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Fig. 7. BCAAs inhibit the effect of malnutrition and TGF-# signaling in Huh-7.5 cells and PHH. A: Western blotting of TGF-§ and Foxo3a-Socs3
signaling in Huh-7.5 HCV (+) and PHH treated with amino acid depletion (1/5 DMEM), TGF-f1, and BCAAs. B,C: mRNA expression of TGF-f3,
Foxo3a-Socs3, and IFN signaling in Huh-7.5 HCV (+) (B) and PHH (C) treated with amino acid depletion (1/5 DMEM), TGF-f1, and BCAA.

blotting analysis showed that BCAAs dose-dependently
repressed the expression of p-Smad3L, p-Smad3C, p-
JNK, p-c-Jun, Foxo3a, Socs3 (in Huh-7.5 cells and
PHH), and HCV core protein (in Huh-7.5 cells),
which was induced by amino acid depletion (1/5
DMEM) and TGEF-f1 treatment (Fig. 7A). RTD-PCR
demonstrated similar mRINA expression patterns
(Smad2, Smad3, Foxo3a, and Socs3a) to those
obtained by western blotting (Fig. 7B,C), and BCAAs
induced the expression of ISG-20 (in Huh-7.5 cells
and PHH) and decreased HCV replication in a dose-
dependent manner (in Huh-7.5 cells) (Fig. 7B). These
results were also confirmed in HCVcc HJ3-5-infected
Huh-7 cells (Supporting Fig. 6).

BCAAs and TGF-B RI Potentiate the Anti-HCV
Activity of DAAs. Finall, we examined whether
BCAAs or TGF-f RI potentiate the anti-HCV activity of
DAAs. Amino acid depletion (1/5 DMEM) and TGF-f1
treatment ~ significandy increased HCV  replication
(deduced from Gaussia luciferase activity), and BCAAs
(8 mM) and boceprevir (250 nM; NS3 protease inhibi-
tor) inhibited HCV replication to 64% and 50%, respec-

tively (Fig. 8A, black bars). The combination of BCAAs
(8 mM) and boceprevir (250 nM) further inhibited
HCV replication to 10% and canceled the effect of
amino acid depletion (1/5 DMEM) and TGF-f1 treat-
ment, which supported HCV replication (Fig. 8A, com-
pare white and black bars). Similarly, TGE-f RI (10 uM)
repressed HCV replication to 60%, and its combination
with boceprevir (250 nM) decreased HCV replication to
16% (Fig. 8B, black bars) and canceled the effect of
amino acid depledon (1/5 DMEM) and TGF-f1 treat-
ment (Fig. 8A, compare white and black bars). Thus,
BCAAs and TGF-f RI had an additive effect on the
anti-HCV activity of boceprevir and would be useful for
CH-C patients with advanced fibrosis and the IL28B
treatment-resistant genotype. A similar effect was obtained
by using the NS5A inhibitor BMS-790052; however, its
effect was less than that of boceprevir (Supporting Fig. 7).

Discussion

The recently developed DAAs have significantly
improved the efficacy of anti-HCV therapy. Triple
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Fig. 8. Anti-HCV activity of boceprevir in combination with BCAAs (A) and TGF-f#1 RI (B). HCV replication in Huh-7.5 cells was deduced by
Gaussia luciferase activity. Boceprevir in combination with BCAAs (A) and TGF-f1 Rl (B) efficiently repressed HCV replication in Huh-7.5 cells
treated with amino acid depletion (1/5 DMEM) and TGF-f1. The experiments were performed in triplicate and repeated 3 times (*P < 0.05,

**P <0.01, ***P < 0.001).

therapy comprising PEG-IFN, RBV, and DAA (e.g.,
telaprevir or boceprevir) has significantly increased
SVR rates; however, its efficacy is poor in difficult-to-
cure patients such as those with cirrhosis and the
IL28B treatment-resistant sc'»;enotype.z’4 An IFN-free
regimen using a combination of DAAs would be effec-
tive to treat these difficult-to-cure patients; however,
the emergence of multiple drug resistant viruses and
the high cost of these therapies should be considered
carefully in the future. Therefore, standard PEG-IFN
plus RBV combination therapy is still useful as an
alternative therapy for CH-C.

Previously, we reported that malnutrition in patients
with the advanced fibrosis stage of CH-C is associated
with IFN resistance and impaired IFN signaling by
inhibiting mTORC1 and activating Socs3-mediated
IFN inhibitory signaling through the nutrition-sensing
transcriptional factor Foxo3a.® However, the effect of
profibrosis signaling on IFN signaling was not
addressed in our previous study. In the present study,
using clinical samples and cell lines, we clearly showed
that TGF-f signaling inhibits IFN signaling by activat-
ing Foxo3a-Socs3-mediated IFN inhibitory signaling
(Figs. (1 and 4)) and inhibiting mTORC1 signaling
(Fig. 5).

Using Foxo3a promoter-luciferase reporter con-
structs, we showed that TGF-f1 activated Foxo3a pro-
moter activity through an AP1 transcription factor
binding site. Among the components of AP1, c-Jun
and probably ATF2, but not c-Fos, were involved in
this induction. Previous reports showed that c-Jun and
ATF2 were induced by amino acid depletion'®* and

TGE-f1 treatment,''® although the induction of c-
Jun by amino acid depletion was not obvious in PHH
in this study. It could be considered that malnutrition
and profibrotic signaling cooperatively activated the
Foxo3a promoter through the AP1 site and that c-Jun
induction was more specifically regulated by TGE-f1
in normal hepatocytes. Mutation of the AP1 binding
site (pGL4-FOXO3a [-1340-MT]) abolished the
response to amino acid depletion (1/5 DMEM) and
TGEF-p1 treatment (Fig. 3E; Supporting Fig. 2). Con-
versely, c-Jun overexpression combined with amino
acid depletion (1/5 DMEM) and TGF-f1 treatment
activated the Foxo3a promoter by 32-fold (Fig. 3F). In
addition, we showed that TGF-f1 inhibited mTORC1
signaling, as demonstrated by the decreased expression
of RHEB, p-mTOR, and p-p70S6K (Fig. 5A).

These results were in concordance with gene expres-
sion in the liver of CH-C patients. The expression of
c-Jun and ATF2 was significantly correlated with
Smad2 and Foxo3a expression, respectively (Fig. 4),
while the expression of RHEB was significantly nega-
tively correlated with Smad2 expression in the liver of
CH-C patients (Fig. 5C). In this study, TGF-f1 and
TGEF-B2 expression was up-regulated in advanced liver
fibrosis, and the expression of TGF-f2 was well corre-
lated with the downstream signaling molecule Smad2
(Fig. 1B-D). Although we could not address the bio-
logical differences in TGF-f isoforms in this study,
TGEF-B1 and TGF-f2 reportedly mediate a similar sig-
naling pathway to induce profibrotic responses.’” Col-
lectively, TGF-f signaling inhibited IFN signaling by
activating Foxo3a-Socs3 IFN inhibitory signaling and
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inhibiting mTORCI1-IEN stimulating signaling in vitro
and iz vive. Recently, Lee et al. showed that Foxo3a
regulates the TGF-B1 promoter directly.'® Combining
their data and ours, there must be positive feedback
regulation between TGEF-f1 and Foxo3a. Moreover,
they identified a polymorphism in Foxo3a
(rs12212067: T>G) in which the minor (G) allele
was involved in the increased production of TGF-f1
and associated with the inflammatory response.'® We
genotyped the Foxo3a rs12212067 polymorphism in
three cell lines and observed TT in Huh-7 and Huh-
7.5 and GG in TTNT (Supporting Table 3). Although
we could not find a significant difference in Foxo3a
promoter activity in response to TGF-f1 among these
cell lines (Supporting Fig. 2), further studies should be
performed to compare Foxo3a-Socs3 IFN inhibitory
signaling among them. Furthermore, it is worthwhile
to examine the relationship between the genotype at
1512212067 and treatment response and severity of
liver disease in CH-C patients in the future.

Another interesting finding in this study was that
TGEF-p signaling was related to the IL28B genotype
(Fig. 6). The expression of c-Jun was significantly
higher in IL28B treatment-resistant minor genotype
(TG/GG at 1rs8099917) patients than in IL28B
treatment-sensitive major genotype (TT) patients.
Moreover, the expression of ¢-Jun, Smad2, ATF2, and
Socs3 was up-regulated more in IL28B minor geno-
type patients than in IL28B major genotype patients,
especially in those with early stage liver fibrosis (F1-2).
The underlying mechanisms of these findings are not
known so far; however, we recently reported that the
noncanonical WNT signaling ligand WNT5A is up-
regulated in the liver of IL28B minor genotype
patients and plays a role in treatment resistance.'”
WNT5A reportedly mediates downstream signaling
through c-Jun and ATF2 in Xenopus cells and human
osteosarcoma cells.’>*! It could be speculated that
WNTS5A potentiates TGF-f signaling through these
transcription factors, although this hypothesis should
be tested in the future.

We examined whether BCAAs and TGEF-f RI
improve the IFN inhibitory signaling induced by mal-
nutrition and TGEF-f signaling (Fig. 7). Previously, we
demonstrated that BCAAs improved the IFN signaling
that was inhibited by malnutrition.® In the present
study, we found that BCAAs blocked TGF-f signaling
by decreasing the levels of p-Smad3L, p-JNK, and c-
Jun (Fig. 7A). Consequently, BCAAs decreased the
expression of Foxo3a, Socs3, and HCV core protein
(Fig. 7). In addition, we found that the combination
of BCAAs or TGF-f RI and the NS3 protease inhibi-
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tor boceprevir efficiently inhibited HCV replication
and canceled the positive effects of malnutrition and
TGF-f1 on HCV replication (Fig. 8). A recent report
showed that the NS3 protease of HCV mimics TGF-
2 and activates the TGF-B type I receptor.”? There-
fore, the anti-HCV effect of boceprevir could be
potentiated in combination with BCAAs or TGF-f
RI, which blocked TGF-f signaling and increased IFN
signaling. Therefore, the combination of BCAAs or
TGE-f RI with DAAs could be useful for the treat-
ment of difficult-to-cure CH-C patients with advanced
liver fibrosis and the IL28B treatment-resistant
genotype.

In conclusion, we clarified that TGEF-f signaling
inhibits IFN signaling and is related to the treatment-
resistant phenotype of CH-C patients with advanced
liver fibrosis and the IL28B treatment-resistant geno-
type. Furthermore, blocking TGF-f signaling by
BCAAs or TGF-$ RI could potentiate the anti-HCV
effect of DAAs. An oral TGF-f RI small compound,
LY2157299, is now being assessed in a phase II trial for
the treatment of advanced-stage HCC. Further studies
should be performed to address the significance of these
compounds for the eradication of HCV in patients
with advanced liver fibrosis for preventing HCC.
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Gd-EOB-DTPA-Enhanced Magnetic Resonance Imaging
and Alpha-Fetoprotein Predict Prognosis of
Early-Stage Hepatocellular Carcinoma

Taro Yamashita,"* Azusa Kitao,> Osamu Matsui,> Takehiro Hayashi,” Kouki Nio,” Mitsumasa Kondo,”

Naoki Ohno,* Tosiaki Miyati,4 Hikari Okada,? Tatsuya Yamashita,” Eishiro Mizukoshi,” Masao Honda,”

Yasuni Nakanuma,” Hiroyuki Takamura,® Tetsuo Ohta,® Yasunari Nakamoto,” Masakazu Yamamoto,®
Tadatoshi Takayama,” Shigeki Arii,'® XinWei Wang,'" and Shuichi Kaneko®

The survival of patients with hepatocellular carcinoma (HCC) is often individually different
even after surgery for early-stage tumors. Gadolinium ethoxybenzyl diethylenetriamine pen-
taacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) has been intro-
duced recently to evaluate hepatic lesions with regard to vascularity and the activity of the
organic anion transporter OATP1B3. Here we report that Gd-EOB-DTPA-enhanced MRI
(EOB-MRI) in combination with serum alpha-fetoprotein (AFP) status reflects the stem/
maturational status of HCC with distinct biology and prognostic information. Gd-EOB-
DTPA uptake in the hepatobiliary phase was observed in ~15% of HCCs. This uptake cor-
related with low serum AFP levels, maintenance of hepatocyte function with the up-
regulation of OATPIB3 and HNF4A expression, and good prognosis. By contrast, HCC
showing reduced Gd-EOB-DTPA uptake with high serum AFP levels was associated with
poor prognosis and the activation of the oncogene FOXMI. Knockdown of HNF4A in
HCC cells showing Gd-EOB-DTPA uptake resulted in the increased expression of AFP and
FOXM1 and the loss of OATPIB3 expression accompanied by morphological changes,
enhanced tumorigenesis, and loss of Gd-EOB-DTPA uptake #z vivo. HCC classification
based on EOB-MRI and serum AFP levels predicted overall survival in a single-institution
cohort (n=70), and its prognostic utility was validated independently in a multi-
institution cohort of early-stage HCCs (n = 109). Conclusion: This noninvasive classification
system is molecularly based on the stem/maturation status of HCCs and can be incorpo-
rated into current staging practices to improve management algorithms, especially in the
early stage of disease. (HEPATOLOGY 2014;60:1674-1685)

iver cancer is the fifth most commonly diag- (HCC) represents the major histological subtype,
nosed cancer and the second most frequent accounting for 70-86% of cases of primary liver can-
cause of cancer death in men worldwide." cer.' Several staging systems are currently available for
Among primary liver cancers, hepatocellular carcinoma HCC  classification and include Tumor Node

Abbreviations: AFE alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; EOB-MRI, gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced
magnetic resonance imaging; FOXM1, forkhead box protein MI1; Gd-EOB-DTPA, gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid; HCC, hepatocel-
lular carcinoma; HNF4o, hepatocyte nuclear factor 4 alpha; IHC, immunohistochemistry; MRI, magnetic resonance imaging; NOD/SCID, nonobese diabetic,
severe combined immunodeficient; OATDPs, organic anion transporting polypeptides; qRT-PCR, quantitative reverse-transcription polymerase chain reaction; SI, sig-
nal intensity; TNM, tumor node metastasis.
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Metastasis (TNM) and Barcelona Clinic Liver Cancer
(BCLC) staging, which are based on tumor number
and size, vascular invasion, metastatic status, hepatic
reserve, and performance status.” These systems can
provide an approximate estimate of patients’ survival,
but patients diagnosed at the same discase stage some-
times show a different prognosis. This is most likely
because these systems do not include an assessment of
the malignant phenotype of the tumor, which would
be especially important in those patients diagnosed at
the early stage of disease. To overcome these limita-
tions, gene expression profiling technologies have been
applied to classify HCC. In particular, the stemness of
HCC is currently of great interest because its gene
expression profile reflects the malignant nature of the
tumor.”” However, the application of these new tech-
nologies still needs to be validated externally prior to
their implementation in clinical practice.

The hallmark of HCC diagnosis has been image
analysis based on vascularity. Gadolinium ethoxybenzyl
diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)
is a liver-specific magnetic resonance imaging (MRI)
contrast agent introduced specifically to improve the
detection of liver lesions.® Gd-EOB-DTPA-enhanced
MRI (EOB-MRI) has been used to evaluate liver
tumors in Europe since 2004, in the USA and Japan
since 2008, and in China since 2010. Gd-EOB-DTPA
is characterized by its rapid and specific uptake by
hepatocytes by way of organic anion transporting poly-
peptides (OATPs) expressed in the sinusoidal mem-
brane. Therefore, Gd-EOB-DTPA uptake in the liver
is considered to reflect hepatocyte function.” Among
OATP1A2, 1B1, 1B3, and 2BI1, only OATP1B3
expression was found to correlate with the enhance-
ment ratio on EOB-MRI, indicating that it transports
Gd-EOB-DTPA into HCC cells.'® It is generally
accepted that ~85% of HCCs show hypointensity in
the hepatobiliary phase of EOB-MRI compared to the
noncancerous background liver, with a reduction of
OATPI1B3 protein or OATPIB3 gene expression in
the tumor.'®"" However, atypical Gd-EOB-DTPA
uptake in the hepatobiliary phase is observed in the
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remaining 15% of HCCs, and the molecular pheno-
type and clinical features of these HCCs remain to be
elucidated. _

We hypothesized that EOB-MRI findings may vary
in different tumor subtypes with distinct biology.
Therefore, in this study we evaluated the molecular
profiles of HCCs in a single-institute cohort deter-
mined from the EOB-MRI findings using quantitative
reverse-transcription polymerase chain reaction (qRT-
PCR), microarray, and immunohistochemistry (IHC)
analyses. To clarify the clinical utility of the EOB-MRI
findings, we also evaluated the prognosis of a multi-
center cohort of patients with early-stage HCC who
underwent radical resection.

Materials and Methods

Patients. A total of 417 patients who received sur-
gical resection for HCC were enrolled in this study.
Seventy patients underwent EOB-MRI for the diagno-
sis of HCC and received surgical resection at Kana-
zawa University Hospital from 2008 to 2011. Survival
analysis was performed in this single-institute cohort
(Cohort 1) and prognosis was evaluated every 6
months. The final evaluation of survival was per-
formed in October 2011. From these 70 patients, 62
tumor and nontumor samples were snap-frozen in lig-
uid nitrogen and used for qRT-PCR.

For microarray analysis, we assessed 238 patients
who received surgical resection of HCC at the Liver
Cancer Institute of Fudan University. EOB-MRI was
not performed in these patients because Gd-EOB-
DTPA had not yet been introduced in China. Their
clinicopathologic characteristics and prognostic data
have been described previously.'?

To evaluate the survival of early-stage HCCs, we
enrolled 109 patients who received EOB-MRI and sur-
gical resection at Tokyo Medical and Dental University
Hospital, Tokyo Women’s Medical University Hospital,
Nihon University School of Medicine Itabashi Hospi-
tal, Niigata University Medical & Dental Hospital,
Hyogo College of Medicine Hospital, or Kurume
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University Hospital from 2008 to 2009 (Cohort 2).
The prognosis of these patients was evaluated every
year, and the final evaluation of survival was performed
in February 2012.

This study was approved by the Institutional Review
Board at each study center and all patients provided
written informed consent.

EOB-MRI. EOB-MRI was performed before surgi-
cal resection using a 1.5 or 3.0 Tesla MRI system with
a fat-suppressed 2D or 3D gradient echo T1-weighted
sequence (relaxation time / echo time [TR/TE] = 3.2-
3.6/1.6-2.3 ms, flip angle 10-15°, field of view 33-42
cm, matrix 128-192 X 256-512, slice thickness 4.0-
8.0 mm). A dose of 0.025 mmol/kg Gd-EOB-DTPA
(Primovist; Bayer Schering Pharma, Berlin, Germany)
was injected intravenously and the hepatobiliary phase
was obtained at 15-20 minutes after the injection.

All abdominal MRI data of the HCC patients were
generated at Kanazawa University Hospital and image
analysis was performed retrospectively by two radiolog-
ists (A.K. and O.M.) without knowledge of the clinical
and pathological results. The signal intensity (SI) of the
tumor was measured within the region of interest,
which was determined as the maximum oval area at the
largest section of the tumor. The SI of the adjacent
background liver was also measured within a region of
interest of the same size, while avoiding large vessels.
The nodules were classified into the two following
types: hypointense HCC, which was defined as showing
a lower SI than that of the surrounding liver (tumor SI
/ background SI <1.0) in the hepatobiliary phase, and
hyperintense HCC, which was defined as showing an
equal or higher SI (tumor SI / background SI >1.0).

For the mouse study, EOB-MRI was performed using
a 0.4 T MRI system with a fat-suppressed 3D gradient
echo T1-weighted sequence (TR/TE = 66.5/4.0 ms, flip
angle 40°, field of view 10 cm, matrix 224 X 192, slice
thickness 1.0 mm). A dose of 0.025 mmol/kg Gd-
EOB-DTPA (Bayer Schering Pharma) was injected
through the tail vein, and the hepatobiliary phase was
obtained at 12-20 minutes after the injection.

Xenotransplantation of Primary HCC in Immu-
nodeficient Mice and HNF4A Knockdown. Primary
HCC tissue was dissected and digested in 1 mg/mL
type 4 collagenase solution (Sigma-Aldrich Japan,
Tokyo, Japan) at 37°C for 15-30 minutes. Contami-
nated red blood cells were lysed with an ammonium
chloride solution (STEMCELL Technologies, Vancou-
ver, BC, Canada) on ice for 5 minutes. CD45" leuko-
cytes and annexin V™ apoptotic cells were removed by
an autoMACS-pro cell separator and magnetic beads
(Miltenyi Biotec, Tokyo, Japan). The cells were sus-
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pended 1:1 in 200 uL Dulbecco’s modified Eagle’s
medium (DMEM) and Matrigel (BD Biosciences) and
injected subcutaneously into 6-week-old NOD/SCID
mice (NOD/NCrCRI-Prkdé™)  purchased  from
Charles River Laboratories (Wilmington, MA). EOB-
MRI was performed to evaluate Gd-EOB-DTPA
uptake in the subcutaneous tumor at the hepatobiliary
phase, and the subcutaneous tumor was dissected and
digested as described above, and subsequently cultured
in DMEM. HNF4A knockdown was performed using
pGFP-V-RS vectors (OriGene Technologies, Rockville,
MD), allowing stable delivery of the short hairpin
RNA (shRNA) expression cassette against ANF4A or
scramble sequence into host cells by way of a
replication-deficient retrovirus. Infected HCC cells
were grown in DMEM containing 1 ug/mL puromy-
cin (Sigma-Aldrich Japan) for 7 days to establish stable
shRNA-expressing HCC cells. Western blotting and
immunofluorescence analyses were performed using an
antihuman HNF40 C11F12 antibody (Cell Signaling
Technology, Danvers, MA) and a mouse monoclonal
antihuman OATP1B3 MDQ/5F260 antibody (Novus
Biologicals, Littleton, CO), essentially as described pre-
viously.® Control or Sh-HNF4A-transfected HCC
cells were injected subcutaneously into NOD/SCID
mice, and tumor volume and survival were evaluated
every 2-3 days. The protocol was approved by the
Kanazawa University Animal Care and Use Committee
and the Kanazawa University Genetic Modification
Experiment Committee.

Microarray Analysis. The 238 HCC cases from
the Liver Cancer Institute of Fudan University with
available microarray data and clinicopathologic and
prognostic data have been described previously.'?
BRB-ArrayTools software (v. 3.8.1) was used for class
comparison analysis. Hierarchical clustering analysis
was performed with Genesis software (v. 1.6.0 beta).
Canonical pathway and transcription factor analyses
were performed using MetaCore software (http://www.
genego.com). Interaction network analysis was per-
formed using Ingenuity Pathway Analysis software
(http://www.ingenuity.com).

qRT-PCR Analysis. Total RNA was extracted using
an RNeasy Mini Kit (Qiagen, Valencia, CA) according to
the manufacturer’s instructions. The expression of selected
genes was determined in triplicate using the Applied Bio-
systems 7900HT Sequence Detection System (Applied
Biosystems, Foster City, CA) and the —AACT method.
The following probes were used: AFR Hs00173490_m1;
FOXM1, Hs01073586_m1; OATP1B3, Hs00251986_m1;
CYP3A4, Hs00430021_m1; and 78S, Hs99999901_s1
(Applied Biosystems).
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IHC Analysis. THC was performed  using
Envision+ kits (Dako Japan, Tokyo, Japan) as
described previously.'* Mouse monoclonal antihuman
Ki-67 antigen MIB-1 (Dako Japan), mouse monoclo-
nal antihuman OATP1B3 MDQ/5F260 (Novus Bio-
logicals), rabbit monoclonal antihuman HNF4«
C11F12 (Cell Signaling Technology), mouse monoclo-
nal antthuman FOXM1 0.T.181 (Abcam, Cambridge,
MA), mouse monoclonal antihuman glypican-3 1G12
(BioMosaics, Burlington, VT), and mouse monoclonal
antiglutamine synthetase clone GS-6 (Millipore, Biller-
ica, MA) antibodies were used. The staining area and
intensities were evaluated in each sample and graded
from 0-3 (0, 0-5%; 1, 5-25%; 2, 25-50%; 3, >50%)
and 0-2 (0, negative; 1, weak; 2, strong), respectively.
The sum of the area and intensity scores of each
marker (IHC score) were calculated. Samples were
defined as marker-high (IHC score >3) or -low (IHC
score <2). The Ki-67 labeling index was calculated as
described previously.'

Statistical Analysis. Mann-Whitney, Xz’ Fisher’s
exact, and Kruskal-Wallis tests were used to compare
the clinicopathologic characteristics and gene expres-
sion data. The correlation of the gene expression data
was evaluated by Spearman’s rank correlation coeffi-
cient. Kaplan-Meier survival analysis with the log-rank
test was performed to compare patient survival. All
analyses were performed using GraphPad Prism soft-
ware v. 5.0.1 (GraphPad Software, San Diego, CA).

Results

EOB-MRI Findings and Molecular Characteristics
of HCC. Nine of the 70 HCC cases (12.9%) in
Cohort 1 were diagnosed with hyperintense HCC on
EOB-MRI (Fig. 1A). Analysis of the clinicopathologic
characteristics of hyper- or hypointense HCCs revealed
that hyperintense HCCs were significantly associated
with low serum alpha-fetoprotein (AFP) levels (Table 1).
There was no significant difference between hyper- and
hypointense HCCs in terms of other factors, including
tumor size, number, TNM and BCLC stages, surgical
procedures, and elapsed time between MRI and surgery.
We confirmed the overexpression of OATP1B3, a trans-
porter responsible for the uptake of Gd-EOB-DTPA in
hepatocytes, in hyperintense HCCs by qRT-PCR and
IHC (Fig. 1B).

To understand the transcriptomic characteristics of
HCCs overexpressing OATP1B3, we analyzed the
microarray data of an additional 238 HCC cases.””
OATP1B3-high and -low HCCs were defined as
HCCs with a T/N ratio >1.0 and <1.0, respectively,
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as used for the evaluation of hyperintense HCCs
(tumor SI / background SI >1.0). The frequency of
OATPI1B3-high HCCs was 15.1% (36 of the 238
HCC cases), almost comparable to the frequency of
hyperintense HCCs  reported thus far.  Class-
comparison analysis yielded a total of 974 genes that
were differentially expressed between OATP1B3-high
and -low HCCs (P < 0.001). Hierarchical cluster anal-
ysis of this 974 gene set (OATPI1B3 gene signature)
separated HCCs into two branches (B1 and B2) (Fig.
1C). Thirty-four of the 36 OATPIB3-high HCCs
(blue box) were classified in the left branch (B1), while
OATP1B3-low HCCs were clustered in both branches.
The prognosis of HCC patients clustered in B1 was
significantly better than those clustered in B2
(P=10.02) (Supporting Fig. S1). Genes associated with
mature hepatocyte function such as ALB and CYP344
were significantly up-regulated in the HCCs clustered
in B1, and the known hepatic stem/progenitor markers
KRT19 and EPCAM, as well as the G1/S cell cycle
marker MKIG67, were significantly up-regulated in the
HCCs clustered in B2 (Fig. 1D).

Pathway analysis indicated that OATPIB3-high
HCCs showed maintenance of mature hepatocyte
function and decreased cell proliferation and Wnt sig-
naling (Fig. 1E), which are known to be activated dur-
ing  liver  development and  regeneration.””
Transcription factor analysis identified eight genes
(HNF4A, NFIA, NR3CI, NRI1I3, ESRI, NRIH3,
MILXIPL, and NFE2L2) as candidate transcription fac-
tors that were significantly activated in OATPIB3-high
HCCs (P<0.005) (Fig. 1F). These transcription fac-
tors are known to play a pivotal role in liver develop-
ment and in the regulation of hepatocyte functions
including lipid, bile, carbohydrate, and xenobiotic
metabolism.’® By contrast, only one gene (FOXMI)
was identified as a candidate transcription factor acti-
vated in OATPIB3-low HCCs. The forkhead box M1
(FOXM]1) transcription factor is known to be activated
during liver regeneration and regulation of the cell
cycle.'” We investigated the expression of the two tran-
scription factors most strongly activated (HNF4A
encoding hepatocyte nuclear factor 4 alpha [HNF4a])
or inactivated (FOXMI) in hyperintense HCCs (Fig.
S2) and validated the results using microarray analyses
(Fig. 2A,B).

Although the microarray data revealed distinct
molecular portraits associated with liver development
and the maturation programs present in hyper- and
hypointense HCCs, hierarchical cluster analysis further
indicated that a subset of hypointense HCCs (corre-
sponding to the OATPI1B3-low HCCs clustered in B1)
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Fig. 1. Molecular profiles of HCCs corresponding to the EOB-MRI findings. (A) Representative MRI scans of hypo- and hyperintense HCCs in
the precontrast, arterial, and hepatobiliary phases. The T/N signal intensity ratios of the images in the hepatobiliary phase were 0.47 (upper
panel) and 1.07 (lower panel). (B) Upper panel: Representative photomicrographs of IHC staining with an anti-OATP1B3 antibody in hypo- and
hyperintense HCCs. Lower panel: OATP1B3 expression in hypo- and hyperintense HCCs. (C) The expression patterns of OATP1B3 signatures in
OATP1B3-high (blue box), OATP1B3-low AFP-low (<100 ng/mL) (orange box), and OATP1B3-low AFP-high (>100 ng/mL; red box) after hierarch-
ical clustering of genes and samples, shown as a heat map image. Red indicates a high expression level; green indicates a low expression level.
OATP1B3-high HCCs and OATP1B3-low AFP-high HCCs were clustered in B1 (green bar) and B2 (yellow bar), respectively. (D) Representative
expression of genes in clusters A (KRT19, EPCAM, and MKI67) and B (OATP1B3, ALB, and CYP3A4). The green and orange bars indicate HCCs
clustered in B1 and B2, respectively. (E) The activated pathways are identified in clusters A (orange bar) and B (blue bar). (F) Genes encoding

transcription factors activated or inactivated in OATP1B3-high HCCs.

might show similar gene expression profiles to those
observed in hyperintense HCCs. Since serum AFP lev-
els are reportedly related to the stem/maturation sub-

types of HCCs with different gene expression

profiles,'”> we analyzed the characteristics of
OATP1B3-low HCCs in 238 cases according to serum
AFP  levels. Interestingly, OATPIB3-low HCCs
assigned to the left branch (B1) had low serum AFP
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Table 1. Characteristics of HCCs Classified by EOB-MRI in Cohorts 1 and 2
Cohort 1 Cohort 2
Hyperintense Hypointense Hyperint Hypolnt
Characteristics (n=9) (n=61) P* (n=9) (n=100) P*
Age (years, mean = SE) 66.2 3.6 64.6+1.2 0.21 67.2+2.0 66.2 = 1.0 1.0
Sex (male/female) 7/2 44/17 0.72 9/0 79/21 0.13
Etiology (HBV/HCV/other) 2/3/4 14/23/24 0.95 1/6/0/2 22/56/2/20 0.52
Liver cirthosis (yes/no) 5/4 33/28 0.94 2/7 42/58 0.25
AFP (ng/mL, mean =* SE) 124+19 2,157 + 866 0.03 7.0+22 188.4 = 74 0.03
Histologic grade’
-1 1 12 2 16
111t 8 38 7 74
H-v 0 11 0.25 0 10 0.57
Tumor size (cm, mean % SE) 40+09 4404 0.79 33+04 26+0.1 0.09
Tumor number (single/multiple) 7/2 48/13 0.95 8/1 86/14 0.81
Macroscopic portal vein invasion (yes/no) 1/8 5/56 0.58 0/9 0/100
Microscopic portal vein invasion (yes/no) 2/7 27/34 0.21 0/9 11/89 0.59
Tumor-node-metastasis classification (I/11/111) 6/2/1 29/28/4 0.40 7/2/0 75/25/0 0.85
BCLC stage (0/A/B/C) 0/7/1/1 4/30/22/5 0.34 0/9/0/0 27/73/0/0 0.07
Elapsed time between MRI and surgery 47084 51.5+3.2 0.73 17.3£5.0 20.6 3.0 0.50
(days, mean = SE)
Surgical procedure (partial resection or 6/3 35/26 0.60 8/1 86/14 1.0

segmentectomy/ lobectomy or extended lobectomy)

*Mann-Whitney test, Fisher's exact test, or 2 test.
TEdmondson-Steiner.

levels (<100 ng/mL: orange box, Fig. 1C), while the
majority of AFP-high (>100 ng/mL) HCCs (red box,
Fig. 1C) were clustered in the right branch (B2). Con-
sistently, the OATPIB3 gene signature significantly
predicted the serum AFP status of 238 HCCs
(P<0.05) (Tables S1-3).

OATPIB3 and AFP Expression in HCC Subtypes
Related to Stem/Maturational Status. Molecular
profiling of tissue samples may be useful for predicting
the survival of HCC patients, as reported previ-
ously.ls’19 However, such an approach should be estab-
lished before being applied routinely in a clinical
setting. The above data prompted us to hypothesize
that EOB-MRI findings and serum AFP levels, in
place of molecular profiling techniques, have the
potential to categorize HCCs (EOB-AFP classifica-
tion), thus serving as predictors of survival. We catego-
rized HCCs into three groups (class A: hyperintense
HCC, class B: hypointense and AFP-low [<100 ng/
mL] HCC, and class C: hypointense and AFP-high
[>100 ng/mL] HCC). The clinicopathologic charac-
teristics of patients with class A, B, and C HCCs in
Cohort 1 are shown in Table S4.

We investigated the expression of HNF4o and
FOXM1 as well as the G1/S marker Ki-67 by IHC
according to the EOB-AFP classification system in
Cohort 1 (Fig. 2C). HNF40 was most abundantly
expressed in class A HCCs, but its expression was
decreased in class B and C HCCs. By contrast, the
expression of FOXM1 and Ki-67 was highest in class

C HCGs, significantly decreased in class B HCCs, and
not detected in class A HCCs. The mean Ki-67 label-
ing indices in class A, B, and C HCCs were 2.8%,
9.4%, and 18.2%, respectively (P < 0.0001) (Fig. 2D).
The differences in FOXM1 and HNF4a expression
among class A, B, and C HCCs were statistically sig-
nificant (Fig. 2E).

We further investigated the expression of five
markers (glypican 3, GPC-3; lymphatic vessel endo-
thelial hyaluronan receptor 1, LYVE-1; survivin; heat
shock 70 kDa protein, HSP70; and glutamine syn-
thetase, GS), known to be differentially expressed
between dysplastic nodule and well-differentiated
HCC,2%?*! o clarify if the molecular alterations in
early-stage hepatocarcinogenesis can be detected dif-
ferentially in EOB-AFP class A, B, and C HCC;s.
IHC analysis suggested no differential expression of
LYVE-1, survivin, and HSP70 among the EOB-AFP
classes (data not shown). Interestingly, GS was most
abundantly expressed in class A HCCs, and its
expression was relatively decreased in class B and C
HCCs with borderline significance (2= 0.06) (Fig.
S3A,B). In contrast, GPC-3 expression was highest in
class C HCCs and relatively decreased in class A and
B HCCs with statistical significance (P=0.03). We
investigated the microarray data of 238 independent
HCC cases and validated the positive correlation
between OATPIB3 and GLUL (encoding GS) and
the weak negative correlation between OATPIB3 and
GPC3 (encoding GPC-3).
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Regulation of Gd-EOB-DTPA Uptake and hyperintense HCC. We confirmed the reduction of

Tumorigenic Capacity by HNF4o. in Hyperintense
HCC. Microarray and IHC analyses suggested the
activation of transcription factor HNF4« in hyperin-
tense HCC, but its role in the maintenance of hepato-
cyte function and Gd-EOB-DTPA uptake has not yet
been clarified. To directly explore the role of HNF4«
in Gd-EOB-DTPA uptake and tumorigenic capacities,
we transplanted tumor cells from hyper- and hypoin-
tense primary HCC specimens into NOD/SCID mice
(Fig. 3A). We confirmed on EOB-MRI that Gd-EOB-
DTPA uptake capacity was relatively maintained in the
secondary xenotransplanted tumors that developed in
the subcutaneous lesions of the mice (Fig. 3B).

Using a retrovirus system 7z vitro, we then intro-
duced shRNA targeting HNF4A (Sh-HNF4A) or
scramble (Sh-Scr) into tumor cells obtained from a

HNF4o protein expression in Sh-HNF4A-transfected
cells compared with Sh-Scr-transfected cells by western
blotting (Fig. 3C, left panel). Interestingly, HNF4A
knockdown resulted in a modest increase in AFP and
FOXM]1 expression and a dramatic decrease in
CYP3A4 and OATPIB3 expression (Fig. 3C, right
panel). It also resulted in the loss of OATP1B3 protein
expression, and striking morphological changes were
confirmed by immunofluorescence and phase-contrast
microscopy (Fig. 3D). Sh-HNF4A-transfected cells dis-
played long, thin cell shapes with neurite-like exten-
sions, whereas Sh-Scr-transfected cells were relatively
smooth and round. Sh-Scr- or Sh-HNF4A-transfected
cells were further injected subcutaneously into NOD/

SCID mice, and aggressive tumor growth accompanied
with the loss of Gd-EOB-DTPA uptake capacity was

- 145 -



HEPATOLOGY, Vol. 60, No. 5, 2014 YAMASHITA ET AL. 1681

EOB uptake (-) EOB uptake (-)

g AFP FOXM1 CYP3A4 OATP1B3
5 g25) P=004 20, P=0019 15, P=000 15, P=0005
? I
F— ¥
b %0
HNF4q - -3
05
-actin
P —— o
3 Sh-Scr mm Sh-HNF4A
Sh-Scr Sh-HNF4A Sh-Scr Sh-HNF4A

E F
Sh-Scr Sh-HNF4A
EOB uptake(+) EOB uptake(-) 100 © Sh-Ser
__ 801
§
= 60
2 Sh-HNF4A
5 40 P=0.013
w
20
0 T T . ,
0 20 40 60 80

day

Fig. 3. HNF4o regulates a mature hepatocyte-like, less aggressive HCC phenotype coupled with Gd-EOB-DTPA uptake in hyperintense HCC.
(A) MRI scans of hyperintense (a) and hypointense (b) HCCs in the hepatobiliary phase before surgery. The T/N signal intensity ratios of the
images in the hepatobiliary phase were 1.02 (left panel) and 0.49 (right panel). Surgically resected specimens were subsequently used for
mouse xenotransplantation. (B) MRI scans of NOD/SCID mouse xenotransplanted with hyperintense (a) and hypointense (b) HCCs in the hepato-
biliary phase. The T/N signal intensity ratios of the images were 0.82 (upper panel) and 0.45 (lower panel). (C) Left panel: Expression of
HNF4a protein by westemn blotting. Hyperintense HCC cells were harvested in dishes and treated with retroviruses encoding an expression cas-
sette against HNF4A (Sh-HNF4A) or scramble sequence (Sh-Scr). Right panel: gRT-PCR of AFP FOXM1, CYP3A4, and OATP1B3 in hyperintense
HCC cells transfected with Sh-Scr or Sh-HNF4A. (D) Left panel: Immunofluorescence analysis of HNF4o (red) and OATP1B3 (green) in hyperin-
tense HCC cells transfected with Sh-Scr or Sh-HNF4A (scale bar= 100 um). Right panel: Representative photomicrographs of hyperintense HCC
cells transfected with Sh-Scr or Sh-HNF4A (scale bar = 100 um). (E) MRI scans of NOD/SCID mouse xenotransplanted with hyperintense HCC
cells transfected with Sh-Scr (day 49 after transplantation) or Sh-HNF4A (day 43 after transplantation). The T/N signal intensity ratios of the
images in the hepatobiliary phase were 0.65 (left panel) and 0.34 (right panel). (F) Survival of NOD/SCID mice xenotransplanted with hyperin-
tense HCC cells transfected with Sh-Scr (n = 5) or Sh-HNF4A (n = 5).

- 146 -



1682  YAMASHITA ET AL. HEPATOLOGY, November 2014
A Overall Survival B Overall Survival
100 100 ~ ity
BO-M __ 80 ™
g g 60
= 601 s 99
40 3
a 3
20 20-
0 T T . 0 T T J
0 500 1000 1500 0 500 1000 1500
days days
C EOB-AFP D EOB-AFP
100 TR AT 1 FEWT — 100t CRUCIN e S 3 WY |
80 - 80-
g g
< 601 < 60
kS 2
c 409 — A e 404
= =
7] -+ B 175) -
201 . ¢ P=0.05 204 o P=0.025
0 T T ) 0 : - -
0 500 1000 1500 0 500 1000 1500
days days
E  EOB-AFP classification A B C
Hepatocyte-type  Intermediate-type Stem cell-type
Prognosis Good Intermediate Poor Fig. 4. Prognostic utility of
. ; the EOB-AFP classification.
EOB-MRI Hyper-intense Hypo-intense (A,B) Overall survival curves
— - of Cohorts 1 (A) and 2 (B).
Serum AFP | Negative (C,D) Overall survival curves

Transcriptional program

observed in Sh-HNF4A-transfected cells, whereas Sh-
Scr-transfected  cells still showed Gd-EOB-DTPA
uptake with less tumorigenic capacity (Fig. 3E). Mice
xenotransplanted with Sh-HNF4A-transfected cells had
a worse prognosis compared with those xenotrans-
planted with Sh-Scr-transfected cells (Fig. 3F), indicat-
ing a crucial role for HNF4o in the maintenance of a
mature hepatocyte-like, less aggressive HCC phenotype
coupled with Gd-EOB-DTPA uptake capacity.
Prognosis of Early-Stage HCC by EOB-AFP Clas-
sification. Finally, we evaluated the prognosis of
patients with HCC diagnosed by EOB-MRI and
serum AFP. To exclude the potential effect of lead-
time bias on survival analysis for HCCs at different
stages, we evaluated the power of the EOB-AFP classi-
fication system to predict the prognosis of patients
with early-stage BCLC stage 0 or A HCCs diagnosed
by EOB-MRI in an independent multicenter cohort

of Cohorts 1 (C) and 2 (D)
according to the EOB-AFP
classification. (E) The EOB-
AFP  classification  system
and its molecular basis.

(Cohort 2). Nine of the 109 HCC cases (8.3%) were
diagnosed with hyperintense HCCs and were found to
be significantly associated with low serum AFP levels
(Table 1). The clinicopathologic characteristics of the
patients defined by the EOB-AFP classification are
shown in Supporting Table 5. The median follow-up
times in Cohorts 1 and 2 were 569 and 932 days,
respectively. The 3-year overall survival rates in
Cohorts 1 and 2 were 77.7% and 90.9%, respectively
(Fig. 4A,B). The prognosis of HCC patients was not
separated by TNM or BCLC stages because most of these
patients were diagnosed at early stages (Fig. S4A-D);
nevertheless, the EOB-AFP classification system robustly
stratified HCCs according to survival with statistically sig-
nificant differences between the classes (Fig. 4C,D).
EOB-AFP class A patients had 100% overall survival,
whereas class C patients had 30% overall survival
at 1,200 days after radical resection in Cohort 2.
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The prognosis of HCC patients stratified by the EOB-
AFP classification was most likely affected by the malig-
nant nature of the tumor at surgical resection, because
EOB-AFP class C patients showed a 40-60% recurrence-
free survival rate, whereas class A patients had a 88-100%
recurrence-free survival rate at 1 year after radical resec-
tion in both cohorts (Fig. S5).

Altogether, our data, for the first time, revealed that
the prognosis of early-stage HCC patients is heteroge-
neous and related to the malignant phenotypes of the
tumors, even after successful treatment by radical
resection. The EOB-AFP classification system reflects
the malignant nature of the tumor and predicts the
survival of early-stage HCC patients prior to surgery.

Discussion

Among several HCC staging systems currently
used,? the BCLC system is recommended because it is
linked to treatment strategy.”* The assessment of the
malignant nature of tumors coupled with current stag-
ing systems will supplement the management of early-
stage HCC?® because early recurrence after potentially
curative treatment may be associated with the charac-
teristics of the resected tumor rather than the develop-
ment of a de nove HCC in the background liver.?
Molecular profiling approaches have tried to evaluate
the malignant features of HCCs and the surrounding
noncancerous liver tissue,>®'*'® although the evalua-
tion of the potential clinical application of these
approaches is ongoing. Our EOB-AFP classification
system is molecularly related to the OATPIB3 gene
signature, which can be used to classify HCCs accord-
ing to their stem/maturational status. Interestingly, the
differential expression of OATPI1B3 was also noted in
two HCC subtypes associated with the stem/matura-
tional status, as reported recently by our group
(hepatic stem cell-like and mature hepatocyte-like
HCC)"? and others (hepatoblast-type and hepatocyte
type)* (Fig. S6). As expected, all class A HCCs were
categorized as mature hepatocyte-like HCC in Cohort
1 (data not shown). The stem/maturational status
defined by the EOB-AFP classification is most likely
regulated by at least two transcription factors: HNF4o
and FOXM1 (Fig. 4E).

HNF4a was first discovered as a liver-enriched
nuclear orphan receptor activating the transcription of
transthyretin genes, and it is known to regulate bile
acid and cholesterol metabolism.”> The liver-specific
loss of HNF4A in adult mice results in hepatocyte pro-
liferation,”® whereas the introduction of HNF4A sup-
presses HCC growth.?”"*® Furthermore, a recent study
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suggested a role for HNF4A as a tumor suppressor in
inflammation-related hepatocarcinogenesis through the
regulation of microRNAs.*” The present study demon-
strated a crucial role for HNF4x in maintaining a
hepatocyte-like, less aggressive phenotype coupled with
Gd-EOB-DTPA uptake in a class A HCC by directly
modifying HNF4A gene expression. Thus, HNF4A
may work as a tumor suppressor gene and inhibit the
progression of HCC, which may be related to the
good prognosis of class A HCCs.

FOXM1 belongs to the forkhead superfamily of
transcription factors and regulates a myriad of biologic
processes including cell proliferation and differentia-
tion.*® The pivotal role of FOXM1 in liver develop-
ment and regeneration has been reported previously.'”
FOXM1 was also required for HCC development in a
mouse hepatocarcinogenesis model’' and acted as an
oncogene in a transgenic mouse model.?* Tt was
recently shown that FOXM1 levels are elevated in vari-
ous cancers including HCC.***> A prognostic role for
FOXM1 in HCC patients after liver transplantation
was also reported®®; this may be associated with the
metastatic capacity of tumors regulated by FOXM1.%
As FOXM1 and AFP are known to be activated during
liver regeneration and hepatocarcinogenesis, serum
AFP levels may be a surrogate marker for the expres-
sion status of FOXM1 and thus facilitate the prognos-
tic of HCCs by the EOB-AFP
classification.

Among the molecular markers reported to be differ-
entially expressed between dysplastic nodule and well-
differentiated HCC, we found preferential overexpres-
sion of GS in EOB-AFP class A and GPC-3 in class C
HCCGs. Our data suggest that class A and class C
HCCs may follow different processes of early hepato-
carcinogenesis events that might be associated with the
differential activation of HNF4a and FOXMI, and
further studies are required to obtain molecular
insights into these processes.

Our overall survival data in Cohort 2 indicated that
EOB-AFP class A patients had 100% overall survival,
whereas class C patients had 30% overall survival at
1,200 days after radical resection. This suggests that
the micro-dissemination of tumor cells in EOB-AFP
class C HCC patients has already occurred by the
time they are diagnosed with early-stage disease.
Indeed, 50% of all class C patients showed tumor
recurrence, whereas 88-100% of class A patients
showed no recurrence within 1 year of resection; this
is consistent with a recent study evaluating the clinical
features of hyperintense HCCs®® and may be due to

stratification
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the overexpression of FOXM1, which results in the
activation of metastatic programs. Therefore, these
patients might have survival benefits if they receive
adjuvant therapies. As several adjuvant therapies might
be beneficial for HCC patients after surgical resec-
tion,” integration of the EOB-AFP classification sys-
tem into current staging practices may provide
additional therapeutic options for early-stage HCC
patients who will receive surgery.

A limitation of the present study is that we used
three different cohorts to reveal the molecular portraits
associated with clinical imaging and prognosis (i.e., the
microarray cohort of 238 HCCs of various stages for
the evaluation of molecular profiling; Cohort 1 for the
validation of molecular profiling and EOB-MRI find-
ings in various stages of HCC; and Cohort 2 for eval-
uating the utility of EOB-MRI and serum AFP in
predicting the prognosis of early-stage HCCs), which
made the molecular and prognostic analyses complex.
Another limitation of this study was in the evaluation
of prognostic utility because it uses small retrospective
cohorts. Direct evaluation of the molecular profiles
and prognostic values of hyperintense HCCs should
be performed in a prospective study using a large-scale
HCC cohort.

Taken together, the present study demonstrates for
the first time that the combined approach of noninva-
sive. Gd-EOB-DTPA-enhanced MRI and serum AFP
levels can be used preoperatively to classify resectable
HCCs into three subgroups with distinct prognoses.
This classification is molecularly related to the stem/
maturation status of HCCs regulated by HNF4o and
FOXMI1. The multicenter early-stage HCC cohort
that received radical resection revealed that the EOB-
AFP classification is clinically useful to determine the
prognosis of early-stage HCC patients. On the basis of
these observations, we propose that the EOB-AFP clas-
sification system be incorporated into current HCC
staging practices, especially for the management of
early-stage HCCs.
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Blood neutrophil to lymphocyte ratio as a predictor in
patients with advanced hepatocellular carcinoma treated
with hepatic arterial infusion chemotherapy
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Aim: Inflammation plays a critical role in cancer. The aim of
the present study was to investigate the impact of neutrophil
to lymphocyte ratio (NLR) on patients with advanced hepato-
cellular carcinoma (HCC) treated with hepatic arterial infusion
chemotherapy (HAIC).

Methods: We retrospectively evaluated 266 patients with
advanced HCC treated with HAIC between March 2003 and
December 2012. NLR was calculated from the differential leu-
kocyte count by dividing the absolute neutrophil count by the
absolute lymphocyte count.

Results: The cut-off level of NLR was set as the median value
of 2.87 among all patients in this study. The objective
response rate in the patients with low NLR was 37.6%, which
was significantly better than that of the patients with high NLR
(21.1%; P < 0.01). Multivariate analysis revealed that low NLR
remained associated with the response to HAIC (P = 0.024).
Median progression-free survival and median overall survival

in patients with high NLR were 3.2 and 8.0 months, respec-
tively, which were significantly shorter than that of the
patients with low NLR (5.6 and 20.7 months; P <0.01 and
P < 0.01, respectively). High NLR was an independent unfavor-
able prognostic factor in multivariate analysis. The patient
outcome was stratified more clearly by NLR calculated after
HAIC added to calculations before HAIC. Serum platelet-
derived growth factor-BB level was positively correlated with
NLR.

Conclusion: Results suggest that NLR is a useful predictor in
patients with advanced HCC treated with HAIC. These findings
may be useful in determining treatment strategies or in
designing clinical chemotherapy trials in future.

Key words: hepatic arterial infusion chemotherapy,
hepatocellular carcinoma, neutrophil lymphocyte ratio,
predictive factor, prognostic factor

INTRODUCTION

EPATOCELLULAR CARCINOMA (HCC) is the

third leading cause of cancer death and remains a
worldwide health concern because the incidence of
HCC continues to increase globally. A variety of new
techniques of imaging modalities have enabled the
detection of HCC at early stages, and advances of
various therapeutic procedures have improved the cur-
ability of patients with HCC.? Despite those recent

Correspondence: Dr Tatsuya Yamashita, Department of
Gastroenterology, Kanazawa University Hospital, 13-1 Takara-machi,
Kanazawa, Ishikawa 920-8641, Japan. Email: ytatsuya@m-kanazawa
j

Conflicts of interest: None to declare.

Received 1 September 2014; revision 3 October 2014; accepted 11
October 2014.

© 2014 The Japan Society of Hepatology

advances in diagnostic and therapeutic technologies, the
prognosis of patients with HCC remains poor due to
impaired liver function and frequent recurrence of
HCC’

Although sorafenib has been established as the
standard of care for advanced HCC,* its efficacy and
tolerability are limited.® As an alternative therapy to
sorafenib, hepatic arterial infusion chemotherapy
(HAIC) has been conducted in Asia, including Japan,
and it has been reported as a promising treatment pro-
cedure.*” However, application of HAIC and its predic-
tive and prognostic markers have not been fully
established.

Inflammation plays a critical role in the development
and progression of various cancers.® Inflammation
caused by extrinsic factors including a variety of
infectious agents and environmental toxins, as well as
intrinsic factors including active oncogenes, reactive
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oxygen species and necrosis existing in the cancer
tissues, promote various processes of cancer initiation
and progression, such as mutation, proliferation,
immortalization, invasiveness, angiogenesis, epithelial-
mesenchymal transition and immunosuppression.’
Additionally, the release of inflammation-related sub-
stances is closely related to symptoms such as loss of
bodyweight, fatigue and appetite loss among cancer
patients. Therefore, inflammation-induced cancer pro-
gression and cachectic patient status affect quality of
life and patient outcomes.'” The inflammation-related
markers such as absolute white blood cell count,
C-reactive protein (CRP), neutrophil to lymphocyte
ratio (NLR), platelet to lymphocyte ratio and cytokines
have been suggested to be associated with outcomes of
patients with various malignancies’ including at an
early or intermediate disease stage of HCC.'**
However, whether these markers can serve as
biomarkers of treatment efficacies and patient outcome
in more advanced stages of HCC remains unclear.

The objectives of the present study were to investigate
the correlation between NLR and patient characteristics
in advanced HCC patients. We also analyzed the impact
of NLR on the treatment efficacies as well as the
outcome of patients with advanced HCC treated with
HAIC. Moreover, to assess inflammatory molecules
associated with NLR, serum level of cytokines and
growth factors were measured. This approach provides
useful information in determining treatment strategies
for patients with advanced HCC.

METHODS

Patients

HE SUBJECTS IN this study were patients treated

with HAIC at the Kanazawa University Hospital
between March 2003 and December 2012 for advanced
HCC with wvascular invasion and/or intrahepatic
multiple lesions considered unsuitable for surgical
resection, locoregional therapy and transarterial
chemoembolization. All patients underwent dynamic
computed tomography (CT) or dynamic magnetic reso-
nance imaging (MRI) to diagnose HCC and assess the
extent of cancer. Additionally, HCC was diagnosed
according to the guidelines of the American Association
for the Study of Liver Disease.” Patients with extrahe-
patic lesions were also considered eligible for HAIC if
their extrahepatic lesions were mild; intrahepatic lesions
were considered to be prognostic factors. Other inclu-
sion criteria were Eastern Cooperative Oncology Group
performance status (ECOG PS) of 2 or less, appropriate

©® 2014 The Japan Society of Hepatology
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major organ functions, including bone marrow, kidney,
cardiac functions and hepatic function (Child-Pugh A
or B), and no clinical symptoms or signs of sepsis.

HAIC

The technique for implantation of the reservoir system
has been thoroughly described elsewhere.® Catheters
were induced through the right femoral artery and angi-
ography from the celiac artery was first performed to
localize the HCC and evaluate the intrahepatic and
extrahepatic vascularization. Then, we inserted a cath-
eter with a side opening into the gastroduodenal artery,
positioning the side opening in the common hepatic
artery by an image-guided procedure. The gastroduode-
nal artery, right gastric artery and other arteries that were
suspected to nourish the gastroduodenal region were
embolized as much as possible to prevent the gastroin-
testinal mucositis. The other end of the catheter was
connected to the injection port subcutaneously
implanted in the right lower abdomen. Finally, we con-
firmed blood flow redistribution.

Hepatic arterial infusion chemotherapy was con-
ducted approximately 5 days after the reservoir was
implanted. The treatment protocol was as follows: all
patients received 5-fluorouracil (FU) (330 mg/m? per
day) administrated continuously for 24 h from day 1 to
day 5 and day 8 to day 12, and either interferon (IFN)-
o-2b or pegylated (PEG) IEN-0-2b used at the treating
physician’s discretion. PEG IFN-a-2b (1.0 pg/kg) was
administrated s.c. on days 1, 8, 15 and 22, and IFN-0-2b
(3 x 10° U) was administrated i.m. thrice weekly. Some
patients underwent cisplatin administration (20 mg/m?
per day) into the hepatic artery for 10 min prior to 5-FU.
A treatment cycle consisted of 28 days of drug adminis-
tration, followed by a 14-day rest period. The treatment
was repeated until tumor progression or unacceptable
toxicity was observed, or until the patient refused the
treatment. The treatment protocol was approved by
the ethics Committee of Kanazawa University, and
informed consent for participation in the study was
obtained from each subject and conformed to the guide-
lines of the 1975 Declaration of Helsinki.

Data collection

We reviewed the medical records of the patients, and
collected demographic, clinical and laboratory data,
including patient age, sex, ECOG PS, history of viral
infection, hepatic reserve (Child-Pugh score), imaging
data (vascular invasion and extrahepatic lesion) and
tumor marker analyses. We collected laboratory data on
complete blood count and CRP. The NLR was calculated
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from the differential leukocyte count by dividing the
absolute neutrophil count by the absolute lymphocyte
count. We used the laboratory data obtained within 7
days prior to day 1 of treatment in this study. We also
collected NLR values at 4 weeks after the treatment
began to evaluate the impact of the NLR trend on
patient outcomes. Cytokine and chemokine profiling
was obtained as described below:" after venous blood
was centrifuged at 1580 g for 10 min at 4°C, serum
fractions were obtained and stored at —20°C until used.
Serum levels of various cytokines and chemokines were
measured using the Bio-Plex Protein Array System (Bio-
Rad, Richmond, CA, USA) according to the manufactur-
er’s protocol. Briefly, frozen serum samples were thawed
at room temperature, diluted 1:4 in sample diluents,
and 50 pL aliquots of diluted sample were added in
duplicate to the wells of 96-well microtiter plates con-
taining the coated beads for a validated panel of human
cytokines and chemokines according to the manufactur-
er's instructions. The following 20 cytokines and
chemokines were targeted: epidermal growth factor
(EGF), basic fibroblast growth factor, hepatocyte growth
factor, IFN-y, interleukin (IL)-2, IL-4, tumor necrosis
factor-o. (TNF-o), IL-6, IL-8, IL-10, IL-5, IFN y-induced
protein (IP)-10, monokine induced by IFN-y (MIG),
platelet-derived growth factor (PDGF)-BB, transforming
growth factor (TGF)-B, TGF-a, vascular endothelial
growth factor (VEGF), stem cell factor, IL-12 and
stromal cell-derived factor 1. Nine standards (range,
0.5-32 000 pg/mL) were used to generate calibration
curves for each cytokine. Data acquisition and analysis
were performed using Bio-Plex Manager software
version 4.1.1 (Bio-Rad).

Evaluation of antitumor effect

The efficacy of HAIC was assessed every 4-6 weeks by
dynamic CT or dynamic MRI during the treatment
period. The response to chemotherapy was assessed by
treating physicians according to the Response Evalua-
tion Criteria in Solid Tumors version 1.1.° An objective
response rate was defined as the sum of complete
response rate and partial response rate.

Statistical analysis

We compared patient backgrounds according to NLR
and patient demographics using the x-test for categori-
cal variables when appropriate. Student’s t-test and
Mann-Whitney U-test were used for continuous vari-
ables. We set the cut-off level of continuous variables as
the median value among all patients in this study. We
divided the patients into two groups according to NLR

NLR in advanced HCC treated with HAIC 3

before and after treatment, respectively, and compared
the response to HAIC and patient outcome between
groups. The x*-test was also used to evaluate the relation
between NLR and the response to HAIC in univariate
analysis. Logistic regression analysis was used for mul-
tivariate analysis. Progression-free survival (PFS) was
calculated from the first day of HAIC until the date of
radiological progression, death or the last day of the
follow-up period. Overall survival (OS) was calculated
from the first day of HAIC until the date of death or the
last day of the follow-up period. To compare PFS and
OS between groups, the cumulative survival proportions
were calculated using the Kaplan-Meier method, and
any differences were evaluated using the log-rank test.
Only variables that achieved statistical significance in
the univariate analysis were subsequently evaluated in
the multivariate analysis using Cox’s proportional
hazards regression model. Linear regression was used to
explore the relationship between cytokine or chemokine
profiling and NLR. A P-value of less than 0.05 was con-
sidered statistically significant. All statistical analyses
were performed using the SPSS statistical software
program package (SPSS, Chicago, IL, USA).

RESULTS

Patients characteristics stratified by NLR

E RETROSPECTIVELY LISTED 267 consecutive

patients who met the above-described criteria and
reviewed their medical records. The information regard-
ing the differential leukocyte count could not be
obtained in one patient, and then the remaining 266
patients were analyzed. One hundred and thirty-three
(50.0%) of 266 patients had NLR higher than 2.87, the
median value among all patients before treatment.
Patient demographic characteristics are summarized in
Table 1. Patients with high NLR had a significantly
worse performance status than those with low NLR
(P=0.020). With regard to tumor status, vascular
invasion and extrahepatic dissemination were
observed more often in the patients with high NLR
(57.1% and 27.8%, respectively) than in those with
low NLR (39.8% and 18.0%, respectively), and des-y-
carboxyprothrombin (DCP) was higher in the group
with high NLR (median, 1286 mAU/mL) than in the
one with low NLR {(median, 214 mAU/mL}. Sorafenib
was administrated as prior treatment before HAIC in 25
patients (9.4%) and as subsequent therapy after HAIC
in 26 patients {9.8%). The proportion of the patients
receiving sorafenib before HAIC was similar between
the two groups, whereas the proportion of the patients

© 2014 The Japan Society of Hepatology
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Table 1 Clinical characteristic of the patients according to NLR

Hepatology Research 2014

All (n=266) High NLR (n = 133) Low NLR (n=133) p

Age, years <0.01*
Mean * SD 66.3%9.1 64.7+£9.9 68.0+£7.8

Sex, n (%) 0.30**
Male 209 (78.6) 108 (81.2) 101 (75.9)

ECOG PS, n (%) 0.020**
0 220 (82.7) 103 (77.4) 117 (88.0)
1 41 (15.4) 25 (18.8) 16 (12.0)
2 5(1.9) 5(3.8) 0

Sorafenib before HAIC 0.83**
Present 25 (9.4) 12 (9.0) 13 (9.8)

Sorafenib after HAIC 0.013**
Present 26 (9.8) 19 (14.3) 7 (5.3)

HBs antigen, n (%) 0.27**
Positive 70 (26.3) 39 (29.3) 31 (23.3)

HCV antibody, n (%) <0.01**
Positive 146 (54.9) 57 (42.9) 89 (66.9)

Child-Pugh score, n (%) 0.34%*
5-6 134 (50.4) 61 (45.9) 73 (54.9)
7 55 (20.7) 30 (22.6) 25 (18.8)
8-9 77 (28.9) 42 (31.6) 35 (26.3)

Vascular invasion, n (%) <0.01**
Positive 129 (48.5) 76 (57.1) 53 (39.8)

Extrahepatic lesion, n (%) 0.058**
Positive 61 (22.9) 37 (27.8) 24 (18.0)

CRP, mg/dL <0.01*
Mean + SD 1,9+3.0 28+£38 09+1.2

AFP, ng/mL 0.41***
Median, range 241.5, <10-1 637 200 312.5, <10-745 900 119.5, <10-1 637 200

DCP, mAU/mL <0.01%**

Median, range 567, <10-1 208 000

1286, <10-1 208 000

214, <10-326 300

*Student’s t-test, * *y?-test, ***Mann-Whitney U-test.

AFP, o-fetoprotein; CRP, C-reactive protein; DCP, des-y-carboxyprothrombin; ECOG PS, Eastern Cooperative Oncology Group
performance status; HBs antigen, hepatitis B surface antigen; HCV antibody, hepatitis C virus antibody; NLR, neutrophil to lymphocyte

ratio; SD, standard deviation.

receiving sorafenib after HAIC was higher in the group
with high NLR (14.3%) than in the one with low NLR
(5.3%) (P=0.013).

Treatment

The data collection cut-off was 20 April, 2014. The
median follow-up period was 11.4 months (range, 0.3-
127.6). At the time of the analysis, 212 patients (79.7%)
had died. A total of 715 courses were administrated to
266 patients, with a median number of two (range,
0-13). All but 18 patients including 12 patients (9.0%)
in the high NLR group and six (4.5%) in the low NLR
group completed at least one course of HAIC.

Of the 266 patients, [FN-o-2b and PEG IFN-a-2b was
used in 131 patients (49.2%) and 135 patients (50.8%),

© 2014 The Japan Society of Hepatology

respectively. The response to HAIC and the patient out-
comes were similar between the different IFN groups.
Cisplatin was administrated in 186 patients (69.9%).
Although response to HAIC had a tendency to be better
in patients in the cisplatin group than those of the
patients without cisplatin, there was no significant dif-
ferences of the treatment efficacies.

Response to HAIC and PFS stratified by
pretreatment NLR

Of the 266 patients, 15 patients could not receive radio-
logical assessment because of worsened general condi-
tion, hepatic failure or loss to follow up, and the
remaining 251 were assessable for response to treat-
ment. The tumor responses to HAIC are shown in
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