
subsets. Interestingly, Lu et al. have recently showed that the
genotype D of HBV is sensed by MDAS, but not RIG-I, which is
based only upon the analyses with HBV genome (2-fold) plasmid
transfection in a single cell line Huh-7 (Lu and Liao, 2013). In this
respect, we presume that such seemingly contradictory results
might arise mainly from the difference in HBV genotype: It has
been reported that the genotype D is phylogenetically different
from the genotypes A, B, and C, which we analyzed in this study
(Kato et al., 2002).

In addition, according to our results (Figure 1C and $1C), HBV-
induced type lll IFN response does not seem to be efficient as
compared with the case with NDV infection. We speculate that
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the weakness of the IFN response during HBV infection might
attribute at least in part to these viral evasions from host-cell
control, which would be supported by our preliminary data
showing that one HBV mutant, which generates viral RNAs
including pgRNA but lacks the ability to express whole viral
proteins including HBV X and P proteins, can induce higher
amounts of IFN-A1 than intact HBV (Figure S1G). In relevance
with this, our present data indicate that the interaction of HBV
P protein with the 5'-¢ stem-loop affects the RIG-I-mediated
recognition of viral pgRNA and the subsequent downstream
signaling events, which might likely suppress the induction of
IFN-As. This might provide an aspect of HBV P protein in terms
of viral evasion from RIG-I activation. As for the mechanism for
the preferential induction of type Ill IFNs in hepatocytes in
response to HBV, as well as HCV (Nakagawa et al., 2013; Park
et al.,, 2012), we might speculate the existence of a hepato-
cyte-specific factor(s), which is selectively involved in type i
IFN gene induction, although this issue merits further investiga-
tion including epigenetic evaluation of human hepatocytes. We
also found that either of the 5'- or 3'-e region of pgRNA could
interact with RIG-1 but it was only the 5'-¢ region that contributed
to the induction of IFN-)1 (Figures 3D and S4A). In this respect,
we presume that some cofactor(s) might additionally determine
the preferential use of the 5'-¢ region for RIG-1 activation; how-
ever, it would be a next interesting issue to be solved. In addition
to this, our data demonstrated a hitherto-unidentified function of
RIG-I as a direct antiviral factor against HBV infection (Figure 5).
Mechanistically, RIG-I was found to counteract the accessibility
of HBV P protein to the 5'-¢ stem-loop of pgRNA, which is an
important process for the initiation of viral replication (Bar-
tenschlager and Schaller, 1982). As is the case with this, several
viral PAMPs known to be recognized by RIG-I, for example, the
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Figure 6. Inhibition of HBV Replication by
NS «ANA

(A) Huh-7.5 cells were transfected with expression
vectars for HA-P and eRNA, together with the
HBV-Ae genome. RIP assay was performed to
evaluate the effect of eRNA on the interaction
between HA-P and pgRNA, as described in
Figure 5D.

(B) Copy numbers of encapsidated HBV DNA in
Huh-7.5 cells expressing the HBV-Ae genome and
eRNA, as determined by gPCR (left). HCV repli-
cation in Huh-7.5.1/Rep-Feo-1b cells expressing
£RNA, as determined by luciferase assay {right).
(C) HBV-infected mice were intravenously admin-
istrated with the ¢eRNA expression vector (eRNA-
MEND) or empty vector (Control-MEND) loaded in
liposomal carrier at a dose of 0.5 mg/kg of body
weight every 2 days for 14 days. Serum HBV DNA
in HBV-infected chimeric mice was determined by
qPCR (n = 3 per group). Day O indicates the time of
the initiation of administration.

(D) Immunofiuorescence imaging was performed
for the detection of HBcAg (red) and human al-
bumin (green) in the liver sections of HBV-infected
chimeric mice at 14 days after treatment with
eRNA-MEND or Control-MEND as described in
Experimental Procedures. Data are presented as
mean and SD (n = 3) and are representative of at
least three independent experiments. *p < 0.01
versus control. NS, not significant.

poly-U/UC tract in the 8" nontranslated region of HCV genome
(Saito et al.,, 2008) and 5 terminal region of influenza virus
genome (Baum et al., 2010) were previously reported to be
directly or indirectly critical for viral replication (You and Rice,
2008; Huang et al., 2005; Moeller et al., 2012). In this respect,
one could envisage that such an exquisite targeting by RIG-I
would confer a unique machinery to ensure efficient antiviral
activities of RIG-1. Therefore, RIG-I is likely to play dual roles as
an innate sensor and as a direct antiviral effector for host defense
during viral infection.

In relation to the evaluation of the experiments shown in Fig-
ures 6C and 6D, we additionally analyzed the following points:
When we treated HepG2 cells with eRNA-MEND or Control-
MEND, in both cases we hardly detected the massive induction
of cytokines such as TNF, IL6, and CXCL710 (data not shown).
This was further confirmed by analyzing SCID mice injected
with eRNA-MEND or Control-MEND (data not shown). In addi-
tion, eRNA-MEND has the specific effect on the replication of
HBV, but not HCV in Huh-7.5 cells (Figure 6B). These data
suggest that the results (Figures 6C and 6D) might not be
mainly influenced by massive production of antiviral cytokines,
although the cross-reactivity of cytokines should be still care-
fully considered. Therefore, it is presumed that the effect of
eRNA might be based on not only its antagonistic activity but
also its cytokine-inducing activity. These findings might afford
a new therapeutic modality in replace of conventional antiviral
drugs that have been reported to have a risk to develop drug-
resistance HBV (Song et al., 2012). The present study might
provide a better approach to the sirategy for development of
nucleic acid medicine and offer an attractive clinical option for
the therapy against not only HBV but also possibly other virus
infections.



