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ies. Several chimeric (chimeric Edrecolomab), humanised (3622W94), human-engineered
(ING-1), and fully human (Adecatumumab) anti EpCAM antibodies with different target af-
finities have also been designed. Antibodies with the highest affinities such as 3622W94 and
ING-1 induced acute pancreatitis even at low concentrations (1 mg/kg body weight) [48] be-
cause of increased binding of EpCAM-specific antibodies to healthy tissue such as pancreas
and the respiratory tract. By contrast, the human antibody Adecatumumab (MT201), with
an intermediate affinity, has shown only minor side effects such as nausea, chills, fatigue, and
diarrhea, even at high doses (2-6 mg/kg body weight) [49]. In a clinical phase 2 trial, ran-
domization between high and low EpCAM expression in metastatic breast cancer revealed
that high EpCAM levels are associated with a good prognosis in terms of overall survival after
treatment with Adecatumumab. In 2009, the first antibody targeting EpCAM, Catumaxomab
(Removab), obtained approval for the European market. This trifunctional antibody has the
ability to bind EpCAM-expressing cancer cells as well as cytotoxic T-cells via the CD3 recep-
tor. Clinical trials revealed humoral responses against this antibody after treatment, which
might be due to the chimeric structure consisting of mouse IgG2a and rat IgG2b. The type of
response against Catumaxomab correlated positively with the clinical outcome, and its use
in patients with malignant ascites prolonged their overall survival [50]. Recently, the bispe-
cific antibody MT110 was tested for its ability to target TICs derived from colorectal cancers.
This antibody has binding affinities for EpCAM and CD3, which allows it to initiate the for-
mation of a cytolytic synapse between T-cells and TICs. A combination of this antibody and
peripheral blood mononuclear cells led to decreased or absent colony formation in soft agar
assays. Moreover, treatment with MT110 prevented tumor formation in a xenograft model
where mice were inoculated with TICs [51].

Based on the novel understanding of the functions of EpCAM, another interesting ap-
proach relies on the interface with the EpCAM signaling cascade. The knowledge of pro-
teases involved in the activating proteolytic cleavage of EpCAM allows for the systematic
testing of combinations of protease inhibitors. The inhibition of the EpICD-FHL2 interaction
by small molecules generated from structure based rational design and bioinformatics is a
promising and highly innovative strategy to specifically target EpCAM and its signaling. In
liver cells, RNA interference targeting of EpCAM significantly decreased the CSC pool and
reduced both the tumorigenicity and invasive capacity of CSCs. Since EpCAM expression is a
downstream target of Wnt/B-catenin, these results may have implications for the develop-
ment of novel target therapies.

Blockage of CSC Pathways

Anti-Self-Renewal

The targeting of key signaling pathways for CSC self-renewal is another approach to
therapy. The Wnt/B-catenin signaling pathway is important for the self-renewal and mainte-
nance of stem cells [52], and several studies have demonstrated decreased proliferation and
increased apoptosis following its inhibition [53]. The pathway can be inhibited in a number
of ways; for example, Dickkopf1 (Dkk1) binds to the low density lipoprotein receptor-relat-
ed protein-6 (LRP6) and prevents the formation of the Frizzled-Wnt-LRP6 complex [54]. A
new approach to antagonize Wnt signaling has been the development of small molecules
(XAV939) to inhibit the enzyme tankyrase that normally destroys the scaffold protein axin, a
crucial component of the B-catenin destruction complex [55]. Furthermore, many antibody-
based therapeutic approaches targeting EpCAM are currently being developed that will be
efficacious in eradicating EpCAM-expressing cancer stem cells.

The Hedgehog pathway is another potential target for CSC eradication. Several small-
molecule modulators of Sonic hedgehog signaling have been used to regulate the activity of
this pathway in medulloblastoma, basal cell carcinoma, pancreatic cancer, prostate cancer,
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and developmental disorders [56]. In liver cells, the suppression of the Sonic Hedgehog path-
way by small interfering RNA not only decreased HCC cell proliferation but also chemosen-
sitized the cells to 5-fluorouracil (5-FU) and to the induction of cell apoptosis [57]. Further-
more, in hepatoblastoma, blocking Hh signaling with the antagonist cyclopamine had a strong
inhibitory effect on cell proliferation of HB cell lines [58]. Overall, it is likely that the targeting
of intracellular pathways associated with self-renewal of CSC will become established in the
near future.

Differentiation

CSCs, which make up only a small proportion of cancer cells, have the capacity to sustain
tumor growth and are more resistant to conventional chemotherapy than other more dif-
ferentiated cancer cells. One approach to treat malignancies, therefore, is to induce their dif-
ferentiation. Differentiation therapy could force hepatoma cells to differentiate and lose their
self-renewal property. Hepatocyte nuclear factor-4q, a central regulator of the differentiated
hepatocyte phenotype, suppresses tumorigenesis and tumor development by inducing the
differentiation of hepatoma cells, especially CSCs [59]. Interferon therapy is effective not only
for eradicating hepatitis viruses, but also for preventing the development of HCC regardless
of the virological response. Interferon alpha treatment accelerates hepatocytic and biliary dif-
ferentiation in oval cell lines [60], and could be used to treat HCC by targeting CSCs. In addi-
tion, oncostatin M (OSM), an interleukin-6 related cytokine known to induce the differentia-
tion of hepatoblasts into hepatocytes, could be used to effectively induce the differentiation
and active cell division of dormant EpCAM-positive liver CSCs. Moreover, a combination of
OSM and conventional chemotherapy with 5-FU efficiently eliminates HCC by targeting both
CSCs and non-CSCs [61]. These findings indicate that differentiation therapy combined with
conventional chemotherapy may be an effective treatment of HCC.

Future Directions

The rapid development of the CSC field combined with genome-wide screening tech-
niques has enabled the identification of important new CSC markers and pathways, which
have contributed to one of the most important developments in cancer treatment. However,
several important issues remain to be resolved, and little is known about CSC-directed thera-
pies (e.g, targeting EpCAM in EpCAM-positive liver CSCs). Initial results are promising, but
knowledge of the potential short- and long-term side effects of these therapies is limited. For
example, if not sufficiently specific for CSCs, such therapies could lead to tissue and/or organ
damage from the depletion of reserve/regenerative stem cells. This could cause acute and ir-
reversible organ failure.

New drug discoveries for CSCs are currently underway that aim to completely eradicate
cancer. Recent studies have highlighted the importance and necessity of exploring the sus-
ceptibility of CSCs to existing therapies in combination with the disruption of key pathways
controlling self-renewal, pluripotency, chemoresistance, radioresistance, and angiogenesis
through molecular targeted therapy.

Other novel and important directions for effective therapies include the disruption of the
tumor niche that is essential for CSC homeostasis, and the depletion of CSCs by forced dif-
ferentiation. However, more work is required to advance our knowledge on the role of CSCs
in tumor hierarchy and to design more effective and specific anti-CSC therapy. The current
state of knowledge strongly indicates the advantage of targeting CSCs to improve the limited
efficiency of existing therapies, and it has provided an important framework for the develop-
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ment of novel therapeutic regimens with the ultimate hope of long-term clinical benefits to
the patients.
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a Hepatokine That Links
Obesity to Skeletal Muscle

Insulin Resistance
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Recent articles have reported an association between
fatty liver disease and systemic insulin resistance in
humans, but the causal relationship remains unclear.
The liver may contribute to muscle insulin resistance by
releasing secretory proteins called hepatokines. Here
we demonstrate that leukocyte cell-derived chemo-
taxin 2 (LECT2), an energy-sensing hepatokine, is a
link between obesity and skeletal muscle insulin resis-
tance. Circulating LECT2 positively correlated with the
severity of both obesity and insulin resistance in
humans. LECT2 expression was negatively regulated by
starvation-sensing kinase adenosine monophosphate-
activated protein kinase in H4lIEC hepatocytes. Genetic
deletion of LECT2 in mice increased insulin sensitivity
in the skeletal muscle. Treatment with recombinant
LECT2 protein impaired insulin signaling via phosphor-
ylation of Jun NH,-terminal kinase in C2C12 myocytes.
These results demonstrate the involvement of LECT2
in glucose metabolism and suggest that LECT2 may
be a therapeutic target for obesity-associated insulin
resistance.

Insulin resistance is a characteristic feature of people with
type 2 diabetes (1) and plays a major role in the develop-
ment of various diseases such as cardiovascular diseases
(2) and nonalcoholic steatohepatitis (3,4). In an insulin-
resistant state, impaired insulin action promotes hepatic
glucose production and reduces glucose uptake by periph-
eral tissues. Insulin resistance is commonly observed in
obese and overweight people, suggesting a potential role
of ectopic fat accumulation in insulin-target tissues in
mediating insulin resistance (5). However, the molecular
mechanisms underlying insulin resistance are now known
to be influenced by the abnormal secretion of tissue-
derived factors such as adipokines (6-9), myokines (10,11),
and hepatokines (12-14), which traditionally have been
considered separate from the endocrine system.
Leukocyte cell-derived chemotaxin 2 (LECT?2) is a secre-
tory protein originally identified in the process of screening
for a novel neutrophil chemotactic protein (15). LECT2
(encoded by the Lect2 gene in humans) is expressed pref-
erentially by human adult and fetal liver cells and is
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secreted into the bloodstream (16). The early study
using Lect2-deficient mice showed that LECT?2 negatively
regulates the homeostasis of natural killer T cells in the
liver (17). Anson et al. (18) more recently reported that
LECT2 exerts anti-inflammatory and tumor-suppressive
actions in B-catenin-induced liver tumorigenesis. To date,
however, the role of LECT2 in the development of obesity
and insulin resistance induced by overnutrition has not yet
been established.

We previously demonstrated that overproduction of
the liver-derived secretory protein selenoprotein P (SeP)
contributes to hyperglycemia in type 2 diabetes by in-
ducing insulin resistance in the liver and skeletal muscle
(12). SeP has emerged from comprehensive liver screen-
ings for secretory proteins whose expression levels are
correlated with the severity of insulin resistance in
patients with type 2 diabetes (12,19,20). Based on these
findings, we have proposed that, analogous to adipose
tissue, the liver may participate in the pathology of type
2 diabetes and insulin resistance through the production
of secretory proteins called hepatokines (12). Other liver-
secreted proteins such as fetuin-A (21), angiopoietin-related
protein 6 (22), fibroblast growth factor 21 (23), insulin-
like growth factors (24), and sex hormone-binding globu-
lin (25) have recently been reported as hepatokines that
are involved in glucose metabolism and insulin sensitivity.
However, the identification of hepatokines involved in fat
accumulation was not adequate. In this study, we identi-
fied LECT2 as a hepatokine whose expression levels were
positively correlated with the severity of obesity in hu-
mans. Levels of LECT2 in blood also were elevated in
animal models with obesity. Lect2-deficient mice showed
an increase of insulin signaling in skeletal muscle. Con-
versely, treatment with recombinant LECT2 protein im-
paired insulin signaling in C2C12 myotubes. Our data
demonstrate that LECT2 functions as a hepatokine that
links obesity to insulin resistance in skeletal muscle.

RESEARCH DESIGN AND METHODS

Human Clinical Studies

Liver samples to be analyzed by serial analysis of gene
expression were obtained from five patients with type 2
diabetes and five nondiabetic subjects who underwent
surgical procedures for malignant tumors, including gastric
cancer, gall bladder cancer, and colon cancer. Liver samples
to be subjected to DNA chip analysis were obtained from
22 patients with type 2 diabetes and 11 subjects with
normal glucose tolerance using ultrasonography-guided
biopsy needles. Detailed clinical information about these
subjects is presented elsewhere (12,19).

Serum samples were obtained from 200 participants
who went to the Public Central Hospital of Matto,
Ishikawa, Japan, for a complete physical examination.
Following an overnight fast, venous blood samples were
taken from each patient. Serum levels of LECT2 were
measured by an Ab-Match ASSEMBLY Human LECT2 kit
(MBL Co.) (26,27).
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The homeostasis model assessment of insulin resis-
tance (HOMA-IR) was calculated using the following
formula: HOMA-IR = [fasting insulin (WU/mL) X fasting
plasma glucose (mmol/L)]/22.5 (28). All patients provided
written informed consent for participation in this study.
All experimental protocols were approved by the relevant
ethics committees at our institution and Matto Ishikawa
Central Hospital and were conducted in accordance with
the Declaration of Helsinki.

Animals

Eight-week-old C57BL/6J mice were obtained from Sankyo
Laboratory Service (Tokyo, Japan). All animals were
housed in a 12-h light/12-h dark cycle and allowed free
access to food and water. A 60% high-fat diet (HFD;
D12492) was purchased from Research Diets (New
Brunswick, NJ).

Purification of LECT2

Murine LECT2 was expressed and purified as previously
described (29), with minor modifications. Briefly, LECT2
was stably expressed in CHO cells. The protein was purified
from the cultured medium by ion exchange chromatogra-
phy. The fractions containing LECT2 were subsequently
applied to a mono S column (GE Healthcare) equilibrated
with 50 mmol/L sodium phosphate buffer (pH 7.5) and
eluted with a linear gradient of 150-350 mmol/L sodium
chloride (NaCl).

Lect2 Knockout Mice

Lect2 knockout mice were produced by homologous re-
combination using genomic DNA cloned from an Sv-129
P1 library, as described previously (17). All experimental
mice were generated from intercross between heterozy-
gous mice, and littermates were divided into groups. Be-
cause female Lect2 knockout mice had inconsistent
phenotypes, only male mice were used in all experiments
except those of starvation.

Materials

H4IIEC and C2C12 cells were purchased from the Amer-
ican Type Culture Collection (Manassas, VA). Human
recombinant insulin was purchased from Sigma Aldrich
(St. Louis, MO). Rabbit antiphospho-Akt (Ser473) mono-
clonal antibody, rabbit anti~total Akt polyclonal antibody,
rabbit antiphospho-AMP-activated protein kinase (AMPK)
(Thr172) monoclonal antibody, rabbit anti-AMPKo anti-
body, rabbit antiphospho-Jun NHy-terminal kinase (JNK)
(Thr183/Try185), rabbit anti-JNK, rabbit anti-binding im-
munoglobulin protein antibody, rabbit antiphospho-elF2a
(Ser51) antibody, rabbit anti-nuclear factor-xB p65 anti-
body, rabbit antiphospho-IkB kinase-af3 (Ser176/180) anti-
body, rabbit anti-IkB kinase-a antibody, and rabbit
antiphospho-IkBa(Ser32) antibody were purchased from
Cell Signaling Technology (Danvers, MA). Rabbit antileu-
kocyte cell-derived chemotaxin 2 polyclonal antibody
(5c-99036) and rabbit anti-glyceraldehyde-3-phosphate de-
hydrogenase polyclonal antibody were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA).
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Transient Transfection Experiment

C2C12 myoblasts were grown in 12-well multiplates. When
30-50% confluence was reached, cells were transfected with
the Fugene 6 transfection reagent (Roche) with 1 pg of con-
trol or with mouse Lect2 expression plasmid DNA per well.
After 24 h of transfection, the medium was replaced with
Dulbecco’s modified Eagle’s medium (DMEM) containing
10% FBS. When the cells reached to 100% confluence 24 h
later, the cells were differentiated into myotubes with DMEM
containing 2% horse serum for 24-48 h. Then the cells were
stimulated with 100 ng/mL human recombinant insulin for
15 min.

Small Interfering RNA Transfection in C2C12
Myoblasts

C2C12 myoblasts were transiently transfected with a total
of 15 nmol/L of small interfering RNA (siRNA) duplex
oligonucleotides using Lipofectamine RNAIMAX (Invitro-
gen), using the reverse-transfection method according to
the manufacturer’s instructions. A JNKI1-specific siRNA
with the following sequence was synthesized by Thermo
Scientific: 5'-GGAAAGAACUGAUAUACAA-3' (sense). A
JNK2-specific siRNA with the following sequence was syn-
thesized by Thermo Scientific: 5'-GGAAAGAGCUAAUUU
ACAA-3’ (sense). Negative control siRNA was purchased
from Thermo Scientific. Two days after transfection, cells
were pretreated with LECT2 protein then stimulated with
100 ng/mL of human recombinant insulin for 15 min.

RNA Isolation, cDNA Synthesis, and Real-Time PCR
Analysis

Total RNA was isolated from cells using the GenElute
Mammalian Total RNA Miniprep Kit (Sigma Aldrich).
Total RNA was isolated from mouse skeletal muscle and
heart using RNeasy Fibrous Tissue Mini Kit (Qiagen).
Total RNA was isolated from white adipose tissue using
the RNeasy Lipid Tissue Mini Kit (Qiagen). RNA con-
centrations were measured by a NanoDropR ND-1000
spectrophotometer (NanoDrop Technology). cDNA was

synthesized from 100 ng of total RNA using a high-

capacity ¢cDNA archive kit (Applied Biosystems, Foster
City, CA). Real-time PCR analysis was performed by using
TagMan gene expression assays (Applied Biosystems).
Primer sets and TagMan probes were proprietary to
Applied Biosystems (Assays-on-Demand gene expression
products). To control for variation in the amount of DNA
available for PCR, target gene expression in each sample
was normalized relative to the expression of an endoge-
nous control (18S ribosomal RNA or glyceraldehyde-3-
phosphate dehydrogenase) (TagMan control reagent kit;
Applied Biosystems).

Treatment With Recombinant LECT2 Protein in C2C12
Myotubes

C2C12 myoblasts were grown in 24-well multiplates; after
100% confluence was reached, cells were differentiated
into myotubes by culturing in DMEM supplemented with
2% horse serum for 42 h. C2C12 myotubes were serum-
starved and incubated in DMEM for 6 h and then treated
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with LECT?2 recombinant protein for various durations in
the absence of serum. Following treatment with LECT2
recombinant protein, cells were stimulated with 100 ng/mL
human recombinant insulin for 15 min.

Western Blot Studies in C2C12 Myotubes

After the inulin stimulation, the cells were washed in ice-
cold PBS, frozen in liquid nitrogen, and lysed at 4°C in 1X
RIPA lysis buffer (Upstat Biotechnology) containing a
Complete Mini EDTA-free cocktail tablet (Roche Diagnos-
tics) and PhosSTOP phosphatase inhibitor cocktail tablets
(Roche Diagnostics). Lysates then were centrifuged to
remove insoluble material. Samples were sonicated with
a BIORUPTOR (Cosmo Bio, Tokyo, Japan). Whole-cell
lysates were then separated by 5-20% SDS-PAGE gels
and were transferred to polyvinylidene fluoride membranes,
using an iBlot gel transfer system (Invitrogen). Membranes
were blocked in a buffer containing 50 mmol/L Tris,
150 mmol/L NaCl, 0.1% Tween 20, and 5% nonfat milk
(pH 7.5) or 5% PhosphoBLOCKER reagent (Cell Biolabs,
Inc.) for 1 h at 24°C. They then were probed with anti-
bodies for 16 h at 4°C. Afterward, membranes were washed
in a buffer containing 50 mmol/L Tris, 150 mmol/L NaCl,
and 0.1% Tween 20 (pH 7.5) and then incubated with anti-
rabbit IgG horseradish peroxidase-linked antibody (Cell
Signaling) for 1 h at 24°C. Protein signals were detected
using ECL Prime Western blotting detection reagent (GE
Healthcare UK Ltd.). Densitometric analysis of blotted
membranes was performed using ImageJ software (Na-
tional Institutes of Health; http://rsbweb.nih.gov/ij/).

Glucose or Insulin Tolerance Tests in Mice

In preparation for glucose tolerance testing, mice were fasted
for 12 h. After fasting, glucose was administered intraperi-
toneally, and blood glucose levels were measured at 0, 30, 60,
90, and 120 min. For insulin tolerance testing, mice were
fasted for 4 h. After fasting, insulin was administered
intraperitoneally, and blood glucose levels were measured.
Blood glucose levels were determined by the glucose-oxidase
method using Glucocard (Aventis Pharma, Tokyo, Japan).
The measurable levels of blood glucose by Glucocard range
from 20 to 600 mg/dL. Because mice fed an HFD are much
more resistant to insulin than mice fed a standard diet, lower
doses of glucose were injected in mice fed an HED during
glucose tolerance testing, as indicated in the legends of
Figs. 3 and 4, to avoid the elevation of blood glucose levels
to >600 mg/dL. In addition, more doses of insulin were
injected to mice fed an HFD during insulin tolerance testing,
as indicated in the legends of Figs. 3 and 4, to sufficiently
decrease blood glucose levels.

Western Blot Studies in Mice -

After 12 h fasting, mice were anesthetized by intraperi-
toneal administration of sodium pentobarbital. Then
insulin (1 units/kg body weight) or PBS (vehicle) was
injected through the vena cava. After 10 min, hind-limb
muscle tissue, liver tissue, and epididymal white adipose
tissue were removed and immediately frozen in liquid
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nitrogen. Tissue samples were homogenized using a Poly-
tron homogenizer running at half-maximal speed (15,000
rpm) for 1 min on ice in 1 mL of 1X radioimmunopreci-
pitation assay lysis buffer (Upstat Biotechnology) contain-
ing a Complete Mini EDTA-free cocktail tablet (Roche
Diagnostics) and PhosSTOP phosphatase inhibitor cocktail
tablets (Roche Diagnostics). Tissue lysates were solubilized
by continuous stirring for 1 h at 4°C and centrifuged for
15 min at 14,000 rpm. Protein samples were separated by
5-20% SDS-PAGE gels and were transferred to polyvinyli-
dene fluoride membranes. Serine and tyrosine phosphory-
lation of specific target proteins was analyzed by Western
blotting.

Hyperinsulinemic-Euglycemic Clamp Studies in Mice
Clamp studies were performed as described previously
(12,30), with slight modifications. Briefly, 2 days before
the study, 13-week-old male C57BL/6J wild-type and
Lect2-deficient mice were anesthetized using sodium pen-
tobarbital, and an infusion catheter was inserted into the
right jugular vein. Before insulin infusion, mice were
fasted for 6 h. Clamp studies were performed on conscious
and unrestrained animals. Insulin (Novolin R; Novo Nor-
disk, Denmark) was continuously infused at a rate of
5.0 mU/kg/min, and the blood glucose concentration
(monitored every 5 min) was maintained at 100 mg/dL
through the administration of glucose (50%, enriched to
approximately 20% with [6,6-"Hj)glucose; Sigma) for
120 min. Blood was sampled through tail-tip bleeds at
0, 90, 105, and 120 min for the purpose of determining
the rate of glucose disappearance (Rd). Rd values were
calculated according to non-steady-state equations, and
endogenous glucose production was calculated as the
difference between the Rd and the exogenous glucose
infusion rates (30).

Exercise Tolerance Test in Mice

Ten-week-old male C57BL/6J wild-type and Lect2-deficient
mice were set in a running machine. After 5 min of warming
up by running and 5 min of rest, mice started running at
11.2 m/min on a 0% incline. Running speed was increased
every 5 min until the mice reached exhaustion, defined as
when the mouse stopped running for 10 s on the electric
tubes.

Acute Exercise Experiment in Mice

Eight-week-old male C57BL/6J mice were randomly divided
into two groups: an exercise group and a rest group. All the
mice in each group were warmed up for 10 min at 12.6
m/min on a 5% indline. After fasting for 3 h, blood was
sampled through tail-tip bleeds. Mice in the exercise group
were set in a running machine and started running at 12.6
m/min on a 5% incline. Mice were allowed to have a 5-min
rest for every 30 min running. Meanwhile, the mice in the
rest group were continually fasted. After 3 h running or
resting, blood was sampled again through tail-tip bleeds.
Then the mice were anesthetized and killed to isolate the
liver tissue.
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Starvation Experiment in Mice

Twenty-week-old female C57BL/6J wild-type and Lect2-
deficient mice were starved for a total of 60 h; water was
supplied. Body weight was measured and blood was sam-
pled through tail-tip bleeds 12, 24, and 36 h after starva-
tion; 80 h later, mice were intraperitoneally injected with
insulin at a concentration of 10 units/kg body weight.
Fifteen minutes later, mice were anesthetized and killed
to isolate femoral muscle.

Blood Samples Assays in Mice

Serum Jevels of Lect2 were measured using the Ab-Match
ASSEMBLY Mouse LECT2 kit (MBL). Serum levels of in-
sulin were determined using a mouse insulin ELISA kit
(Morinaga Institute of Biological Science, Inc., Yokohama,
Japan), according to the manufacturers’ instructions.

Adenovirus-Mediated Gene Transfer in H4lIEC
Hepatocytes

HA4IIEC hepatocytes were grown to 90% confluence in 24-
well multiplates. Cells were infected with adenoviruses
encoding dominant-negative (DN) a1 and a2 AMPK, con-
stitutively active (CA) AMPK, or LacZ for 4 h (8.9 X 106
plaque-forming units/well) (31). We simultaneously ex-
pressed ol and o2 DN AMPK to maximize the effect on
AMPK activity. After removing the adenoviruses, the cells
were incubated with DMEM for 24 h. Then RNA was
isolated from the cells by using GenElute mammalian to-
tal RNA miniprep kit (Sigma Aldrich).

Indirect Calorimetry

Mice were housed in standard metabolic cages for 24 h.
We used an indirect calorimetry system (Oxymax Equal
Flow System; Columbus Instruments, Columbus, OH), in
conjunction with the computer-assisted data acquisition
program Chart5.2 (AD Instruments, Sydney, Australia), to
measure and record oxygen consumption and carbon
dioxide production at 5-min intervals. Heat generation
was calculated per weight (kilocalories per kilogram per
hour).

Measurement of Hepatic Triglyceride Content in Mice
Frozen liver tissue was homogenized in 2 mL ice-cold
isopropanol after weighing. After incubation for 10 min
with shaking at room temperature, the samples were
centrifuged at 3,000 rpm for 10 min, and 1 mL of
supernatant was transferred. Triglyceride content in each
sample was measured using the commercial Triglyceride
E-test WAKO kit (Wako Pure Chemical Industries, Osaka,
Japan). Results were normalized to the weight of each
liver sample.

Statistical Analyses

All data were analyzed using the Japanese Windows
Edition of SPSS version 21.0. Numeric values are reported
as the mean = SEM. Differences between the two groups
were assessed using unpaired two-tailed t tests. Data in-
volving more than two groups were assessed by ANOVA.
Glucose and insulin tolerance tests were examined using
repeated-measures ANOVA.
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RESULTS

Identification of a Hepatic Secretory Protein Involved
in Obesity

To identify hepatokines involved in the pathophysiology
of obesity, we performed liver biopsies in humans and
conducted a comprehensive analysis of gene expression
profiles, as we previously described (12,19,32,33). We
obtained ultrasonography-guided percutaneous needle liver
biopsies from 10 people with type 2 diabetes and 7 normal
subjects. We subjected the biopsies to DNA chip analysis to
identify genes whose hepatic expression was significantly
correlated with BMI (Supplementary Table 1). As a result,
we found a positive correlation between hepatic Lect2
mRNA levels and BMI, indicating that elevated hepatic
Lect2 mRNA levels are associated with obesity.

Circulating LECT2 Levels Correlate With Adiposity and
Insulin Resistance in Humans

To characterize the role of LECT2 in humans, using
enzyme-linked immunosorbent assays we measured serum
LECT2 levels in participants who visited the hospital for
a complete physical examination (26,27) (Supplementary
Table 2). We found a significant positive correlation be-
tween serum LECT2 levels and BMI and waist circumfer-
ence (Fig. 1A and B). LECT2 levels also showed a significant
positive correlation with the HOMA-IR and a negative cor-
relation with insulin sensitivity indices (Matsuda index)
(Fig. 1C and D). In addition, serum levels of LECT2 pos-
itively correlated with those of SeP, an hepatokine that
has already been reported to induce insulin resistance (12)
(Fig. 1E). Moreover, LECT2 showed a correlation with
levels of both HbA;. and systolic blood pressure (Fig. 1F
and G), both of which were reported to be associated with
insulin resistance (34,35). These results indicate that se-
rum levels of LECT2 are positively associated with both
adiposity and the severity of insulin resistance in humans.

AMPK Negatively Regulates Lect2 Expression in
Hepatocytes

To confirm the elevation of LECT2 in animal models
with obesity, we fed C57BL/6J mice an HED for 8 weeks
(Fig. 2A-F). An HFD increased body weight in a time-
dependent manner (Fig. 2A) and tended to increase tri-
glyceride content in the liver (Fig. 2B). Hematoxylin and
eosin staining showed mild steatosis in the mice fed an
HED (Fig. 2C). The expression of Lect2 was elevated in the
livers of the mice fed an HED, in accordance with steatosis-
associated genes such as Fasn and Srebplc (Fig. 2D).
Serum levels of LECT2 showed a sustained increase since
a week after beginning the HFD (Fig. 2E). In addition, we
confirmed that an HFD, even for only a week, resulted in
an increase of serum levels of insulin and a decrease of
insulin-stimulated Akt phosphorylation in the skeletal
musde of C57BL/6J mice (Supplementary Fig. 1). Impor-
tantly, the livers from mice fed an HFD for 8 weeks
showed decreased phosphorylation of AMPK (Fig. 2F),
the energy depletion—sensing kinase that phosphorylates
a variety of energy-associated enzymes and functions as
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a metabolic regulator that promotes insulin sensitivity
(36). Since eating an HFD for a short period increased
LECT2 concentrations, we then examined the effects of
feeding on blood LECT?2 levels. LECT2 levels were elevated
in blood obtained from fed C57BL/6J mice compared with
samples from the fasting mice (Fig. 2G). Moreover, AMPK
phosphorylation decreased in the livers of the mice that
had been fed (Fig. 2H). Since Lect2 expression was in-
versely correlated with AMPK phosphorylation in the
liver, we hypothesized that AMPK negatively regulates
LECT2 production in hepatocytes. Exercise is reported
to increase phosphorylation and activity of AMPK not
only in the skeletal muscle but also in the liver in relation
to the intrahepatic elevation of AMP levels (37,38). Thus
we examined the actions of aerobic exercise on Lect2 ex-
pression in the liver. C57BL/6J mice were loaded onto
a running treadmill for a total of 3 h. Exercise decreased
levels of Lect2 expression and LECT?2 protein in the liver
(Fig. 2I and J). Aerobic exercise for 3 h, but not resting,
significantly reduced serum levels of LECT2 (Fig. 2K).
Percentage changes from baseline showed that the re-
duction of serum LECT?2 in the exercise group was sig-
nificantly larger than that in the rest group (Fig. 2K).
In addition, aerobic exercise increased AMPK phos-
phorylation in the liver (Fig. 2L). To determine whether
AMPK suppresses Lect2 expression, we transfected H4IIEC
hepatocytes with adenoviruses encoding either CA or DN
AMPK. First, we found that transfection with CA AMPK
significantly decreased mRNA levels of Lect?2 in H4IIEC
hepatocytes, similar to those of G6Pc that encode the key
gluconeogenic enzyme glucose-6 phosphatase that is al-
ready known to be suppressed by AMPK (39) (Fig. 2M).
In contrast, transfection with DN AMPK increased Lect2
expression (Fig. 2N). These results indicate that AMPK
negatively regulates LECT2 production in hepatocytes.

Lect2 Deletion Increases Muscle Insulin Sensitivity in
Mice

Next we examined the role of LECT2 in the development
of insulin resistance in mice. We found that expression of
Lect2 in the liver was overwhelmingly dominant compared
with that in other tissues in mice (Fig. 34). This result
suggests that the contribution of the other tissues (except
the liver) on the circulating levels of LECT2 is very small
or negligible in mice. Hence we used systemic knockout
mice of LECT2 in the following experiments, although the
animal models of liver-specific downregulation for Lect2
might be more suitable. We confirmed that serum LECT?2
was undetectable in Lect2-deficient mice by using ELISA
(Fig. 3B). Body weight, food intake, and heat production
at rest were unaffected by Lect2 knockout (Fig. 3C-E).
However, the treadmill running challenge revealed that
muscle endurance, as assessed by physical exercise, was
significantly higher in Lect2 ™/~ mice (Fig. 3F and G). A
glucose or insulin loading test revealed that Lect? ™/~ mice
showed lower blood glucose levels after glucose or insulin
injection (Fig. 3H and D). Lect?™’™ mice exhibited an
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Figure 1—Circulating LECT2 correlates with adiposity and insulin resistance. Graphs show individual correlations between serum levels of
LECT2 and BMI (A}, waist circumference (B), HOMA-IR index (C), insulin sensitivity (Matsuda index) (D), selenoprotein P (SeP) (E), HbA¢ (F),

and systolic blood pressure (G) in humans (n = 200).

increase in insulin-stimulated Akt phosphorylation in
skeletal muscle (Fig. 3J and K) but not in the liver or
adipose tissue (Supplementary Fig. 2A and B). Further-
more, JNK phosphorylation was unchanged in the liver
and adipose tissue of these knockout mice (Supplemen-
tary Fig. 2C and D). Consistent with the results of insulin
signaling, hyperinsulinemic-euglycemic clamp studies
showed that the glucose infusion rate and peripheral glu-
cose disposal were increased, whereas endogenous glucose
production was unaffected by Lect2 deletion (Fig. 3L and
Supplementary Fig. 3). In addition, expression of the
genes involved in mitochondria and myogenesis, such as
UCP3, Myhl, Myh2, and Ppard, were upregulated in the

muscle of Lect2 ™™ mice (Fig. 3M). These results indicate
that deletion of Lect2 increases insulin sensitivity in skel-
etal muscle in mice.

Lect2 Deletion Attenuates Muscle Insulin Resistance in
Dietary Obese Mice

To elucidate further the role of LECT2 in the development
of obesity-associated insulin resistance, we fed Lect2-
deficient mice an HFD. HFD-induced body weight gain
was smaller in Lect2-deficient mice compared with wild-
type animals (Fig. 44). To examine the mechanism by which
Lect2-deficient mice were less obese after eating an HFD,
we measured food intake and heat production in Lect2-
deficient mice fed an HFED for only a week, when the body

©

— 204 —



diabetes.diabetesjournals.org Lan and Associates 1655

v}
9]

A

50 4 5
& 140. DRD
= 91 i ] y Mo
= " oAt EE B 120
5 30 oA 2 100
3] * 5
: Zw
g 204 S 60
A —e— RD |
10 —o— HFD § 40
:go 20
0 = 0

0.2 4 6 8
Time of treatment (weeks)

D E E F M?“?? Liver
" § o O an —o— Il-{lgb 'y i
385 o
&5 B=ro Q
5 =40 RD HFD
22s e B
51 sk = g
£352 A £ g5
K a
9 g1 g S¥ y
%o o 2 %0-5 Clro
Lect2 Fasn Srebplc 0 2 4 6 8 §
Time of treatment (weeks) & S -HFD
0
Mouse Liver
G H, | J
3 [JFast
) Eired @ [JRest [JRest
g e 4 W Exercise Exercise
e Pl 8% Q40
5 30 <5 B =0.067
2 o < g8 P
= 2410 G 1.0 8= 3.0
I g 2 e o
5 20 g % &2 Eo
é g 2 EJ" .g *k E E e
8 © 05 £ [JFast ~F0.5 3e
10 s zE =2 10
§ £ Wred £ & g 1l
— - o Q
& 0 & = 0 & 0 - 0
' RD
K L M N o
il [JAd-LacZ Il Ad-DN-AMPK
3 120, ok
2 - " = BAd-CA-AMPK
® 5100 32 0 20.0
£ i i3
B 25 6 80 <3 2 Eis0
5 X ]* o * * < °,$ B
) 3 2
o o 60 3 % 2
g 2 B ol gloo
ST 540 g g§0° 23
3
E 17{ o-Rest Ezo -o-Rest & 8 '% ES.O *kk
& 154-e-Exercise 3 |-e-Exercise oA
R Thv 0 0k 3ie 0 0
Lect2 Gopc Lect2 Gope

Figure 2—AMPK negatively regulates Lect2 expression in the liver. A: Body weight of C57BL/6J mice fed an HFD (0 = 15) or regular diet
(RD; n = 16). Five-week-old male mice were fed an HFD for 8 weeks. B: Triglyceride contents in the livers of C57BL/6J mice fed an HFD or
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M: Effects of CA AMPK on mRNA levels of Lect2 and G6pc in H4IIEC hepatocytes (n = 4). N: Effects of dominant-negative (DN) AMPK on
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weight was comparable between the wild-type and knock-
out mice (Supplementary Fig. 44). Food intake was un-
affected (Supplementary Fig. 4B), but heat production as
measured by oxygen consumption was significantly in-
creased in Lect2-deficient mice fed an HFD (Supplementary
Fig. 40) in both light and dark phases (Supplementary
Fig. 4D and E). Eleven weeks later after eating an HDF,
serum levels of insulin and blood levels of glucose de-
creased in these knockout mice (Fig. 4B and (). A glucose
or insulin loading test revealed that Lect2 knockout mice
showed lower blood glucose levels after glucose or insulin
injection (Fig. 4D and E). Consistent with the result of the
insulin loading test, Western blotting revealed that insulin-
stimulated Akt phosphorylation increased in the skeletal
muscle of these knockout animals (Fig. 4F and G). In con-
trast, JNK phosphorylation significantly decreased in the
skeletal muscle of Lect2-deficient mice (Fig. 4H and I). Fur-
thermore, we examined muscle insulin signaling in Lect2-
deficient mice fed an HFD for only 2 weeks, when the body
weight was comparable between the wild-type and knock-
out mice (Supplementary Fig. 54-C). Insulin-stimulated
Akt phosphorylation was significantly increased in the
muscle of Lect2-deficient mice under conditions of an
HED for 2 weeks (Supplementary Fig. 5D and E). These
results indicate that Lect? deletion reduces musde insulin
resistance in dietary obese mice.

Starvation Abolishes the Insulin-Sensitive Phenotype

in Lect2-Deficient Mice

Next, to elucidate the role of LECT2 in a condition of
severe undernutrition, we starved Lect2-deficient mice for
60 h. Starvation decreased body weight and blood glucose
levels in a time-dependent manner, whereas there was no
significance between wild-type and Lect2-deficient mice
(Fig. 5A and B). Consistent with the changes of body weight,
serum levels of LECT2 in wild-type animals significantly
decreased during the period of starvation (Fig. 5C). Before
starvation, serum levels of insulin in Lect2 knockout mice
were lower compared with wild-type mice (Fig. 5D). How-
ever, the starvation reduced insulin levels to the extent to
which the difference abolished between the two groups (Fig.
5D). Insulin-stimulated Akt phosphorylation in skeletal
muscle also showed no difference between the two groups
after 60 h of starvation (Fig. 5E). These results indicate that
starvation abolishes the insulin-sensitive phenotype in
Lect2-deficient mice.

LECT2 Impairs Insulin Signaling by Activating JNK in
C2C12 Myotubes

First, to examine the effect of LECT2 on insulin signaling
in vitro, we transfected C2C12 myocytes with a plasmid
expression vector encoding mouse LECT2. Expression of
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endogenous Lect2 was negligible in C2C12 myocytes
transfected with a negative control vector (Fig. 64 and B).
We confirmed that C2C12 myotubes transfected with the
Lect2 expression vector expressed Lect2 mRNA and released
LECT?2 protein into the culture medium (Fig. 6A and B).
LECT?2 transfection suppressed myotube differentiation in
C2C12 cells (Fig. 6C). The cells transfected with the Lect2
vector showed a decrease in insulin-stimulated Akt phos-
phorylation (Fig. 6D) and an increase in basal JNK phos-
phorylation (Fig. 6E).

To further confirm the acute action of LECT2 on
insulin signaling, we treated C2C12 myotubes with
recombinant LECT2 protein at nearly physiological con-
centrations. Treatment with 400 ng/mL of LECT2 protein
for 3 h decreased insulin-stimulated Akt phosphorylation
(Fig. 6F). In addition, treatment with LECT2 protein for
30-60 min transiently increased JNK phosphorylation
in C2C12 myotubes (Fig. 6G). LECT2-induced JNK phos-
phorylation occurred in a concentration-dependent man-
ner (Fig. 6H). To determine whether the JNK pathway
mediates LECT2-induced insulin resistance, we trans-
fected C2C12 myoblasts with siRNAs specific for JNK1
and JNK2. Because knockdown of JNK is known to alter
the myotube differentiation in C2C12 myotubes (40), we
used undifferentiated C2C12 myoblasts to purely assess
the action of LECT?2 on insulin signal transduction in the
following experiments. Double knockdown of JNK1 and
JNK2 rescued the cells from the inhibitory effects of
LECT2 on insulin signaling (Fig. 6I). Inflammatory signals
and endoplasmic reticulum stress are known to be powerful
inducers of JNK (41). However, the markers of neither in-
flammation nor endoplasmic reticulum stress were changed
in C2C12 myotubes overexpressed with Lect2 and in the
skeletal muscle of Lect2 knockout mice (Supplementary
Fig. 4). These in vitro experiments indicate that, at nearly
physiological concentrations, LECT2 impairs insulin signal
transduction by activating JNK in C2C12 myocytes.

DISCUSSION

Our research reveals that the overproduction of the
hepatokine LECT2 contributes to the development of
muscle insulin resistance in obesity (Fig. 7). Recent grow-
ing evidence suggests a central role for fatty liver disease
in the development of insulin resistance in obesity (4,42).
Kotronen et al. (43) have reported that intrahepatocellu-
lar rather than intramyocellular fat is associated with
hyperinsulinemia independent of obesity in nondiabetic
men. Fabbrini et al. (44) have revealed that intrahepatic
triglyceride, but not visceral adipose tissue, is a better
marker of multiorgan insulin resistance associated with
obesity. D’Adamo et al. (45) have shown that obese

mRNA levels of Lect2 and G6pc in H4IIEC hepatocytes (n = 4). Data in A and B and D-N represent the means = SEM. *P < 0.05, P < 0.01,
P < 0.001. Fasn, fatty acid synthase; G6pc, glucose-6 phosphatase; SrebpTc, sterol regulatory-element binding protein-1c.
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Figure 3—Lect2 deletion increases muscle insulin sensitivity in mice. A: Lect2 mRNA levels in various tissues of C57BL/6J mice (n = 4-8).
B: Serum levels of LECT?2 in Lect2-deficient and wild-type (WT) mice fed an HFD for 10 weeks (n = 9-13). Blood samples were obtained during
the fed condition. C: Body weight of Lect2-deficient and wild-type mice fed a regular diet (n = 6-8). D: Food intake of Lect2-deficient and wild-
type mice (n = 6-8). E: Heat production of Lect2-deficient and wild-type mice (n = 6-8). F, G: Running endurance was tested in Lect2-deficient
and wild-type mice (n = 7 or 8). Running endurance is depicted as distance (F) and time (G). Intraperitoneal glucose (H) and insulin (/) tolerance
tests in Lect2-deficient and wild-type mice (n = 7 or 8). Glucose and insulin were administered at doses of 2.0 g/kg body weight and 1.0 units/
kg body weight, respectively. J, K: Westem blot analysis and quantification of phosphorylated Akt in skeletal muscle of Lect2-deficient and
wild-type mice (n = 5). Nineteen-week-old female mice were stimulated with insulin (administered through the vena cava) at doses of 1 unit/kg
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adolescents with high hepatic fat content show lower
whole-body insulin sensitivity independent of visceral
fat and intramyocellular lipid content. These articles in-
dicate a strong correlation between fatty liver and muscle
insulin resistance in humans, but it was still unknown
whether fatty liver disease directly causes muscle insulin
resistance in obesity. The liver is a major site for the
production of bioactive secretory proteins called hepato-
kines (12,19). Many lines of evidence have reported that
the dysregulation of the production of hepatokines such
as SeP or fetuin A is involved in the development of
systemic insulin resistance (12,13,46,47). This study dem-
onstrates a previously unrecognized role for LECT2 in
glucose metabolism and suggests that LECT2 is a strong
candidate to explain a mechanism by which the fatty liver
leads to whole-body insulin resistance in obesity.

The energy depletion-sensing kinase AMPK functions
as a metabolic sensor that promotes insulin sensitivity
(36). Exercise is known to increase the phosphorylation
and activity of AMPK in skeletal muscle. Early reports
have shown that exercise-induced AMPK phosphorylation
also is observed in the liver (37,38). On the other hand,
an HFD is reported to decrease AMPK phosphorylation in
the liver, probably because of excessive accumulation of
energy (48,49). Negative regulation of LECT2 by the en-
ergy depletion-sensing kinase AMPK supports the con-
cept that LECT2 functions as a hepatokine that senses
overnutrition. One limitation of this study is that the
molecular mechanism by which AMPK reduces Lect2 ex-
pression is still unknown. Additional studies are needed
to determine the transcriptional factors that negatively
regulate Lect2 expression downstream of AMPK pathway.

JNK is a mitogen-activated protein kinase that is
activated by various stimuli, including cytokines, reactive
oxygen species, endoplasmic reticulum stress, and meta-
bolic changes (41). JNK plays a major role in the devel-
opment of insulin resistance induced by an HFD through
phosphorylating insulin receptor substrates at specific
serine and threonine residues (50,51). Several more re-
cent studies suggest a role for JNK in the development
of insulin resistance in skeletal muscle, as well as in the
liver or adipose tissue. Ferreira et al. (52) reported an in-
crease of JNK phosphorylation and a decrease of insulin-
stimulated Akt phosphorylation in the skeletal muscle
of patients with nonalcoholic steatohepatitis. Henstridge
et al. (53) showed that muscle-specific overproduction of
CA JNK induces muscle insulin resistance in mice. Con-
versely, Sabio et al. (54) revealed that muscle-specific JNK
knockout mice exhibit improved insulin sensitivity in
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skeletal muscle. Hence the overproduction of LECT2 in
the liver may contribute, at least in part, to JNK phos-
phorylation and the subsequent insulin resistance ob-
served in the skeletal muscle of obese patients. However,
the mechanism by which LECT2 increases JNK phos-
phorylation remains unresolved. Our results suggest that
LECT?2-induced JNK activation in cultured myocytes is
independent of inflammation or endoplasmic reticulum
stress (Supplementary Fig. 4). Identification of the LECT2
receptor and characterization of its downstream signaling
will provide insights into the involvement of LECT2 in JNK
phosphorylation.

We show that overexpression of Lect2 does not alter
the inflammatory response in cultured myotubes. Early
reports suggest that Lect2 exerts different effects on in-
flammation depending on various pathological conditions.
Inflammation observed in autoimmune disorders such
as collagen antibody-induced arthritis or concanavalin
A-induced hepatitis is reported to be suppressed by
Lect2 (17,55). Lect2 also attenuates B-catenin-induced
inflammation associated with hepatocellular carcinoma
in mouse models (18). On the other hand, a more recent
report showed that Lect2 activates lipopolysaccharide-
stimulated macrophages via the CD209a receptor, result-
ing in an improvement in the prognosis for survival in
mice with bacterial sepsis (56). Because we found no ex-
pression levels of CD209a in C2C12 myotubes in real-time
PCR experiments (data not shown), Lect2-induced insulin
resistance in cultured myocytes is likely to be independent
of inflammatory response via the CD209a receptor. How-
ever, it is unknown whether Lect2 affects macrophages
observed in the adipose tissue of obesity. The actions of
Lect2 on low-grade inflammation seen in obesity are now
under investigation.

Interestingly, although Lect2 knockout mice showed an
increase of insulin signaling in the skeletal muscle when
fed an HFD or regular chow, this increase was abolished
after 60 h of starvation. Serum levels of LECT2 were in-
creased by an HED (Fig. 2E), whereas they were decreased
by starvation in wild-type mice (Fig. 5C). Hence it seems
most likely that the difference in serum LECT2 levels
between wild-type and knockout mice was enhanced
by an HFD, whereas it was reduced by starvation. The
abolishment of the insulin-sensitive phenotypes in Lect2
knockout mice after starvation may be explained by re-
duction of the difference in serum LECT2 levels. These
results suggest that Lect2 plays a major role in the regu-
lation of insulin sensitivity in overnutritional conditions,
but not in the undernutritional ones.

body weight; 10 min after insulin administration, the hind-limb muscles were removed. L: Glucose infusion rate (GIR), endogenous glucose
production (EGP), and rate of glucose disposal (Rd) during hyperinsulinemic-euglycemic clamp in Lect2-deficient and wild-type mice (n = 6
or 7). M: mRNA levels of genes involved in myogenesis and mitochondria in skeletal muscle of Lect2-deficient and wild-type mice (0 =4 or
5). Data in A~/ and K-M represent the means = SEM. *P < 0.05, *P < 0.01, ***P < 0.001 (Lect2-deficient mice vs. wild-type mice).
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wild-type mice fed an HFD for 10 weeks (n = 9-13). Insulin was administered at doses of 1.2 units/kg body weight. F and G: Westem blot
analysis and quantification of phosphorylated Akt in skeletal muscle of Lect2-deficient and wild-type mice (n = 3 or 4), respectively. H and I:
Western blot analysis and quantification of phosphorylated JNK in skeletal muscle of Lect2-deficient and wild-type mice (n = 3 or 4),
respectively. Mice were stimulated with insulin (administered through the vena cava) at doses of 1 unit/kg body weight; 2 min after insulin
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(Lect2-deficient mice vs. wild-type mice).
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Our data reveal that a 60% HED for 1 week resulted
in a concurrent decrease of insulin signaling in skeletal
muscle and an increase of circulating levels of LECT2 in
C57BL/6J mice. A previous clinical report showed that
overfeeding and inactivity for only 3 days impaired
insulin sensitivity in healthy young men (57). Impairment
of insulin sensitivity occurred before changes in body
composition such as total fat mass and visceral fat area.
However, additional clinical studies are required to deter-
mine whether eating an HFD for several days indeed
induces simultaneous alterations of circulating LECT2
and muscle insulin sensitivity in humans.

C2C12 myocytes transfected with plasmid encoding
LECT?2 showed an impairment of myotube differentiation
and insulin signal transduction (Fig. 6C and D). The pres-
ence of LECT2 protein in the culture medium (Fig. 6B)
suggests that LECT2 derived from the pLect? acted on the
cells in an autocrine or paracrine manner. Because the half-
life of LECT2 protein was predicted to be short because of
the low molecular weight of LECT2 (16 kDa), we initially
overexpressed Lect2 in the cultured myocytes to examine the
chronic actions of LECT2. In the next experiments, we di-
rectly treated well-differentiated C2C12 myotubes with
recombinant LECT2 protein for 3 h (Fig. 6F) to exclude
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Figure 6 —LECT2 impairs insulin signaling by activating JNK in C2C12 myotubes. C2C12 myoblasts in 30-50% confluence were transfected
with negative control or mouse (m) Lect2 expression plasmid in A-£. When the cells reached 100% confluence, they were differentiated into
myotubes with DMEM containing 2% horse serum for 24-48 h. A: Lect2 mRNA levels in C2C12 myotubes transfected with control or Lect2
expression vector (n = 6). mRNA was obtained from the cells differentiated into myotubes for 24 h. B: LECT2 protein levels in culture medium
of C2C12 myotubes transfected with control or Lect2 expression vector for 24 or 72 h (n = 3). LECT2 production was measured by ELISA. C:
Representative images of C2C12 myotubes transfected with control or Lect2 expression vector. The cells were differentiated into myotubes
for 48 h. D: Western blot analysis of phosphorylated Akt in C2C12 myotubes transfected with control or Lect2 expression vector (7 = 4). The
cells were stimulated by 100 ng/mL of insulin for 15 min. E: Western blot analysis of phosphorylated JNK in C2C12 myotubes transfected with
control or Lect2 expression vector (n = 3). F: Westem blot analysis of phosphorylated Akt in C2C12 myotubes pretreated with recombinant
LECT2 protein (1 = 4). The cells were pretreated with LECT2 protein. Three hours later, the cells were stimulated with insulin. G: Effects of
recombinant LECT2 protein on JNK phosphorylation in C2C12 myotubes (n = 3). The cells were treated with 400 ng/mL of recombinant
LECT2 protein for the indicated times. H: Concentration-dependent effects of recombinant LECT2 protein on JNK phosphorylation in C2C12
myotubes (17 = 3). The cells were treated with LECT2 protein for 1 h. /: Effects of JNK-knockdown on LECT2 protein-induced insulin resistance
in C2C12 myoblasts (n = 4). Data in A, B, and D-/ represent the means + SEM. *P < 0.05, *P < 0.01, **P < 0.001 versus cells transfected
with control vector or cells treated with vehicle.
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Figure 7—The hepatokine LECT2 links obesity to insulin resistance
in skeletal muscle.

the possibility that LECT2-induced suppression of myotube
differentiation causes secondary insulin resistance in pLect2
experiments. The results obtained from the experiments
using the recombinant LECT2 protein suggest that LECT2
directly induces insulin resistance in C2C12 cells indepen-
dent of its action on myotube differentiation.

Okumura et al. (55) reported that treatment with
LECT2 ameliorated collagen antibody-induced arthritis
in mice. This report suggests that LECT2 suppresses the
inflammatory response that progresses after autoantibod-
ies develop. Several clinical studies showed that the onset
of inflammatory polyarthritis, such as rheumatoid arthri-
tis, is accelerated by obesity (58,59). Because our current
data reveal a positive correlation between BMI and serum
LECT2 levels in humans, it seems that overproduction of
LECT?2 fails to exert a sufficient suppressive action on
inflammatory polyarthritis in people with obesity. How-
ever, it is still unknown whether LECT2 acts on the pro-
cess of autoantibody production by B lymphocytes in the
acquired immune system. Further basic and dinical stud-
ies are needed to investigate the relationship between
LECT?2 and obesity-associated arthritis.

Our current cross-sectional data show that serum
levels of LECT2 positively correlate with the severity of
insulin resistance in human subjects. However, many lines
of evidence demonstrated that various circulating pro-
teins whose expression is altered in obesity, such as
adiponectin and resistin, participate in the development
of insulin resistance (60). Hence our study does not nec-
essarily place LECT2 as only a single causal factor of
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insulin resistance. In addition, further prospective studies
are needed to confirm the causal relationship between
LECT?2 and insulin resistance in people with obesity.

In summary, our experiments identified LECT2 as an
obesity-upregulated hepatokine that induces insulin re-
sistance in skeletal muscle. Lect2 may be a potential target
for the treatment of obesity-associated insulin resistance.
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