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other groups and ours that support the initial idea of the
importance of IRRDR in the prediction of treatment
outcome™™"™ 1 a pilot study conducted on patients
who underwent liver transplantation, the value of viral
genetic factors, including sequence polymorphisms in the
core protein, ISDR and IRRDR, in prediction of PEG-
IFN/RBV treatment outcome after transplantation was
investigated"™". Interestingly, IRRDR 2 6 was the stron-
gest viral genetic factor associated with SVR. Moreover,
in a well executed viral genome wide associated study
that scanned the whole HCV genome for polymorphisms
at certain amino acids or in genomic regions that are
significantly associated with PEG-IFN/RBV treatment
outcome in HCV-1b infection, a high degree of IRRDR
sequence heterogeneity IRRDR = 4) was selected in
multivariate analysis as the strongest factor to predict
SVR among various host and viral genetic factors and
baseline demographic parameters™.

Also, it is important to point out that the cutoff
number of mutations in IRRDR that is associated with
treatment outcome might possibly vary with different
geographical regions: In certain geographical regions
where HCV isolates with a high degree of sequence het-
erogeneity are predominant, a higher cutoff number of
IRRDR mutations (such as 6 mutations) is apphcable'sj >
whereas a lower cutoff number of IRRDR mutations
(such as 4 mutations) is better applicable in regions where
HCV isolates with a low degree of sequence heterogene~
ity are predominant™'*,

While the predictive value of the IRRDR was mmally
identified in Japanese patients infected with HCV-1b, its
predictive value was also confirmed in HCV-2a infection,
the second most prevalent HCV genotype in ]apanm
Furthermore, we investigated for the first ime the impact
of viral genetics, including the core protein and NS5A
polymorphisms, on PEG-IFN/RBV treatment outcome
in Bgyptian patients with HCV genotype 4 infection. The
result clearly demonstrated that the degree of sequence
heterogeneity in the IRRDR was the only viral factor
that was 51gn1ﬁcandy associated with PEG-IFN/RBV
treatment outcome!™. Therefore, we proposed that the
IRRDR would be a useful positive and negative predic-
tive marker for treatment outcome in Egyptian patients
infected with HCV genotype 4. Collectively, a seties of
our studies and others have suggested the significance of
IRRDR sequence heterogeneity predicting treatment out-
come in different ethnic populations infected with differ-
ent HCV genotypes.

The clinical correlation between IRRDR sequence
heterogeneity and virological responses to IFN-based
therapy in HCV infection can be linked to an experimen-
tal observation by Tsai f 2/ that an HCV subgenomic
RNA replicon containing NS5A of HCV-1b exerted
more profound inhibitory effects on IEN activities than
the original HCV-2a replicon, and that domain swap-
ping between NS5A sequences of HCV-1b and -2a in
the V3 and/or a C-terminal region including the IRRDR
resulted in a transfer of their anti-IFN activities. Con-
sistent with this observation, Kumthip ¢t a/'*" found
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that the overexpression of either HCV genotype 1 or
genotype 3 NS5A proteins significantly inhibited IFN-
induced signaling of IFN-stimulated response clement,
STAT1 phosphorylation and IFN-stimulated gene ex-
pression compared to the respective controls. NS5A of
HCV genotype 1 exhibited stronger inhibitory effects on
IFN signaling than did that of genotype 3. Furthermore,
NS5A of HCV genotype 1 bound to STAT1 with a high-
er affinity compared to genotype 3. Interestingly, domain
mapping revealed that the C-terminal region of NS5A,
including ISDR and IRRDR, conferred these inhibitory
effects on IFN signaling. Whereas IRRDR is among the
most variable sequences across the different genotypes
and subtypes of HCV®™, its upstream and downstream
sequences show a higher degree of sequence conserva-
tion (Figure 4). We speculate that whereas the upstream
and downstream sequences are conserved to maintain the
capacity of NS5A to participate in RNA replication and
virion production across all the HCV genotypes, IRRDR
sequences have a genotype- depcndent or even a strain-
dependent modulatory function(s)!™™ ™. Therefore, the
sequence heterogeneity of the IRRDR and its significant
correlation with IFN responsiveness suggest the possibil-
ity that the IRRDR is involved, at least partly, in the viral
strategy to evade IFN-mediated antiviral host defense
mechanisms. The IRRDR sequence heterogeneity also
suggests genetic flexibility of this region and, indeed,
a short stretch of sequence in a C-terminal portion of
NS5A was shown to tolerate sequence insertions and de-
letions. This means that the short stretch of sequence is
not essential for virus replication in cultured cells. It does
not exclude the possibility, however, that the same region
might play an important role in modulating the interac-
tion with various host systems, including IFN responsive-
ness. It is also possible that the genetic flexibility of this
region, especially the IRRDR, is accompanied by com-
pensatory changes elsewhere in the viral genome and that
these compensatory changes affect overall viral fitness
and responses to IFN therapy. We hypothesize that the
IRRDR functions as evolution-adaptation machinery for
HCV to cope with changes in the surrounding environ-
ment. For example, when sequence evolution of NS5A
was investigated during IFN treatment, most of the evo-
lutionary mutations wete accumulated in the C-terminus,
including the IRRDR"*"". Furthermore, in a recent
retrospective study we investigated sequence evolution
of the core protein, NS3 and NS5A (IRRDR and ISDR)
during the follow-up period from chronic hepatitis to
HCC development by compating the sequences between
pre- and post-HCC isolates™. The results showed that
IRRDR sequences tended to be more polymorphic at the
time of HCC occurrence. The frequency of HCV iso-
lates with IRRDR = 6 was significantly higher in patients
with HCC than in those without HCC, and also higher in
post-HCC isolates than in pre-HCC isolates. This might
imply the possibility that HCV utilizes IRRDR evolution
to accommodate certain selective pressures encountered
during the coutse of HCC development. Further studies
are needed to clucidate the issue.
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E2 AND NS3

CONCLUSION

E2, one of the two envelope proteins, is the viral com-
ponent that is required for direct contact with the cell-
surface receptors*?, The first 27 amino acids (aa) of
E2 were identified as hypervariable region 1 (HVR1)
because of its significant sequence variability and have
been reported to be an immunodominant target for neu-
tralization antibodies. Sequence vatiations in this region
might contribute to immune evasion and thereby the per-
sistence of viral infection”*". Also, a region of 12 resi-
dues between aa 659-670 of E2, designated as PKR/elF-
2q, phosphorylation homology domain (PePHD), has
been reported to interact and inhibit the antiviral activity
of PKRM™*, Accordingly, sequence variations within
the PePHD were suspected to influence responses to
IFN-based therapy. However, data obtained from clinical
studies investigating this issue were controversial” %,

The NS3 region of the HCV genome is less variable
compatred to E2 and NS5A, but still displays significant
sequence diversity"*, In a previous study, we demon-
strated that polymorphisms in the secondaty structure of
an N-terminal region of NS3 of HCV-1b were associated
with different virological responses to PEG-IFN/RBV
therapy and proposed that the viral grouping based on
the NS3 polymorphism could be used to predict the
outcome of the therapy™”. In addition, we have recently
found that a particular combination of point mutations
in aa 1082 and 1112 of NS3 (NS3-Tyr'"?/GIn"") is
closely associated with HCC development in HCV-1b in-
fection. We have also noticed that a combination of NS3-
Ty ™ /GIn"" and core-Gln™ is more strongly associated
with HCC development than is the mutations of NS3
alone or the core protein alone'. Therefore, we propose
that NS3-Tyr'"/GIn"" and core-Gln™ would be inde-
pendent predictive markers for development of HCV-1b-
associated HCC.

Apart from the IFN responsiveness, NS3 has been
an intense focus of attention since the introduction of
NS3 protease inhibitors as DAAs for treatment of HCV
infection. Mutations in four positions in the NS3 prote-
ase domain are known to be associated with resistance or
reduced sensitivity to telaprevir; R155K/T/S/M, A156T/
V/S, V36A/M and T54A""*, Three mutations, T54A,
V170A and A156S, conferred low to moderate levels of
resistance to boceprevir while variants with the A156T
mutation are highly resistant* ™), Deep sequencing
analysis using “next-generation” sequencers revealed that
those DA A-resistant mutations were present even before
the initiation of treatment in patients who did not achieve
SVR. Thus, the prevalence of the DAA-resistant variants
is determined by their replicative fitness and selective pres-
sure of the DAAs"™"!, In this connection, deep sequenc-
ing analysis is also useful to study the possible importance
of a viral factor(s) in disease manifestations, including
IFN resistance, especially when the target variant(s) con-
stitutes a minor population in the sample and, therefore,
undetectable by ordinary direct sequencing,
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HCV is an interesting virus to study because of its abil-
ity to evade host defense mechanisms, including both
innate and acquired immune responses, so as to estab-
lish persistent infection, which causes a wide spectrum
of pathogenicity, such as lipid and glucose metabolism
disorders and HCC development. The HCV genome is
characterized by a high degree of genetic diversity that
can be associated with the viral sensitivity ot resistance
(reflected by different virological responses) to IFN-
based therapy. In addition to the IL28B SNP as the most
important host factor that governs the IFN responsive-
ness of the patients, a point-mutation at position 70 of
the core protein and sequence heterogeneity of the ISDR
and IRRDR in NS5A of HCV have significant impact on
the outcome of a standard regimen of PEG-IFN/RBV
combination therapy. Currently, the HCV therapeutic
field is heading towards IFN-free treatment whete there
are several ongoing clinical trials testing new specific
DAAs against HCV. Whether these DAAs can overcome
the HCV genetic diversity barrier without the emergence
of resistant variants should be carefully monitored and
properly assessed. New technologies, such as second and
third generations of deep sequencing technologies that
are currently available, will open up new dooss to further
understand the impact of HCV genetics on HCV patho-
genesis and treatment responsiveness in more detail.
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Hepatitis C virus (HCV) infection is highly prevalent among global populations, with an estimated
number of infected patients being 170 million. Approximately 70-80% of patients acutely infected
with HCV will progress to chronic liver disease, such as liver cirrhosis and hepatocellular
carcinoma, which is a substantial cause of morbidity and mortality worldwide. New therapies for
HCV infection have been developed, however, the therapeutic efficacies still need to be improved.
Medicinal plants are promising sources for antivirals against HCV. A variety of plants have been
tested and proven to be beneficial as antiviral drug candidates against HCV. In this study,
we examined extracts, their subfractions and isolated compounds of Ruta angustifolia leaves
for antiviral activities against HCV in cell culture. We isolated six compounds, chalepin, scopoletin,
+y-fagarine, arborinine, kokusaginine and pseudane [X. Among them, chalepin and pseudane IX
showed strong anti-HCV activities with 50% inhibitory concentration (ICsg) of 1.7 + 0.5and 1.4 +
0.2 pg/ml, respectively, without apparent cytotoxicity. Their anti-HCV activities were stronger
than that of ribavirin (2.8 & 0.4 pg/ml), which has been widely used for the treatment of HCV
infection. Mode-of-action analyses revealed that chalepin and pseudane IX inhibited HCV at the
post-entry step and decreased the levels of HCV RNA replication and viral protein synthesis, We
also observed that arborinine, kokusaginine and y-fagarine possessed moderate levels of anti-HCV
activities with 1Csq values being 6.4 4- 0.7, 6.4 4 1.6 and 20.4 4 0.4 pg/ml, respectively, whereas
scopoletin did not exert significant anti-HCV activities at 30 pg/ml.

© 2014 Elsevier B.V, All rights reserved.

1. Background

proteases to generate 10 mature proteins, such as core, E1,E2, a
putative ion channel p7, and nonstructural proteins NS2, NS3,

Hepatitis C virus (HCV) is an enveloped virus that belongs
to the Hepacivirus genus within the Flaviviridae family. The
viral genome is a single-stranded, positive-sense RNA of 9.6 kb
with highly structured 5’- and 3’-untranslated regions [1,2].
It encodes a polyprotein precursor consisting of about 3000
amino acid residues, which is cleaved by the host and viral

* Corresponding author. Tel.: +81 78 382 5500; fax: +81 78 382 5519.
E-mail address: hotta@kobe-u.acjp (H. Hotta).

http://dx.doi.org/10.1016/j fitote.2014.10.011
0367-326X/© 2014 Elsevier B.V. All rights reserved.

NS4A, NS4B, NS5A and NS5B. The core, E1 and E2 are cleaved off
by the signal peptidase and signal peptide peptidase of the
host cell and, together with the viral genome, form the virus
particles. The E1 and E2 glycoproteins are responsible for
binding to a number of different virus receptor molecules on
the cell surface, such as scavenger receptor class B type ], CD81,
claudin 1 and occludin. On the other hand, nonstructural
proteins play crucial roles in virus replication. NS2 possesses a
metalloprotease activity that mediates cleavage between NS2
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and NS3. After this cleavage takes place, NS3 exerts a serine
protease activity that is responsible for the cleavage at the
remaining cleavage sites of the polyprotein. NS3 also possesses
a helicase activity in its C-terminal domain, which is required
for viral RNA replication. NS4A stabilizes NS3 by forming a
complex with it and also acts as an inducer of membrane
alterations. NS4B is a hydrophobic protein and is involved in
the membranous web formation, a characteristic feature of
HCV-infected cells. NS5A is a phosphoprotein with versatile
functions and is required for viral RNA replication and particle
assembly [1,3]. NS5B possesses an RNA-dependent RNA
polymerase activity. It is known that the HCV replication cycle
is linked to the lipid metabolism of the host cells. It should also
be noted that the HCV genome exhibits a considerable degree
of sequence heterogeneity, based on which HCV is currently
classified into 7 genotypes (1 to 7) and more than 70 subtypes
(1a, 1b, 2a, 2b, etc.) [4].

HCV infection is highly prevalent among global populations,
especially in Africa and Asia, with an estimated number of
infected patients being 170 million worldwide. Approximately
3 million people are newly infected with HCV worldwide every
year [3,5]. Seventy to 80% of newly infected patients progress to
chronic infection. Patients with chronic HCV infection have a
high risk to develop severe liver diseases such as cirrhosis and
hepatocellular carcinoma, and also to develop extra hepatic
manifestations, including glucose and lipid metabolic disorders
[6,7]. A standard care of HCV infection using pegylated
interferon (Peg-IFN)-o¢ and ribavirin can achieve sustained
virological response (SVR) in ca. 50% of patients infected with
HCV genotype 1 or 4 [5]. Triple combination therapy using Peg-
IFN-@, ribavirin and an NS3 protease inhibitor increased the
SVR rate to 70 to 80%. Moreover, recent approval of other
direct-acting antivirals (DAA), including NS5A inhibitors,
can further improve the SVR rate. However, they are not
equally effective for all of the seven HCV genotypes and, more
importantly, serious adverse effects are observed with some
patients [5,8]. This highlights the need for a new alternative
and/or complementary agent(s) for treatment of HCV.

A wide variety of medicinal plants and their phytochemical
constituents have been reported to inhibit HCV infection. For
example, an extract of Phyllantus amarus root significantly
inhibited HCV NS3 protease with a 50% inhibitory concentra-
tion (ICso) of 5 pg/ml whereas P. amarus leaves inhibited HCV
NS5B polymerase with the same ICso value [9]. We tested
ethanol extracts of Indonesia plants for their anti-HCV activities
and reported that Teona sureni leaves, Melicope latifolia leaves,
Melanolepis multiglandulosa stem and Ficus fistulosa leaves
possessed anti-HCV activities [10]. We also reported that extracts
of Glycyrrhiza uralensis root and isolated compounds, such as
glycycoumarin, glycerin, glycyrol, and liquiritigenin, and
extracts of Morinda citrifolia leaves, an isolated compound,
pheophorbide a, and its related compound, pyropheophorbide
a, exhibited anti-HCV activities [11,12]. Likewise, silymarin,
iridoid, epigallocatechin-3-gallate were reported to inhibit HCV
infection at the entry step while diosgenin, luteolin, quercetin,
3-hydroxy caruilignan C, excoecariphenol D and apigenin
at the post-entry step [13,14]. Although a number of novel
antivirals against HCV are being developed, further studies
are still needed to identify a safer, more effective and cheaper
anti-HCV substance(s). Medicinal plants are a good target for
the study.

Ruta angustifolia belongs to the Rutaceae family. Plants in
the Ruta genus have been used as traditional remedy, such as
antiseptics, antihelminthics and anti-inflammatory, wound-
healing and pain-relief drugs, to cure malconditions during
pregnancy and disorders in the gastrointestinal, respiratory,
nervous, skin and musculoskeletal systems [15]. In Indonesia,
R. angustifolia has been known as traditional medicine for
liver disease and jaundice. It contains coumarin, alkaloid and
flavonoid compounds. Angustifolin and four aromatic deri-
vatives, moskachan A, B, C and D, have been identified as
constituents of R, angustifolia {16,17]. In this study, we examined
the anti-HCV activities of extracts from R. angustifolia and its
constituents.

2. Materials and methods
2.1. Cells and viruses

Huh7.5 cells and the plasmid pFL-J6/JFH1 to produce the
J6/JFH1 strain of HCV genotype 2a [ 18] were kindly provided by
Dr. C. M. Rice, The Rockefeller University, New York, NY, USA.
Huh7.5 cells were cultivated in Dulbecco’s modified Eagle's
medium (Wako, Osaka, Japan) supplemented with fetal bovine
serum (Biowest, Nuaille, France), non-essential amino acids
(Invitrogen, Carlsbad, CA), penicillin (100 IU/ml) and strepto-
mycin (100 pg/mtl) (Invitrogen). Cells were grown at 37 °Cina
5% CO, incubator.

2.2. Collection, extraction, fractionation and compound isolation
of R. angustifolia leaves

R. angustifolia leaves were collected at Lembang, a mountain
area of the West Java region, Indonesia. The collected samples
were verified by botanical researchers at the Purwadadi
Botanical Garden, Purwadadi, Indonesia. Leaves of the plants
were dried at room temperature, pulverized and extracted by
means of two different extraction procedures; (i) 96% ethanol
and (ii) n-hexane, dichloromethane and methanol, successive-
ly. Maceration process was repeated over 3 days. The obtained
filtrates were concentrated under reduced pressure to yield
ethanol, n-hexane, dichloromethane and methanol extracts.
The dichloromethane extract was subjected to the open
column chromatography with silica gel (development solvent:
gradient of chloroform-methanol system). A bioactivity-positive
fraction(s) was further fractionated under open column
chromatography with silica gel and mobile phase gradient of
hexane-ethyl acetate system. Based on thin layer chromatogra-
phy (TLC) profiles, several fractions were combined and passed
through an activated charcoal column and eluted by each 2 1
of methanol (100%), 30% of chloroform-methanol, and chloro-
form (100%) [19]. Each fraction was concentrated in vacuo and
further subfractionated by recycling high-performance liquid
chromatography (HPLC) (solvent system: 100% methanol,
column: GS-320 + GS-310, 21.5 mm ID x 1000 mm, flow rate:
5.0 ml/min, detection: UV 210 nm) and preparative HPLC
(column: Waters XBridge C18 10 x 250 mm, solvent
system: gradient solvent of 0.1% trifluoroacetic acid (TFA)
— acetonitrile, flow rate: 2.5 ml/min, column temperature:
30 °C). Preparative HPLC was run on JASCO LC-2000 plus
series. Recycling preparative HPLC was performed on a
Japan Analytical Industry LC-908W.
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To determine the structure of the isolated compounds, liquid
chromatography-mass spectrometry (LC-MS), 'H-nuclear
magnetic resonance (NMR) and *C NMR analyses were
performed. 'H and 3C NMR spectra were measured with
BRUKER Ascend 600 spectrometer (600 MHz). LC-MS was
performed with a Thermofischer Scientific Orbitrap Elite
equipped with an electrospray ionization (ESI) source [20].

2.3. Analysis of anti-HCV activities

R. angustifolia extracts and isolated compounds were
dissolved in dimethyl sulfoxide (DMSO) to obtain stock
solutions at a concentration of 100 mg/ml. The stock solutions
were stored at —20 °C until used. Ribavirin was purchased
(Sigma-Aldrich, Steinheim, Germany) and used as a positive
control.

Huh7.5 cells were seeded in 24-well plates (1.9 x 10° cells/
well). A fixed amount of the ]J6/JFH1-P47 strain of HCV
genotype 2a [10,21], with a multiplication of infection (MOI)
of 0.5 focus-forming units (ffu)/cell, was mixed with serial
dilutions of the extracts (100, 30, 10, 1 and 0.1 pg/ml) and
compounds (30, 10, 3, 1 and 0.1 pg/ml), and inoculated to the
cells. After 2 h, the cells were washed with medium to remove
the residual virus and further incubated in the medium
containing the same concentrations of the test samples as
those during virus inoculation.

Time-of-addition experiments were performed to assess
the mode of action of the samples, as described previously
[10-12]. In brief, three sets of experiments were done in
parallel. (i) To assess the antiviral effect at the entry step, the
mixture of HCV and a sample was inoculated to the cells. After
virus adsorption for 2 h, the residual virus and the sample were
removed, and cells were refed with fresh medium without
the sample for 46 h. (ii) To assess the antiviral effect at the post-
entry step, HCV was inoculated to the cells in the absence of the
sample. After virus adsorption for 2 h, the residual virus was
removed and cells were refed with fresh medium containing
the sample for 46 h. (iii) As a positive control, HCV mixed with
the sample was inoculated to the cells. After virus adsorption
for 2 h, the residual virus and the sample were removed, and
cells were refed with fresh medium containing the sample for
46 h. Culture supernatants were obtained at 1 and 2 days post-
infection (dpi) and titrated for virus infectivity {21]. Virus and
cells treated with medium containing 0.1% DMSO served as a
control. The percent inhibition of virus infectivity by the
samples was calculated by comparing to the control using
SPSS probit analysis, and ICsg values were determined.

24. Real-time quantitative RT-PCR

Total RNA was extracted from the cells using a ReliaPrep
RNA cell miniprep system (Promega, Madison, WI) according
to the manufacturer's instructions. One pg of total RNA was
reverse transcribed using a GoScript Reverse Transcription
system (Promega) with random primers and subjected to
quantitative real-time PCR analysis using SYBR Premix Ex Taq
(TaKaRa, Kyoto, Japan) in a MicroAmp 96-well reaction plate
and an ABI PRISM 7500 system (Applied Biosystems, Foster
City, CA). The primers used to amplify an NS5A region of the
HCV genome were 5-AGACGTATTGAGGTCCATGC-3' (sense) and
5/-CCGCAGCGACGGTGCTGATAG-3’ (antisense). As an internal

control, human glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) gene expression levels were measured using primers
5'-GCCATCAATGACCCCTTCATT-3/ (sense) and 5’-TCTCGCTCCT
GGAAGATGG-3’ (antisense).

2.5. Immunoblotting

Cells were lysed and separated with SDS-polyacrylamide
gel electrophoresis as described previously [10,11}. The samples
were transferred onto a polyvinylidene difluoride membrane
(Millipore, Bedford, MA), which was then incubated with
the respective primary antibodies. The primary antibodies
used were mouse monoclonal antibodies against HCV NS3 and
GAPDH (Millipore). Horseradish peroxidase-conjugated goat
anti-mouse immunoglobulin (Invitrogen) was used to visualize
the respective proteins by means of an enhanced chemilumi-
nescence detection system (ECL; GE Healthcare, Buckingham-
shire, UK). The relative band intensity was quantified using
densitometry analysis with Image] software. The NS3 protein
expression levels were normalized to their respective GAPDH
protein levels.

2.6. WST-1 assay for cytotoxicity

WST-1 assay was performed as described previously [10]. In
brief, Huh7.5 cells in 96-well plates were treated with serial
dilutions of the test samples or 0.1% DMSO as a control for 48 h.
After the treatment, 10 pl of WST-1 reagent (Roche, Mannheim,
Germany) was added to each well and cells were cultured for
4 h, The WST-1 reagent is absorbed by the cells and converted
to formazan by mitochondrial dehydrogenases. The amount of
formazan, which correlates with the number of living cells, was
determined by measuring the absorbance of each well using a
microplate reader at 450 nm and 630 nm. Percent cell viability
compared to the control was calculated for each dilution of
substances and 50% cytotoxic concentration (CCsq) values were
determined by SPSS probit analysis.

3. Results

3.1. Bioactivity-guided fractionation and purification of extracts
from R. angustifolia leaves and isolation of compounds

Dried and pulverized R angustifolia leaves were extracted
with ethanol, n-hexane, dichloromethane and methanol as
described in the Materials and methods section, and examined
for antiviral activities against the J6/JFH1-P47 strain of HCV
genotype 2a [10,21]. The results revealed that the dichlorometh-
ane extract of R. angustifolia leaves had potent anti-HCV activity
with ICsp of 1.6 & 0.3 pg/ml (Table 1). The dichloromethane
extract was further purified by open column chromatography to

Table 1
Anti-HCV activity (ICsg), cytotoxicity (CCsp) and selectivity index (SI) of
R. angustifolia leaves extracts.

Sample ICso (pg/ml) - CCsq (ug/ml) SI

Ethanol extract 3.0 4+ 1.4° >100 >30.3
n-Hexane extract 15.6 £ 5.2 >100 >6.4
Dichloromethane extract 1.6 £03 49.2 + 3.6 30.8
Methanol extract 8120 >100 >12.3

2 Mean + SEM of data from two independent experiments.
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obtain 6 fractions, of which fraction 4 showed potent anti-HCV
activity with ICsp of 0.7 pg/ml (Table 2). Fraction 4 was further
fractionated under open column chromatography with silica gel
and mobile phase gradient of hexane-ethyl acetate system to
obtain 29 fractions. Based on the TLC profile, some of the
subfractions were combined and 4 groups of subfractions were
passed through an activated charcoal column, which were eluted
by each 2 1 of 100% methanol, 30% chloroform~methanol and
100% chloroform to give 3 fractions (a, 100% methanol; b, 30%
chloroform-methanol; ¢, 100% chloroform) [19]. Each fraction
was concentrated in vacuo. Fraction la was subjected to
recycling HPLC to afford Fla-1 (3.1 mg) and Fla-2 (96.7 mg),
which were determined as an identical compound (compound
1). Fraction 2b was separated using preparative HPLC to obtain
F2b-1 (compound 2), F2b-2 and F2b-3 (compound 3). Fraction
3c was separated by filtration method with methanol to yield
F3c-1 (compound 4) and F3¢-2, the latter of which was subjected
to preparative HPLC to obtain 3c-2A (compound 5) and 3c-2B
(compound 4). Fraction 4a was subjected to preparative HPLC to
obtain F4a-3 (compound 6). The structures of the isolated
compounds were determined by LC-MS and NMR analyses
(Supplementary Information).

Compound 1 (100.7 mg) was isolated as colorless
amorphous powder with a molecular formula of CygH2204
by orbitrap MS, m/z 315.15719 [M + H]* and was identified
as chalepin by comparison with NMR literature data [22].
Compound 2 (5.0 mg) was a yellow amorphous powder with a
molecular formula of CyoHgQO4, m/z 193.04833 [M + H]™ and
was identified as scopoletin [23]. Compound 3 (3.0 mg) was
identified as vy-fagarine [24], an alkaloid compound, which
has a molecular formula of Cy3H,03N, m/z 230.07985
[M + H]*. Compound 4 (28.7 mg) was identified as arborinine
[23], another alkaloid compound with a molecular formula of
Cy6H1604N, m/z 286.10952 [M + H]". Compound 5 (6.5 mg)
with a molecular formula of Ci4H;404N was identified as
kokusaginine [23,25], an alkaloid compound. Compound 6
(3.7 mg) with a molecular formula of C;gH260N, m/z 272.20089
was identified as pseudane IX [26]. The structures of the
compounds are shown in Fig. 1.

3.2. Anti-HCV activities of the isolated compounds

Anti-HCV activities of the isolated compounds were tested.
Ribavirin, which has been widely used for the treatment of HCV
infection, was used as a positive control. The results obtained
revealed that chalepin (compound 1) and pseudane IX
(compound 6) possessed strong anti-HCV activities, with ICsg
being 1.7 & 0.5 and 1.4 + 0.2 ug/ml, respectively (Table 3).

Table 2
Anti-HCV activity (ICsg), cytotoxicity (CCsp) and selectivity index (SI) of
fractions from a dichloromethane extract of R, angustifolia leaves.

Sample 1Cso (pg/ml) CCso (ug/ml) Sl
Fraction 1 >100° >100 na’
Fraction 2 >100 >100 nal
Fraction 3 >100 >100 naP
Fraction 4 0.7 42.1 64.8
Fraction 5 >100 >100 nab
Fraction 6 74 >100 >13.5

2 Not detectable at the concentration of 100 pg/ml.
b Not applicable.
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Fig. 1. Molecular structures of the compounds isolated from R. angustifolia leaves.
Chalepin (compound 1); scopoletin (compound 2); y-fagarine (compound 3);
arborinine (compound 4); kokusaginine (compound 5); pseudane IX
(compound 6).

Their anti-HCV activities were stronger than that of ribavirin
(2.8 4 0.4 pg/ml). Also, y-fagarine (compound 3), arborinine
(compound 4) and kokusaginine (compound 5) showed
weaker but significant anti-HCV activities, with 1Cso being
204 4+ 04,64 4 0.7 and 6.4 = 1.6 pg/ml, respectively. On the
other hand, scopoletin (compound 2) did not show any
significant inhibitory effect at the concentration of 30 pg/ml.
Dose-dependent profiles of anti-HCV activities and cytotoxicity
of those compounds are shown in Fig. 2.

3.3. Mode-of-action of anti-HCV activities of chalepin and
pseudane IX

Time-of-addition experiments were performed to determine
whether the compounds inhibit HCV at the entry or post-entry
step [10]. Percent HCV inhibitions by chalepin and pseudane IX
at the concentrations of 30, 10, 3, 1 and 0.1 ug/ml were
measured in the experiments where the treatment was done
either during (at the entry step), after virus inoculation (at the
post-entry step) or both (Fig. 3). The ICsq values of chalepin for
treatment at the entry step, post-entry step and both were

Table 3
Anti-HCV activity (ICsp), cytotoxicity (CCsq) and selectivity index (SI) of the
isolated compounds.

Isolate code Compound ICso (pg/ml)  CCso (pg/ml)  SI
Compound 1 Chalepin 1.7 4+ 0.5° 14.0 - 24 8.2
Compound 2 Scopoletin >30° >30° na’
Compound 3 «y-Fagarine 204 + 04 >30° >1.5
Compound 4 Arborinine 6.4 + 0.7 163 £ 6.2 2.5
Compound 5 Kokusaginine 6.4 + 1.6 >30P >4.7
Compound 6 Pseudane IX 14 4+ 0.2 26 + 089 18.6
Positive control ~ Ribavirin 28 4+ 04 >30° >10.7

2 Mean =+ SEM of data from two independent experiments.
® Not detectable at the concentration of 30 pg/ml.
¢ Not applicable,
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Fig. 2. Dose-dependent inhibition of HCV infection by isolated compounds and their cytotoxicity. Various concentrations of isolated compounds, chalepin (A), scopoletin
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supernatants were harvested and titrated for virus infectivity. Percent inhibitions of HCV infectivity by each compound are shown. In parallel, cytotoxicity of the

compounds was measured by WST-1 assay. Con, control. The data represent means + SEM of data from two independent experiments.
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26.7 4 1.3,5.2 4 0.7 and 1.7 £ 0.5 pg/ml, respectively. Also,
those for pseudane IX were 11.5 + 0.2, 3.0 4- 0.9 and 14 &
0.9 pg/ml, respectively. These results suggested that chalepin
and pseudane IX inhibited HCV predominantly at the post-
entry step.

3.4. Inhibition of HCV RNA replication and HCV protein synthesis
by chalepin and pseudane IX

To further confirm that chalepin and pseudane IX inhibit
HCV infection at the post-entry step of HCV life cycle, we
investigated the effect of those compounds on HCV RNA
replication, viral protein synthesis and infectious virus produc-
tion. Real-time quantitative RT-PCR analysis revealed that
chalepin and pseudane IX at 3 and 10 ug/ml inhibited
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HCV RNA replication (Fig. 4A). Consistently, immunoblotting
analysis demonstrated that both compounds inhibited HCV
protein synthesis (Fig. 4B). We confirmed in the same experi-
ment that they inhibited HCV production in the culture (Fig, 4C).

4. Discussion

Medicinal plants are good resources to search a novel
drug candidate(s). A wide variety of phytochemicals that
inhibit virus infections have been isolated and reported. In
the present study, we examined the possible anti-HCV
activity of R. angustifolia extracts and its constituents.
R. angustifolia is widely distributed throughout the world
and has been used as folk medicine for treatment of certain
diseases. Plants of the genus Ruta have been commonly used
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Fig. 4. Inhibition of HCV RNA replication, HCV protein synthesis and infectious virus production by chalepin and pseudane IX. (A) Huh7.5 cells infected with HCV (MOI
= 2) and treated with chalepin or pseudane IX (10 and 3 pg/ml) and the untreated control were subjected to real-time quantitative RT-PCR analysis. HCV RNA levels
were normalized to GAPDH mRNA expression levels. Data represent mean - SEM of data from two independent experiments, and the value for the untreated control at
1 dpi was arbitrarily expressed as 1. Chal, chalepin; Pseu, pseudane. *, p < 0.001; f, p < 0.05. (B) Levels of HCV NS3 protein synthesis in the cells described in (A) were
measured by immunoblotting analysis using anti-NS3 monoclonal antibody at 1 and 2 dpi. GAPDH served as an internal control to verify equal amounts of sample
loading. Signal intensities of NS3 were normalized to the corresponding GAPDH signal. (C) Virus infectivity in the culture supernatants of the cells described in (A) was

measured. *, p < 0.001; T, p < 0.05.
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in both ancient and modern medicine practices in the
Mediterranean region to cure pulmonary diseases, rheumatic
diseases and helminthic infections [15,27]. A large number of
chemical constituents have been isolated from the genus Ruta,
such as coumarins, alkaloids, benzoquinones, flavone glycosides,
sterols, triterpenoids, acridone alkaloids, stigmasterol, lupeol, 5-
methoxyarborinine, 5-hydroxyarborinine, ostruthin, bergapten,
psoralen, xanthotoxin, limonoid obacunone, isopimpinellin,
integriquinolone, kokusaginine, dictamnine, furoquinolin alka-
loid, xanthyletin and xanthoxyletin [28,29]. It was also reported
that coumarin compounds are the major constituents of the
plants in the Rutaceae family, with about two hundred different
coumarins being identified [30,31]. Specifically, four aromatic
compounds, such as moskachans A, B, C and D have been
identified from R angustifolia [17]. Another study on a
chloroform extract of aerial part of R. angustifolia identified
angustifolin, alkaloid graveolin, scoparone and 6,7,8-
trimethoxycoumarin {16].

In this study, R angustifolia leaves were subjected to
extraction in different polarities of solvents and antiviral
activities of the extracts were examined against the J6/JFH1-
P47 strain of HCV. The results revealed that a dichloromethane
extract of R. angustifolia leaves possessed the most potent activity
(Table 1), suggesting that a semi~polar compound(s) extracted
by dichloromethane was involved in the anti-HCV activity. We
further fractionated the dichloromethane extract to obtain 6
fractions. Anti-HCV assay showed that fraction 4 inhibited HCV
with ICs of 0.7 pg/ml without apparent cytotoxicity (Table 2). As
the TLC profile of the positive fractions suggested the presence of
chlorophyll or its related substance(s) in this fraction (data not
show), we used activated-charcoal in column chromatography
to remove them. Finally, we isolated six compounds and
determined their structures by combination of HPLC, LC-MS
* and NMR; they were chalepin, scopoletin, y-fagarine, arborinine,
kokusaginine, and pseudane IX. Chalepin and scopoletin are
classified as coumarins while the remaining four (y-fagarine,
arborinine, kokusaginine and pseudane IX} are alkaloids.

Chalepin, which has been isolated from R. chalepensis {32},
Stauranthus perforates [33], Clausena anisata [34] and Clausena
lansium [35], belongs to furocoumarin compounds with furan
ring fused to the coumarin structure. It was reported to possess
antimicrobial activities against Pseudomonas aeruginosa and
Trichomonas as well as anti-coagulant activities {34,35].
However, there has been no report so far regarding its antiviral
activity against HCV. To the best of our knowledge, the present
study is the first to demonstrate anti-HCV activities of chalepin
with ICs being 1.7 4 0.5 pg/ml (5.4 & 0.5 uM) (Table 3). It was
reported that chalepin inhibited respiration of isolated rat liver
mitochondria by 40% at the concentration of 16 uM (5.0 pg/ml)
{36]. Under our experimental conditions using cultured cells,
chalepin exerted only marginal cytotoxicity, if any, at 30 pg/ml
(Fig. 2).

We have reported that other coumarin compounds, such
as glycycoumarin, glycyrin and glycyrol, possess anti-HCV
activities, with ICso of 8.8, 7.2, and 4.6 pg/ml, respectively
[11]. The basic structure (1,2-benzopyron) of coumarin appears
to be important for binding to HCV [37]. Fourteen compounds
out of 24 coumarin derivatives were reported to inhibit HCV
NS5B RNA polymerase activities with 1Csq values between 17
and 63 pM. The activities of those compounds were influenced
by the position of methylation or hydroxylation groups in the

benzopyron ring [37]. Recently, benzimidazole derivatives of
coumarins have been reported to possess increased inhibitory
effect on RNA polymerase of HCV NS5B [38,39]. On the other
hand, scopoletin, which is the other coumarin isolated in the
present study, did not inhibit HCV at the concentration of
30 pg/ml (155 pM). Scopoletin isolated from several plants,
such as Erycibe obtusifolia Benth, Aster tataricus and Foeniculum
vulgare, and its synthetic derivatives have been extensively
studied [40]. Further detailed analyses of derivatives of
chalepin and scopoletin would help us understand the
structural basis of anti-HCV activity of chalepin and generate
a more potent anti-HCV compound(s).

v-Fagarine, arborinine and kokusaginine, which are alkaloid
compounds, showed moderate inhibition with ICso of 20.4 +
0.4,6.4 4 0.7 and 6.4 £ 1.6 pg/ml], respectively (Table 3). These
compounds have been isolated from several plants, including
the Rutaceae family [41-44] and arborinine was previously
reported to inhibit human rhinovirus with 1Csq of 3.19 uM by
virtual model [45]. Pseudane IX, another alkaloid, also known
as 2-nonyl-4 (1H)-quinolone, 2-nonyl-4-hydroxyquinoline
(NHQ) or 4-hydroxy-2-nonylquinolone [46], showed potent
anti-HCV activities with ICsg of 1.4 & 0.2 pg/ml (5.1 & 0.2 M)
(Table 3). A wide variety of quinolones have been used as
antimicrobial, anticancer and antiallergenic agents. Quinolones
are known as broad-spectrum antibacterial agents with the
main structure of 14 dihydro-4-oxo-quinolinyl moiety. Quin-
olones inhibit prokaryotic type II topoisomerases through
direct binding to bacterial chromosome, and likewise, it may
bind to viral nucleic acids and/or nucleoprotein complexes
to act as antivirals [47]. Quinolones consist of heterobicyclic
aromatic compounds and the moiety of CgHyg at carbon
number 2 of pseudane IX may play an important role in its
activities. Quinolones have been reported to act as inhibitors of
HCV NS5B RNA polymerase by binding to the allosteric site I
(non-nucleoside inhibitor-site 2) of this protein [48]. Twelve
fluoroquinolone derivatives were reported to inhibit HCV
replication and HCV NS3 helicase activity in cultured cells.
Among them, fleroxacin, difloxacin, ofloxacin, 8-quinolinol,
enoxacin, lumifloxacin and flumiquine were reported to inhibit
HCV with ICsp of 3.8, 2.5, 24, 2.2, 10, 19 and 1.7 pV,
respectively [49].

The key steps in HCV life cycle include entry into the host
cells, uncoating and replication of the viral genome, translation
of virus proteins, and assembly and release of the virion [8,18].
To determine the impact of active compounds on HCV life cycle,
we conducted time-of-addition experiments. We observed that
chalepin and pseudane IX exhibited their anti-HCV activities at
the post-entry step, inhibiting HCV RNA replication and NS3
protein synthesis.

In conclusion, we have identified chalepin and pseudane IX
as anti-HCV compounds. These compounds could be good
candidates to develop novel anti-HCV drugs.
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Abstract

Most of expenments for HCV mfectlon have been done usmg Iytrc mfectlon systems, in which HCV—mfected cells mevrtably
~die. Here, to' elucidate metabollc alteration in- HCV—mfected cells in'a more stable condition, we established an HCV-

- persistently-infected cell hne, designated as HPl cells This cell line has displayed prominent steatosis and supported HCV.
infection for more than 2 years, which is the longest ever reported It enabled us to analyze metabolism in the HCV-infected .

, s and expression arrays. It revealed that rate-limiting enzymes for biosynthesis of

- cholesterol and fatty aad were up- regulated wrth ‘actual increase. in cholesterol desmosterol (cholesterol precursor) and )

~cells integrally combmmg metabol

: - preferentlally facilitated comparing to glycolysus pathway W|th a marked lncrease of most of amino acids. lnterestmgly, some‘,
uclear factor (erythroid-derived 2)-like 2 (Nrf2), a master. regulator of antloxxdatlon and metabolism,

‘genes controlled b
were constltutwely p egulated in HPI cells. Knockdown of Nrf2 markedly reduced steatosis and HCV infection, indicating
that Nrf2 and its target genes play important roles in ‘metabolic alteration and HCV infection. In conclusion, HPI cell is a bona
. fide HCV-persxstentIy—mfected cell line supportmg HCV infection for years. ThlS cell line sustamed prominent steatosis in a

hypermetabolic status producing various metabolites. Therefore, HPI cell is a potent research tool not only for pemstent '

HCV |nfect|0n but also for llver metabohsm, overcomlng drawbacks of the. Iyt:c |nfect|on systems
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Introduction

Chronic persistent infection in liver is one of the clinical
characteristics of hepatitis C virus (HCV), frequently causing liver
cirrhosis and hepatocellular carcinoma (HCC) [1]. Recently, in
addition to the therapy of pegylated interferon plus ribavirin,
emerging anti-HCV drugs are bringing about dramatic improve-
ment for chronic hepatitis C. However, for extermination of HCV,
the development of other anti-HCV drugs targeting its persistent
HCV infection and a vaccine are needed.

HCV is an enveloped, positive single-stranded RINA (9.6 kb)
virus belonging to the Flaviviridae family, and its genome encodes a
large polyprotein precursor of approximately 3,000 amino acid
residues, which is cleaved by host and viral proteases into ten

PLOS ONE | www.plosone.org

individual proteins, i.e. core, envelope 1 and 2 (El, E2), p7, and
non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A, and
NS5B) [2,3]. Since an infectious strain of genotype 2a HCV (JFH-
1) has been established [4], i vitro research for HCV infection has
been accelerated. We also generated an infectious strain of
chimeric HCV consisting of genotypes 1b and 2a, designated as
TNS2J1 strain, whose infectivity is comparable to that of JFH-1
[51 [6]-

On the other hand, a hepatoma cell line, Huh7, and its subclone
such as Huh7.5 are susceptible to infection with these HCV strains
and have been used for i vitro experiments. However, the infected
cells are unstable and eventually undergo cell death, so-called lytic
infection. Although some cell lines persistently infected with HCV
were reported, the periods of persistency were months [7-9].
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Thus, strictly speaking, they cannot be called persistent infection
systems. Here, to study HCV-infected cells in a more stable
condition, we firstly established a cell line persistently infected with
TNS2J1. We have maintained this cell line for more than 2 years,
the longest ever reported, since the initial transfection with RNA
of TNS2J.

It was noteworthy that this cell line displayed prominent v

steatosis, accumulation of lipid droplet (LD). Clinically, chronic
hepatitis C are frequently associated with steatosis [10]. Thus,
secondary, to elucidate alterations in the metabolism and gene
expression underlying such steatosis, we performed integrated
analyses with metabolomics and expression arrays taking advan-
tage of the cell line established here.

Recently, it has been reported that nuclear factor (erythroid-
derived 2)-like 2 (Nrf2) is a master transcriptional activator of an
array of genes for metabolisms as well as genes for cytoprotection,
detoxification and antioxidation [11], in complex with v-maf avian
musculoaponeurotic fibrosarcoma oncogene homolog (Maf) [12—
14]. Thus, finally, we investigated involvement of the Nrf2/Maf
complex in the metabolic alteration in the HCV-persistently-
infected cells.

Results

Establishment of an HCV-persistently-infected Cell Line,
HPI Cell

We transfected Huh7.5 cells with synthetic HCV RNA of
TNS2J1, where the structural region of JFH-1 (2a) was replaced
with that of genotype 1b (Figure 1A) [5]. The vast majority of the
infected cells with TNS2J] underwent cell death, so-called ‘Iytic

infection’, displaying maximum of HCV core concentration in the

medium (389 fmol/ml). Yet, we noticed that a tiny population of
the infected cells survived this lytic phase. We maintained them for
around 500 days monitoring HCV core protein concentration in
the medium (Figure 1B) and checking immunofluorescence for
intracellular HCV protein (Figure 1C). Even early after the
transfection, at day 25 (passage 6), HCV core production was not
so robust (60 fmol/ml) (i: Figure 1B), probably because the ratio of
HCV-positive cells was reduced by the repeated passages and
actually became undetectable at day 216 (passage 73) (i-iv:
Figure 1C).

Nonetheless, we observed two minor surges of core production
with slight increase in the ratio of HCV-positive cells (v and vii:
Figure 1B, C) and hypothesized that the cells at the surges contain
cells that are resistant to death and permissive for HCV persistent
infection. In order to isolate such a cell clone, we attempted
Hmiting dilutions using the cells at the 2nd surge (day 396). We
performed this procedure three times consecutively to purify a
clone, C3, C3-6 and finally C3-6-15 cell (ix, x and xi: Figure 1B,
C). We considered the C3-6-15 cell as an HCV-persistently-
infected cell line and designated it as ‘HPI cell’ because 100% of
the cells were infected with HCV and they has supported HCV for
609 days (396 and 213 days before and during the consecutive
limiting dilutions, respectively).

HPI Cells Supported HCV Infection for More than a Year
after Establishment

To confirm persistence of HCV, we maintained HPI cells for
about 500 days after the establishment. Core protein production
was sustained all through the culture course, albeit with fluctuation
from 27 to 275 fmol/ml, highest of which was comparable to that
of the lytic infection (389 fmol/ml) (Figure 2A). Infectivity of HCV
in cell culture medium (HCVcc) was also confirmed at passage 5,
72, 103, and 161 after the establishment, and intracellular HCV
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has been detected immunocytochemically at least until day 479
(Figure 2B). To ensure the existence of HCV in HPI cells, we
performed RT-PCR and western blotting for HCV. PCR product
covering full length of HCV, the regions from 5'-untransated
region to NS2 and from NS3 to NS5A, was amplified (Figure
S1A), and HCV proteins were detected in HPI cells (Figure S1B).
NS5A protein of the HPI cell at passage 176 exhibited a slightly
lower molecule weight than that of lytic infection and the HPI cell
at passage 8. It is likely that the lower molecular weight was
attributed to reduction of serine phosphorylation because deduced
amino acid sequences of NS5A at passage 176 diverged
remarkably and some serine residues changed to non-serine
residues (manuscript in preparation). These results indicate that
HPI cells have supported infectious HCV for more 479 days even
after the establishment, totally for more than 2 years (1088 days)
after the initial RNA transfection and that the duration is the
longest ever reported to the best of our knowledge.

Characterization of HCVcc from HPI Cells

It was shown that HCVcc from lytic infection with JFH-1
contains two types of HCV particles: low-density particles with
high infectivity and high-density particles with low infectivity [15].
A similar result was obtained by sedimentation analysis of HCVcc
from HPI cells (Figure S24), suggesting that infectious HCVcc
might be associated with the lipoproteins, similar to Iytic infection.
Then, to explore the HCV genomic variations that might have
occurred in the process of the establishment, we sequenced the
RT-PCR products for HCV in the culture medium of HPI cells at
passage 7 and found that deduced amino acid substitutions were
frequent in the E1, E2, and NS5A regions (Figure S2B).

Since the supernatant from the cultured HFI cells induced cell
lysis when used to inoculate naive Huh7.5 cells (Figure S2C), we
speculated that the persistence of HCV depended not on such
HCV genomic variations, but on cellular factor(s) of HPI cells. To
verify this, we cured HPI cells with cyclosporine, and designated
the resulting cells as ‘CuHPI. Expectedly, these cells were
susceptible to HCVce but permissive for HCV persistency for at
least 120 days (Figure S2D). Therefore, cellular factor(s), such as
genetic alteration occurred during the establishment, might have
conferred resistance to apoptosis and permissiveness for HCV
persistent infection.

Remarkable Accumulation of Lipid Droplets in HPI Cells
It was noteworthy that prominent steatosis has sustained in HPI
cells for long-term, from passage 8 to 166 as long as we observed.
The core proteins were almost localized with the LDs, while the
NS5A proteins were widely distributed in the cytoplasm but partly
surrounding the LDs (Figure 3A, Figure S3). The distributions
were similar to those of lytic infection, but the amount of LD was
much more [15]. Actually, quantification of cellular lipid contents
showed that major components of LDs, free cholesterol, choles-
terol esters, and triacylglycerol, increased significantly in the HPI
cells, whereas minor components, phospholipids, did not increase
so much (Figure 3B). These result indicated HPI cell displayed
prominent steatosis microscopically and biochemically.

Integrated Analysis of HPI Cells with Metabolomics and
Expression Arrays

To clarify the metabolic alteration underlying in the remarkable
steatosis of HPI cells, we performed global metabolomics profiling
comparing with Huh7.5 cells. For hydrophobic metabolites, liquid
chromatography (LC)-time-of-flight mass spectrometry (TOFMS)
was performed, and 45 metabolites were detected. Of them, the
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Figure 1. Establishment of the HCV-persistently-infected clonal cell line, HPI, monitoring HCV proteins in the culture medium and
cells. (A) Structure of the infectious strain of a chimeric HCV (TNS2J1). Blank and shaded regions indicate genotypes 2a and 1b, respectively. (B) HCV
core protein concentration in the medium was determined after the transfection. At time points indicated in Roman numerals, immunofluorescence
staining for HCV was performed (C). Using the cells at day 396, limiting dilutions were performed three times consecutively to isolate cell clones C3
(ix), C3-6 (x), and C3-6-15 (xi). P-numbers in parentheses represent passage numbers after transfection. (C) Immunofluorescence staining for HCV
NS5A protein in the cells was performed. Percentages indicate ration of HCV-positive cells.

doi:10.1371/journal.pone.0094460.g001

levels of 29 metabolites increased more than 1.4-fold, and five
decreased to less than 0.7-fold in HPI cells (Table S1). For
hydrophilic metabolites, capillary electrophoresis (CE)-TOFMS
was performed, and 172 metabolites were detected. Of them, the
levels of 99 metabolites increased more than 1.4-fold, and 16
decreased to less than 0.7-fold in HPI cells (Table S2). For
integration of metabolomics and expression arrays, expression
arrays (approximately 25,000 transcripts/array) were performed
simultaneously. The expression data of genes encoding enzymes
for a corresponding reaction appearing in the metabolomics
profiling were selected for following pathway analyses (Table S3).
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Differential expression was confirmed with immunoblot analysis,
when corresponding antibody was available.

Increased Cholesterol and Desmosterol

Cholesterol and cholesterol ester are major constituents in LD
and HCV replication complex is fractionated in lipid raft, which is
rich in cholesterol [16,17]. Thus, at first, we analyzed the
biosynthetic pathway of cholesterol. Its first step is translocation
of citrate from mitochondria to cytosol, where citrate is converted
to acetyl CoA. This conversion is catalyzed by ATP-citrate lyase
(ACLY), whose expression was moderately up-regulated
(Figure 4A, B). Increase of citrate (Figure 4A) and increase of
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