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Figure 7. A model summarizing activation of tumor-suppressor miRNAs by SAHA and DZNep. In cancer cells, tumor-suppressor miRNAs are
silenced by a repressive chromatin structure involving H3K27me3 mediated by chromatin-modifying factors including EZH2. Treatment with
SAHA and/or DZNep suppresses EZH2 expression and reduces the level of H3K27 methylation, leading to creation of an active chromatin
structure and allowing p53 to bind to the promoter region of miR-1246. Tumor-suppressor miRNAs such as miR-1246, miR-302a and miR-4448
are activated and suppress their cancer-related target genes, resulting in induction of apoptosis and G1/S arrest in cancer cells and inhibition

of their migration.

with an ultra-low attachment surface. The AGS and HepG2 cells were
plated at 200 and 500 per well, respectively. Fresh culture medium was
added on day 5 of the culture period. The number of spheroids was
counted 10 days after drug treatment. Experiments were carried out in
triplicate.

Wound-healing assay

The migration of AGS and HepG2 cells was measured by a wound-healing
assay. AGS and HepG2 cells were seeded and grown to ~80% confluence
in medium supplemented with 10% FBS and treated with 1 um SAHA and
5 um DZNep for 72 h. Then a wound was created across the center of the
well by scratching with the tip of a 1000-pl pipette. The wells were then
washed twice with medium and replenished with fresh culture medium
containing 5 pm DZNep. The cells were then allowed to migrate for 72h,
after which they were fixed with 3.7% paraformaldehyde and stained with
1% Crystal Violet in 2% ethanol. Three randomly selected sites per well
were photographed, and the area of the wound was quantified using
Image J software. The migration of cells was evaluated from the width of
the wounded area or by counting the number of migrated cells.
Experiments were performed in triplicate.

Statistical analysis

For statistical analysis, the unpaired t-test was used. Differences at P<0.05
were considered significant. All error bars represent s.d.
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Antigen—immunoglobulin M immune complexes:
An important biomarker in chronic liver diseases?

See article in Hepatology Research 44: 1008-1018

infected patients with cirrhosis

Guido Rasi

Detection of high levels of Survivin-immunoglobulin M immune complex in sera from hepatitis C virus

Claudia Matteucci, Roberta Sorrentino, Lia Bellis, Giuseppe Maria Ettorre, Valentina Svicher, Roberto Santoro,
Giovanni Vennarecci, Alessandra Biasiolo, Patrizia Pontisso, Daria Scacciatelli, Luca Beneduce, Cesare
Sarrecchia, Paolo Casalino, Sergio Bernardini, Pasquale Pierimarchi, Enrico Garaci, Claudio Puoti and

Recently, the importance of natural immunoglobulin
(Ig)M in immunity, especially autoimmunity, has been
recognized.' IgM is known to be the primary antibody
produced during the immune response. It exists both as
a membrane-bound form, found on the surface of B
cells, and a secreted form (Fig. 1). Membrane-bound
IgM is necessary for the formation of B-cell receptors
and plays an important role in B-cell survival. IgM
binds to B cells through a specific Fc receptor (FcuR)
that has recently been identified on human lympho-
cytes, and participates in the regulation of autoimmu-
nity by enhancement of the B-cell response and antigen
presentation.?

The secreted form of IgM (sIgM), which is pentameric
in structure has several unique functions. sIgM is known
to be involved in early recognition and elimination of
external invaders such as bacteria and viruses. Aside
from its well-known role in the immune response, sigM
also acts as a natural IgM (Fig. 1). Pentameric IgM has a
central protruding region where the complement com-
ponent C1q binds, and C1q recruitment in turn exerts
many of the same effects as natural IgM, such as the
removal of apoptotic cells.® Although the mechanisms
of antibody-dependent phagocytosis for IgG have been
investigated in greater detail, little is known about IgM-
mediated phagocytosis. In addition to the removal of
apoptotic bodies, mounting evidence indicates that
natural IgM is also involved in immune surveillance
mechanisms against precancerous and cancerous cells,
probably through the phagocytic process.

Natural IgM first attaches to apoptotic cells through
N-glycans in the IgM constant region and then recruits
mannose-binding lectin (MBL) (Fig. 2). Natural IgM

940

with Clq and MBL connects phagocytes to apoptotic
cells and plays an important role in the clearance of
apoptotic cells. These findings have been obtained from
studies in mice genetically deficient in sIgM or Clq,
which develop autoimmune phenomena and athero-
sclerosis.*” Natural IgM can bind to several autoantigens
expressed by apoptotic cells, such as phospholipids,
thereby facilitating their clearance and preventing auto-
immunity.® Antigenic targets present in atherosclerotic
plaques, such as oxidized low-density lipoprotein, are
also bound by natural IgM. IgM also promotes the clear-
ance of small particles by macrophages,® such as urate
crystals. However, the effects of sIgM are not always
protective in autoimmunity or inflammation.

As described above, autoantigens or altered self may
be recognized by the sigM-mediated phagocytic process
especially during carcinogenesis arising from chronic
inflammation. Several circulating antigen-IgM immune
complexes (IC) have been utilized as disease biomarkers
in several cancers, however, it is unclear whether
slgM-mediated phagocytosis directly correlates with
the formation of antigen-IgM IC. Pontisso and col-
leagues found that the squamous cell carcinoma
antigen (SCCA) variants, SCCA-1, SCCA-2 and SCCA-
PD (members of the serpin superfamily), were
overexpressed in surgically resected hepatocellular car-
cinoma (HCC) specimens analyzed by immunohisto-
chemistry, but not in normal livers.” SCCA, a serine
protease, is found in the spinous and granular layers of
normal squamous epithelium, but is expressed by neo-
plastic cells of epithelial origin. SCCA-1 and SCCA-2
protect neoplastic cells from apoptosis induced by
several stimuli. Beneduce and associates examined the

© 2014 The Japan Society of Hepatology
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Figure 1 Various forms of IgM and their function. IgM is categorized into membrane-bound form and secreted form. Secreted form
of IgM is further categorized into natural IgM (polyreactive) and immune IgM. Natural IgM plays a role in clearance of apoptotic cells.

levels of SCCA, in its free form and complexed with Ig,
relative to the levels of o-fetoprotein (AFP) in serum
from patients with chronic liver diseases including
HCC. SCCA-IgM IC were found in 42% of HCC
patients, 26% of cirrhotic patients and 18% of chronic
hepatitis patients; however, free SCCA, free anti-SCCA
IgG and IgM, and SCCA-IgG IC were not detected in
patients or healthy control subjects. They concluded
that SCCA-IgM IC, alone or in combination with AFP,

C1igR: C1q receptor
MBL: mannose-binding lectin

Figure 2 Schematic representation of IgM-inducing apoptotic
cell clearance. Natural IgM first attaches to apoptotic cells
through N-glycans in the IgM constant region and then recruits
mannose-binding lectin (MBL). Natural IgM with Clqg and
MBL connects phagocytes to apoptotic cells and plays an
important role in the dearance of apoptotic cells. (Modified
from the figure appeared in Ehrenstein and Notley').

represent novel biomarkers for diagnosing HCC.? Sub-
sequently, antigen-IgM IC, such as SCCA-IgM IC, AFP-
IgM IC and carcinoembryonic antigen-IgM IC, have
been investigated as biomarkers for detecting early
cancers.”'? These studies have suggested that antigen-
IgM IC are important biomarkers in chronic liver dis-
eases. Biasiolo and coworkers suggested that monitoring
SCCA-IgM levels over time would identify patients
with chronic hepatitis at higher risk for cirrhosis
development.”

Survivin is an inhibitor of apoptosis and its expres-
sion has been extensively evaluated in cancer, but its
expression and function in normal tissues are not well
documented. Survivin was originally detected in non-
malignant tissues, namely, normal adult thymus and
placenta; however, subsequent studies using more sensi-
tive assay methods have shown that many adult tissues
express survivin, although at much lower levels than in
cancer cells.” Llovet and colleagues reported that gene
transcriptional profiles of a three-gene set including
survivin enabled reliable diagnostic differentiation of
dysplastic nodules from early HCC.”® Thus, survivin is
thought to be an important biomarker of late-stage
chronic liver diseases. Yagishita and coworkers demon-
strated elevated anti-survivin antibodies in patients with
chronic viral hepatitis, and titers were higher in patients
with HCC than in those with chronic hepatitis infected
with hepatitis B virus and hepatitis C virus (HCV).!¢

In this issue of Hepatology Research, Matteucci and
associates suggested that survivin-IgM IC could serve as
potent diagnostic markers for liver cirrhosis in patients
with chronic HCV infection. It is very interesting that
both SCCA and survivin are inhibitors of apoptosis, and

© 2014 The Japan Society of Hepatology
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their expression may be gradually induced in chroni-
cally injured tissues like the liver in patients with
chronic hepatitis, resulting sequentially in resistance of
cells against apoptosis, induction of dysplastic cells and
finally induction of HCC cells. The authors directed
their attention to antigen-IgM IC as an early diagnostic
marker and they chose survivin as the target antigen.
They showed that survivin-IgM IC was increased in
patients with chronic liver diseases, and among patients
with cirrhosis, those with HCV infection showed the
highest levels of surviving-IgM IC, which conversely
decreased in HCC patients. These results raise two ques-
tions: (i) why was the titer of IC higher in patients with
cirthosis than in those with HCC; and (ii) why were the
correlations seen only in patients with HCV infection?
As for the first question, the titer decreased with increas-
ing Child-Pugh scores, which suggests that either
survivin expression in the liver and detection by
immune surveillance or the production of IgM occurred
earlier than expected, and the titer of IC peaked during
the cirrhotic phase, earlier than development of HCC.
After cirrhosis develops, the immune reaction against
survivin may be weakened as a result of the develop-
ment of immune tolerance. The simultaneous measure-
ment of the antigen and antibodies themselves, as well
as IC, may resolve this question. With regard to the
second question, the correlations are seen only in
patients with HCV infection, and cases such as these
have been seldom described in the published work.
Hsieh and colleagues explored the association between
survivin gene polymorphisms and the risk and diagnos-
tic progress of HCC in Taiwanese patients.'” They found
that the risk of HCC development was correlated with
+9809 C/C versus TT/TC genotypes of the survivin gene.
The +9809 C/C polymorphism exhibited a significant
low risk (0.525-fold) for HCC, and, surprisingly, HCV
antibody positivity was low (0.214-fold) for this allele.
Thus, a correlation may exist between HCV infection
and survivin polymorphisms. Jiang and associates inves-
tigated the signal transduction pathways mediating
HCV NS5A protein by transfecting the corresponding
gene into HepG2 cells and performing microarray
analyses. They found that HCV NS5A protein enhanced
survivin transcription by increasing p53 degradation
and stimulating NOS2A expression as well as nuclear
factor-kB relocation to the nucleus.'® These results indi-
cate that HCV infection is correlated with survivin
expression. Thus, there may be several reasons why the
dynamism of survivin-IgM IC in the sera of patients
with chronic liver diseases was seen only in cases with
HCV infection.

© 2014 The Japan Society of Hepatology
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Survivin—-IgM 1C appear to have potent diagnostic
power in patients with chronic liver diseases. Additional
studies to investigate the role of survivin-IgM IC in liver
disease are anticipated.

Hidetsugu Saito
Faculty of Pharmacy, Keio University, Tokyo, Japan
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Non-alcoholic steatohepatitis (NASH) has emerged as a common cause of chronic
liver disease and virus-independent hepatocellular carcinoma (HCC) in patients
with obesity, diabetes, and metabolic syndrome. To reveal the molecular mecha-
nism underlying hepatocarcinogenesis from NASH, microRNA (miRNA} expression
profiles were analyzed in STAM mice, a NASH-HCC animal model. MicroRNA
expression was also examined in 42 clinical samples of HCC tissue. Histopatholog-
ical images of the liver of STAM mice at the ages of 6, 8, 12, and 18 weeks
showed findings compatible with fatty liver, NASH, liver cirrhosis (LC), and HCC,
respectively. Expression of miR-122 in non-tumor LC at the age of 18 weeks was
significantly lower than that in LC at the age of 12 weeks. Expression of miR-122
was further decreased in HCCs relative to non-tumor LC at the age of 18 weeks.
Expression of miR-122 was also decreased in clinical samples of liver tissue show-
ing macrovesicular steatosis and HCC, being consistent with the findings in the
NASH model mice. DNA methylation analysis revealed that silencing of miR-122
was not mediated by DNA hypermethylation of the promoter region. These
results suggest that silencing of miR-122 is an early event during hepatocarcino-
genesis from NASH, and that miR-122 could be a novel molecular marker for eval-

doi: 10.1111/cas.12498

H epatocellular carcinoma is the most common type of
liver cancer. Most cases of HCC are secondary to either
chronic hepatitis or liver cirthosis caused by viral infection
(hepatitis B or C) or alcoholism. Hepatocellular carcinoma
accounts for 85-90% of all primary liver cancers and is one of
the most lethal, affecting many of the world’s population.""?
Despite improvements in the treatment of viral infections, such
as interferon therapy, the incidence of HCC is still increasing
in parallel with the increased incidence of obesity, diabetes
mellitus, and metabolic syndrome.”” Recently, NAFLD has
emerged as a common cause of chronic liver disease in
patients with metabolic syndrome.® Non-alcoholic steatohepa-
titis is a more severe form of NAFLD and is defined by the
presence of steatosis with inflammation and progressive fibro-
sis, leading to LC and HCC. Non-alcoholic steatohepatitis may
account for a large proportion of virus-independent HCC in
developing countries.“> However, the molecular mechanism
underlying hepatocarcinogenesis from NAFLD and NASH is
poorly understood.

MicroRNAs are small non-coding RNAs that function as
endogenous silencers of various target genes. MicroRNAs are
expressed in a tissue-specific manner and play important roles
in cell differentiation, proliferation, and metabolism.®” Links
between miRNAs and the initiation and development of

Cancer Sci | October 2014 | vol. 105 | no. 10 | 1254-1260

uating the risk of HCC in patients with NASH.

cancer and metabolic disorders are becoming increasingly
apparent.”™® We have recently reported that the important
tumor suppressor miRNAs are regulated by epigenetic altera-
tions such as DNA methylation and histone modification at
their CpG island promoters.*® Regulation of miRNAs by
chromatin-modifying drugs may be a novel therapeutic
approach for malignant disorders.'%'® Despite these discover-
ies, little is known about the roles of miRNAs in NASH-asso-
ciated hepatocarcinogenesis.

To reveal the roles of miRNAs during hepatocarcinogenesis
from NAFLD and NASH, we examined miRNA expression
profiles in NASH-HCC model mice. In the present study, we
used STAM mice as a NASH-HCC model."*!> Here we show
that the liver-specific miroRNA-122 (miR-122) gene is down-
regulated at the early stage of hepatocarcinogenesis from
NASH in both an animal model and samples of human tissue.

10—

Materials and Methods

Animals and experimental design. STAM mice (Stelic Insti-
tute & Co., Tokyo, Japan) were used as a NASH-HCC model
in the present study. STAM mice were established as described
previously.?® In brief, 2-day-old male C57BL/6J pups were
injected with streptozotocin (200 pg per mouse) and fed
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a high-fat diet (HFD-32; Clea, Tokyo, Japan) from the age of
4 weeks. This mouse model shows progression of NAFLD to
NASH at 8 weeks of age, and to HCC at 18 weeks of age. A
total of 14 STAM mice were purchased, and those used as a
model for NAFLD, NASH, LC, and HCC were killed and dis-
sected at the ages of 6 (n=4), 8 (n=4), 12 (n = 2), and 18
(n = 4) weeks, respectively. C57BL/6] mice were used as
controls. Tissue samples and blood were obtained from both
control and - STAM mice. Histological and biochemical
examinations were carried out as described previously.?® All
animals had free access to water and food and were main-
tained in a temperature-controlled specific pathogen-free ani-
mal facility. All experiments and procedures were approved by
the Keio University Animal Research Committee.

Patients and tissue specimens. A total of 42 clinical samples
of HCC were examined. Tissue specimens from HCCs and
their surrounding non-tumor liver tissues were obtained from
materials surgically resected from 42 patients (HCV-positive,
22; HBV-positive, 6; non-B/non-C, 14) at the National Cancer
Center Hospital (Tokyo, Japan). Non-B/non-C HCC patients
were further divided into two groups according to the grade of
macrovesicular steatosis in the non-tumor liver tissue, as
reported previously (grade 0, 5; grade 1-3, 9).97 This study
was approved by the Ethics Committees of the National Can-
cer Center and Keio University. Written informed consent was
obtained from all of the patients.

Cell lines and drug treatment. The human liver cancer cell
lines HepG2 and HuH7 were used in this study. HepG2 was
obtained from Riken Cell Bank (Tsukuba, Japan), and HuH7
from the ATCC (Rockville, MD, USA). Both cell lines were
cultured in DMEM (Life Technologies, Carlsbad, CA, USA)
supplemented with 10% FBS, and seeded at 1 x 10° cells
per 100-mm dish 24 h prior to treatment with 1 or 3 uM
5-Aza-CdR (Sigma-Aldrich St Louis, MO, USA). The 5-Aza-
CdR was removed from the culture medium at 24 h, and
regular medium was used thereafter.

RNA extraction and microarray analyses. Total RNAs from
liver tissues of STAM mice and liver cancer cell lines were
extracted using the mirVana miRNA isolation kit (Life Tech-
nologies). Total RNAs from clinical HCC samples and
matched non-tumor liver tissues were extracted using TRIzol
reagent (Life Technologies). MicroRNA microarray analyses
were carried out by Toray Industries (Tokyo, Japan). The
microarray chips used contained probe regions that detected
1135 (Toray Industries) miRNA transcripts listed in Sanger
miRBase Release 17.0. Multiple probes for each miRNA were
included, and the average values of their signal intensities
were compared. All data were submitted to the Gene Expres-
sion Omnibus under the accession number GSE52822.

Quantitative RT-PCR of miRNA. Levels of miRNA expression
were analyzed by quantitative RT-PCR using the TagMan
miRNA assay for human/mouse miR-122 (Life Technologies)
in accordance with the manufacturer’s instructions. Expression
levels were normalized to U6 RNA.

DNA methylation assay. Genomic DNA was extracted with a
QIAamp DNA Mini Kit (Qiagen Hilden, Germany) and bisul-
fite conversion was carried out with an Epitect Bisulfite Kit
(Qiagen). DNA methylation levels were analyzed by pyrose-
quencing using PyroMark Q24 (Qiagen) in accordance with
the manufacturer’s instructions. The sequences of the primers
used are shown in Table S1. As controls for human methylated
and unmethylated DNAs, EpiTect methylated and unmethylat-
ed control DNAs were purchased from Qiagen. DNA extracted
from normal mouse liver tissue was treated with Sss I methyl-
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ase (in vitro methylated DNA: IVD), which was used as a con-
trol for mouse methylated DNA.

Luciferase promoter assay. A miR-122 promoter assay was
carried out using a Dual Luciferase Reporter Assay System
(Promega Madison, WI, USA). Fragments of the human miR-
122 promoter with or without the DR-1 and DR-2 elements
were inserted between Sacl and HindIll sites within pGL4.10
(Promega). Plasmids (475 ng) with or without Sss I CpG
methylase (New England Biolabs, Ipswich, MA, USA) treat-
ment were cotransfected with a Renilla luciferase expression
vector (pRL-CMV, 25 ng) into HepG2 cells using Lipofec-
tamine 3000 (Life Technologies). Forty-eight hours after trans-
fection, luciferase activities were measured.

Statistics. Data were analyzed using the spss statistical soft-
ware package version 21.0. Differences at P < 0.05 were con-
sidered significant. All data are represented as average + SD.

Results

Clinicopathological findings in NASH-HCC model mice. To
investigate the molecular mechanism underlying hepatocarci-
nogenesis from NASH, we used the STAM mouse, which is a
simple model system using C57BL/6J mice for inducing
NASH-HCC in a diabetic background through a combination
of chemical and dietary interventions.('*' Figure 1(a) shows
age-dependent changes in body and liver weight in STAM and
control mice. Control mice showed age-dependent body weight
gain, whereas STAM mice showed no body weight gain. The
average body weight of control mice was significantly higher
than that of STAM mice (P < 0.01). In contrast, the average
liver weight in STAM mice was significantly higher than that
in control mice (P <0.05). STAM mice at the age of
18 weeks, which developed HCC, showed especially promi-
nent hepatomegaly. Serum AST and ALT levels were mark-
edly increased in STAM mice at the age of 18 weeks
(Fig. 1b), suggesting that hepatocytes had been severely dam-
aged by the development of HCC. The average levels of serum
total cholesterol and triglyceride in STAM mice were signifi-
cantly higher than those in control mice (Fig. 1b; P < 0.001
and P < 0.05, respectively). Hematoxylin—eosin, Azan, and
Sirius red staining showed fatty liver with moderate inflamma-
tory infiltrates including neutrophils, lymphocytes, and mono-
cytes, and ballooning degeneration of hepatocytes at the age of
8 weeks (Fig. 2a). Azan and Sirius red staining indicated liver
fibrosis at the age of 12 weeks (Fig. 2a). At the age of
18 weeks, the liver of NASH-HCC model mice macroscopi-
cally showed a granular surface and tumor protrusion
(Fig. 2b). We confirmed that these tumors were pathologically
compatible with HCC (Fig. 2c).

MicroRNA-122 is downregulated in HCC derived from NASH
model mice. To determine aberrantly expressed miRNAs in
HCC derived from NASH, we carried out microarray analyses
using HCCs and non-tumor liver tissues in STAM mice. As
shown in Figure 3(a), the results of microarray analysis indi-
cated that some miRNAs including miR-31, miR-122, and miR-
203 were downregulated in HCCs relative to non-tumor liver tis-
sues. Among these miRNAs, we focused on miR-122, because
recent studies have reported that miR-122 is the liver-specific
miRNA that modulates HCV replication and is d’ownre%ulated in
HCCs with modulation of its target gene, cyclin G1.0820

To confirm the microarray data, we carried out a TagMan
quantitative RT-PCR analysis of miR-122 expression in the
liver tissues of STAM mice at the ages of 6, 8, and 12 weeks,
as well as HCCs and non-tumor LC tissues at the age of
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Fig. 1. Body and liver weight and biochemical
examination of STAM mice. (a) Body and liver
weight of control and STAM mice at the ages of 6,
8, 12, and 18 weeks. Blank and filled bars represent
the average +SD of control and STAM mice,
respectively. (b) Biochemical examination of serum
AST, ALT, total cholesterol (T-Cho), and triglyceride
(TG) in STAM mice at the ages of 6, 8 12, and

6 weeks 8 weeks 12 weeks 18 weeks

18 weeks (Fig. 3b). There was no significant difference in
miR-122 expression among normal liver tissues of control mice
and fatty liver (6 weeks), NASH (8 weeks), and LC
(12 weeks) tissues in STAM mice. In contrast, miR-122
expression in non-tumor LC at the age of 18 weeks was signif-
icantly lower than that in LC at the age of 12 weeks in STAM
mice. MicroRNA-122 expression was further decreased in
HCCs relative to non-tumor LC tissues at the age of 18 weeks
in STAM mice (P < 0.05, Fig. 3b). This result was consistent
with the microarray data.

Expression levels of miR-122 in clinical samples of HCC tis-
sue. We examined levels of miR-122 expression in 42 clinical
samples of HCC. Specimens of HCC tissue and the surround-
ing non-tumor liver tissues were obtained from materials surgi-
cally resected from 42 HCC patients (HCV-positive, 22; HBV-
positive, 6; non-B/non-C, 14). Histological diagnosis of NASH
in the liver of HCC patients is difficult, because it is consid-
ered that liver steatosis is decreased after progression to LC
and HCC. In addition, HCC patients usually require food
restriction before surgery, which may reduce their liver steato-
sis. A previous report has graded macrovesicular steatosis from
0 to 3 based on the percentage of hepatocytes showing steato-
sis (0, none; 1, <33%; 2, 33-66%; 3, >66%).1” We divided
the non-B/non-C group into two according to the grade of
macrovesicular steatosis in the non-tumor liver tissues. We
considered grades 1-3 to be steatosis(+) (n = 9) and grade O to
be steatosis(—) (n = 5). Figure 4(a) shows the histological
appearance of non-tumor liver tissue showing steatosis in non-
B/non-C patients. The liver steatosis in this case was consid-

© 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd
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18 weeks. Blank and filled bars represent the
average £SD for control and STAM mice,
respectively.

ered to be grade 3 (macrovesicular steatosis >66%), and portal
chronic inflammation and pericellular fibrosis were confirmed.

As shown in Figure 4(b), the average levels of miR-122
expression were lower in HCC tissues than in non-tumor liver
tissues in patients with HBV and HCV infection, and in non-B
/non-C patients without liver steatosis. In particular, the aver-
age level of miR-122 expression in HCCs was significantly
reduced relative to the non-tumor liver tissues in HCV-positive
patients (P < 0.05). On the other hand, miR-122 expression in
non-tumor liver tissues with steatosis in non-B/non-C patients
was significantly reduced in comparison to that without steato-
sis (P < 0.05). Thus, miR-122 expression is reduced in liver
showing macrovesicular steatosis and HCCs, consistent with
the findings in NASH model mice. These results suggest that
miR-122 is downregulated at the early stage during hepatocar-
cinogenesis from NASH.

DNA methylation status of the miR-122 promoter region in
liver cancer cell lines and HCC tissues. To reveal the molecular
mechanism underlying regulation of miR-122, we analyzed the
DNA methylation status of the miR-122 promoter region,
which contains a TATA-box, a CCAAT-box, and DR-1 and
DR-2 elements® (Fig. 5a). We carried out the promoter assay
using fragments of the human miR-122 promoter with or with-
out the DR-1 and DR-2 elements (Fig. 5b). Plasmids with or
without Sss I CpG methylase treatment were used to cotrans-
fect HepG2 cells with the Renilla luciferase expression vector.
Forty-eight hours after transfection, luciferase activities were
measured. The relative luciferase activity of the construct con-
taining the DR-1 and DR-2 elements was significantly higher
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Fig. 2. Histopathological images of the liver of
STAM mice. (a) Histopathological images in the NASH-
liver of control (12 weeks) and STAM mice (8 and HCC

12 weeks). Hematoxylin—eosin (HE), Azan, and Sirius
red staining showed fatty liver with moderate
inflammatory  infiltrate  include  neutrophils,
lymphocytes, and monocytes, and ballooning
degeneration of hepatocytes in STAM mice at the
age of 8 weeks. Azan and Sirius red staining
showed liver fibrosis in STAM mice at the age of
12 weeks. (b) Macroscopic appearance of the liver
in STAM mice at the age of 18 weeks. The liver of
STAM mice showed a granular surface and tumor
protrusion. (c) HE staining of the liver in STAM mice

(18 weeks)

(c)

NASH-
HCC

(18 weeks) §
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HE Azan

Sirius red

at the age of 18 weeks. Tumors are pathologically
compatible with hepatocellular carcinoma (HCC)
(arrows). NASH, non-alcoholic steatohepatitis.

than that of the construct lacking these elements (*P < 0.01,
Fig. 5b). After treatment with CpG methylase, the relative lucif-
erase activities were significantly decreased in the constructs
both with and without the DR-1 and DR-2 elements
(**P < 0.005, Fig. 5b). These results indicate that the DR-1 and
DR-2 elements in the miR-122 promoter are essential for regula-
tion of miR-122 expression and that DNA methylation around
the DR-1 and DR-2 elements suppress miR-122 expression.

We analyzed the DNA methylation status of human HCC
samples by bisulfite pyrosequencing. For this, we designed
three sets of primers (P1, P2, and P3) to determine DNA meth-
ylation status at the CpG sites, indicated by asterisks in Fig-
ure 5(a). As shown in Figure 6(a), the levels of DNA
methylation in the P1 and P2 regions were very high in both
HepG2 and HuH7 cells, and were decreased to ~70% after
treatment with 5-Aza-CdR. The P3 region was not methylated
in HuH7 cells, whereas it was highly methylated in HepG2
cells, and was decreased to ~60% after 5-Aza-CdR treatment.
The expression level of miR-122 was much higher in HuH7
cells than in HepG2 cells (Fig. 6b). The expression of miR-
122 was significantly increased after 5-Aza-CdR treatment in
HepG2 cells, whereas there was no significant difference after
5-Aza-CdR treatment in HuH7 cells (Fig. 6b). These findings
indicate that DNA methylation of the P3 region is critical for
regulation of miR-122 expression.
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We next examined DNA methylation levels in samples of
human HCC with different types of etiology, as shown in Fig-
ure 6(c). DNA methylation levels in samples of human HCC
tissue were lower (~30%) than those in non-tumor liver tissues
in all regions of the miR-122 promoter. In particular, the aver-
age levels of DNA methylation in the miR-122 promoter
region were significantly reduced in HCC tissues relative to
non-tumor liver tissues in non-B/non-C patients without liver
steatosis and in HCV-positive patients (Fig. 6¢). We also
examined levels of DNA methylation in the miR-122 promoter
region in non-tumor LC tissues and HCCs of STAM mice, as
well as normal liver tissues obtained from C57BL/6J mice. As
shown in Figure 6(d), there was no significant difference in
the level of DNA methylation between non-tumor LC and
HCC. These findings suggest that silencing of miR-122 expres-
sion during hepatocarcinogenesis is not mediated by DNA hy-
permethylation in the promoter region.

Discussion

MicroRNA-122 is the most abundant miRNA in the liver and
is implicated in several important aspects of liver pathogenesis,
including HCV replication, lipid metabolism, and development
of HCC. MicroRNA-122 is known to bind to the 5-UTR of
the HCV genome and promotes HCV replication. The inhibitor
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Fig. 3. Expression profiles of microRNAs (miRNAs) in the liver of
STAM mice. (a) Microarray analyses of miRNA expression profile in
hepatocellular carcinoma (HCC) tissues (T) compared with non-tumor
liver tissues (N) in two STAM mice at the age of 18 weeks (HCC1 and
HCC2). (b) MicroRNA-122 (miR-122) expression in the liver of control
(6 and 29 weeks) and STAM mice (6, 8, 12, and 18 weeks). miR-122
expression normalized with U6 is represented as average +SD. Down-
regulation of miR-122 in the liver of STAM mice from the age of 12—
18 weeks for non-tumor (N) and HCC (T) was significant (*P < 0.05).

of miR-122 decreases HCV RNA levels in patients with
chronic HCV genotype 1 infection.”? Downregulation of miR-
122 expression has been reported in patients with HCC.¢%?%
Hsu et al.®™ have shown that deletion of miR-122 results in
hepatosteatosis, hepatitis, and the development of HCCs.

Our present results indicated that there was no change in
miR-122 expression during progression from normal liver to
NALFD (6 weeks), NASH (8 weeks), and LC (12 weeks) in
STAM mice. However, miR-122 expression in non-tumor LC
at the age of 18 weeks was significantly lower than that in LC
at the age of 12 weeks in STAM mice. Expression of miR-122
was further decreased in HCCs relative to non-tumor LC tis-
sues at the age of 18 weeks in STAM mice. These results
strongly suggested that suppression of miR-122 is critical for
the initiation and development of NASH-derived HCC. We
also confirmed miR-122 expression in clinical samples
obtained from patients with HCC. Expression of miR-122 was
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Fig. 4. Levels of microRNA-122 {miR-122) expression in clinical sam-
ples obtained from hepatocellular carcinoma (HCC) patients. (a) Histo-
pathological images (HE staining, x100) of non-tumor liver tissue
from a hepatitis B virus-negative/hepatitis C virus-negative (NBNC)
HCC patient, showing steatosis. This case was considered to be grade
3 (macrovesicular steatosis >66%), with chronic portal inflammation
and pericellular fibrosis. (b) The average levels of miR-122 expression
in HCC tissues (T, clear bars) and non-tumor liver tissues (N, filled
bars). Tissue specimens of HCC and the surrounding non-tumor liver
were obtained from patients with NBNC HCC with or without liver
steatosis, as well as patients with hepatitis C virus-positive and hepati-
tis B virus-positive HCC. miR-122 expression is normalized with U6.
*P < 0.05.

reduced in liver showing macrovesicular steatosis and HCC,
consistent with the findings in the NASH model mice. These
results suggest that silencing of miR-122 is an early event dur-
ing hepatocarcinogenesis from NASH.

Recent studies have shown that peroxisome proliferator acti-
vated receptor-gamma (PPAR-y) is associated with the DR-1
and DR-2 consensus sites in the miR-122 promoter, and that
epigenetic alterations in the promoter region Lplay important
roles in the regulation of miR-122 expression.®**> In general,
DNA hypermethylation at the CpG island promoter leads to
silencing of tumor suppressor genes. The miR-122 promoter
region is CpG-poor, but the results of our promoter assay indi-
cated that DNA methylation around the DR-1 and DR-2 ele-
ments suppressed miR-122 expression. Unexpectedly, our
analyses revealed that DNA methylation levels in human HCC
tissue samples were lower (~30%) than in non-tumor liver tis-
sues in all regions of the miR-122 promoter, although miR-122
expression was downregulated. We also examined the DNA
methylation status of the miR-122 promoter region in HCCs
and non-tumor LC tissues in STAM mice. The levels of miR-
122 methylation in HCCs and non-tumor LC tissues in STAM
mice were around 30%, and there was no significant difference
between them. These findings suggest that silencing of miR-
122 during hepatocarcinogenesis is not mediated by DNA
hypermethylation in the promoter region. Further studies are
necessary to identify the factors that inhibit miR-122 expres-
sion during hepatocarcinogenesis from NASH.
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Fig. 5. Promoter assay of microRNA-122 (miR-122)
expression. (a) The promoter region of miR-122,
which contains a TATA-box, a CCAAT-box, and DR-1
and DR-2 elements. DNA methylation status was
determined by bisulfite pyrosequencing at the CpG
sites indicated by asterisks. Arrow indicates the
transcription  start site  (TSS), as described
previously.?” (b) Promoter assay of miR-122
expression using a Dual Luciferase Reporter Assay
System. Fragments of the human miR-122 promoter
with or without the DR-1 and DR-2 elements were
inserted between the Sacl and Hindlll sites within
pGL4.10. Plasmids with or without Sss I CpG
methylase treatment were cotransfected with
Renilla luciferase expression vector into HepG2
cells. Forty-eight hours after transfection, luciferase
activities were measured. *P < 0.01; **P < 0.005.

Fig. 6. DNA methylation status of the promoter
region of microRNA-122 (miR-122) in liver cancer
cell lines and hepatocellular carcinoma (HCC)
tissues. (@) DNA methylation levels of the miR-122
promoter region in HepG2 and HuH7 cells treated
with 1 or 3 uM 5-aza-2'-deoxycytidine (5AZA).
Methylated (MC) and unmethylated (UC) control
DN.As were used as controls. (b) Average levels of
miR-122 expression in HepG2 and HuH7 cells
treated with 5AZA. miR-122 expression s
normalized with U6. *P < 0.05. (¢} Levels of DNA
methylation in the miR-122 promoter region in HCC
tissues (T, white columns) and non-tumor liver
tissues (N, filled columns). Tissue specimens of HCC
and the surrounding non-tumor liver were
obtained from patients with hepatitis B virus-
negative/hepatitis C virus-negative (NBNC) HCC
with or without liver steatosis, as well as from
patients with hepatitis C virus-positive and hepatitis
B  virus-positive HCC. Methylated (MC) and
unmethylated (UC) control DNAs were used as
conctrols. *P < 0.005. (d) Levels of DNA methylation
in the miR-122 promoter region in non-tumor liver
tissues (NT) and HCCs of STAM mice. Normal liver
tissues obtained from C57BL/6J mice were used as a
control (Cont). DNA from normal mouse liver
treated with Sss | methylase (in vitro methylated
DN [IVD]) was used as a control for methylated
DNA,
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In summary, our present results indicate that the tumor sup-
pressor miR-122 is downregulated at an early stage of hepato-
carcinogenesis from NASH in both an animal model and
samples of human tissue. Silencing of miR-122 in the steatotic
liver may play an important role in the initiation of HCC
through modulation of its target genes. These novel findings
suggest that miR-122 could be used as a molecular marker for
evaluating the risk of HCC, and as a therapeutic target for
HCC, in patients with NASH.
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