

Figure 2. Cumulative incidence of HCC according to AFP levels at 24 weeks after the end of treatment and integrated ALT levels after the end of treatment. The cumulative incidence of HCC was higher with higher AFP24 levels in both SVR (A) and non-SVR patients (B). AFP24, black line, AFP24 < 5 ng/mL; black dashed line, 5 ng/mL \leq AFP24 < 10 ng/mL; gray line, 10 ng/mL \leq AFP24. The cumulative incidence of HCC was higher with higher i-ALT levels in all non-SVR patients (C) and in stratified analysis according to AFP24. (D) Patients with AFP24 < 5 ng/mL (i); AFP24 between 5 to 10 ng/mL (ii), AFP24 \geq 10 ng/mL (iii). i-ALT, black line, i-ALT \leq 30 IU/L; black dashed line, 30 IU/L < i-ALT \leq 60 IU/L; gray line, 60 IU/L < i-ALT.

virologic response (relapse or NR). After dividing non-SVR patients into relapse and NR groups, if they had an AFP24 level less than 5 IU/L and an ALT24 level of 30 IU/L, HCC incidences were 0.8% (1 of 133) among

relapsers and none (0 of 42) among NR patients (Supplementary Table 1), suggesting that the patients with an AFP24 level less than 5 ng/mL and an ALT24 level of 30 IU/L or less have a low potential of HCC

Table 5. The Fitness for HCC Incidence Among the Pretreatment and Post-treatment Factors (the Likelihood Ratio Test)

	Mo	odel		Likelihood r	atio test
Patients	Pretreatment factor	Post-treatment factor	Log-transformed likelihood ratio	χ^2 statistics	P value
All patients	Age, sex, platelets at baseline, PreALT, PreAFP, PEG-IFN/RBV antiviral effect	Age, sex, platelets at 24 wks after EOT, i-ALT, AFP24, PEG-IFN/RBV antiviral effect	5.641	11.28	.0008
All patients	PreAFP	AFP24	13.28	26.55	<.001
SVR patients Non-SVR patients	PreAFP PreAFP	AFP24 AFP24	2.33 3.69	4.66 7.38	.03 .007

NOTE. The likelihood ratio (its logarithm) is calculated as the ratio of the likelihood from the fitted model with post-treatment factors (the numerator) to one with pretreatment factors (the denominator). If the ratio is larger than 1 and it is statistically significant, it suggests that the fitted model with post-treatment factors is a better predictive model compared with the fitted model with pretreatment factors.

RBV, ribavirin.

incidence in both groups. A significant decrease in AFP levels after the treatment was observed only in relapsers but not in NR patients (Table 1). In addition, a decrease in ALT levels after the treatment was more prominent in relapsers than in NR patients (Table 1). Our data suggest that the suppressive effect on HCC incidence in relapsers could be mediated by a decrease in AFP and ALT levels. The relapse factor, which is a confounding factor for the decrease in AFP and ALT levels, could fail to be selected as a significant factor associated with HCC incidence in multiple Cox regression.

In the present study, AFP levels decreased through therapy, and the patients with AFP24 levels less than 5 ng/mL had a low potential of HCC incidence regardless of HCV eradication (Figure 2A and B). Our findings suggest that AFP24 levels can be a good surrogate marker for HCC incidence irrespective of the virologic response. However, in the Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis (HALT-C) trial in which Peg-IFN was administered to patients with NR to Peg-IFN plus ribavirin therapy, no significant suppressive effect of Peg-IFN on HCC incidence was observed among patients with CH-C.14 Whether HCC incidence decreased among patients with lower post-treatment AFP levels in a HALT-C trial is critically interesting. From now on, the CH-C patients will be treated with an IFN-free regimen using direct-acting antivirals. However, it is unknown whether the AFP levels and HCC incidence will decrease in patients treated with an IFNfree regimen. Further examination is needed to clarify this issue.

In addition to age, sex, platelet counts, and AFP24 levels, the i-ALT levels after the EOT were associated significantly with HCC incidence among non-SVR patients. It should be noted that although the AFP and ALT values generally are correlated with each other in patients with CH-C,15 the present study showed that higher AFP24 levels and higher i-ALT levels after the EOT were associated independently with a higher incidence of HCC. In previous studies, the HCC incidence was reduced significantly if the ALT level was kept below 80 IU/L.11 However, HCC incidence was significantly higher in patients with i-ALT levels greater than 60 IU/L and lower in those with a serum i-ALT level of 30 IU/L or less in this study. Therefore, keeping the ALT levels below 30 IU/L may suppress the risk of HCC incidence. However, the factor of liver-supporting therapy was not significant in post-treatment simple Cox regression for HCC incidence in this study (P = .72; 95% CI, 0.578-1.461). The utility of keeping the ALT level low by using liver-supporting therapy to prevent HCC development needs to be clarified in future investigations.

In this study, the utility of re-evaluation after IFN therapy for the risk factor associated with HCC incidence also was assessed (Table 5). In the re-evaluation, the post-treatment model was shown to be more applicable for predicting HCC incidence than the pretreatment

model. Moreover, the AFP24 level was more applicable for HCC incidence than the PreAFP level in all patients, in stratified analysis according to SVR patients and non-SVR patients. These results suggest that the post-treatment AFP24 level is very important for the surveillance of HCC after IFN therapy.

The limitation of this study is as described later. It is well known that HCC occurs more often in patients with cirrhosis. It would be very interesting to determine whether the results obtained from this study are as valid for patients with cirrhosis or not. However, the patients with cirrhosis were in the minority since this study was conducted predominantly for patients with CH. Therefore, these data may not be applicable to other populations, such as HALT-C. Further examination is needed to clarify this issue.

In conclusion, we suggest that the AFP24 value was associated strongly with HCC incidence irrespective of virologic response. Extra attention to the possibility of HCC incidence should be required, even for SVR patients, if their AFP24 levels are high. Among non-SVR patients, those with higher AFP24 levels, and ALT levels after IFN therapy, special caution is needed for HCC incidence.

Supplementary Material

Note: To access the supplementary material accompanying this article, visit the online version of *Clinical Gastroenterology and Hepatology* at www.cghjournal.org, and at http://dx.doi.org/10.1016/j.cgh.2013.11.033.

References

- Kasahara A, Hayashi N, Mochizuki K, et al. Risk factors for hepatocellular carcinoma and its incidence after interferon treatment in patients with chronic hepatitis C. Osaka Liver Disease Study Group. Hepatology 1998;27:1394–1402.
- Yoshida H, Shiratori Y, Moriyama M, et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy. Ann Intern Med 1999;131:174–181.
- Toyoda H, Kumada T, Tokuda A, et al. Long-term follow-up of sustained responders to interferon therapy, in patients with chronic hepatitis C. J Viral Hepat 2000;7:414

 419.
- Tokita H, Fukui H, Tanaka A, et al. Risk factors for the development of hepatocellular carcinoma among patients with chronic hepatitis C who achieved a sustained virological response to interferon therapy. J Gastroenterol Hepatol 2005; 20:752–758.
- George SL, Bacon BR, Brunt EM, et al. Clinical, virologic, histologic, and biochemical outcomes after successful HCV therapy: a 5-year follow-up of 150 patients. Hepatology 2009; 49:729–738
- Hagiwara H, Hayashi N, Kasahara A, et al. Long-term biochemical and virological response to natural interferon-alpha in patients with chronic hepatitis C. Dig Dis Sci 1996; 41:1001–1007.
- Arase Y, Ikeda K, Suzuki F, et al. Prolonged-interferon therapy reduces hepatocarcinogenesis in aged-patients with chronic hepatitis C. J Med Virol 2007;79:1095–1102.

- 8. Hiramatsu N, Hayashi N, Kasahara A, et al. Improvement of liver fibrosis in chronic hepatitis C patients treated with natural interferon alpha. J Hepatol 1995;22:135–142.
- Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996;24:289–293.
- Kumada T, Toyoda H, Kiriyama S, et al. Predictive value of tumor markers for hepatocarcinogenesis in patients with hepatitis C virus. J Gastroenterol 2011;46:536–544.
- Tarao K, Rino Y, Ohkawa S, et al. Association between high serum alanine aminotransferase levels and more rapid development and higher rate of incidence of hepatocellular carcinoma in patients with hepatitis C virus-associated cirrhosis. Cancer 1999;86:589–595.
- Cardoso AC, Moucari R, Figueiredo-Mendes C, et al. Impact of peginterferon and ribavirin therapy on hepatocellular carcinoma: incidence and survival in hepatitis C patients with advanced fibrosis. J Hepatol 2010;52:652–657.
- Ogawa E, Furusyo N, Kajiwara E, et al. Efficacy of pegylated interferon alpha-2b and ribavirin treatment on the risk of hepatocellular carcinoma in patients with chronic hepatitis C: a prospective, multicenter study. J Hepatol 2013;58: 495–501.
- Lok AS, Everhart JE, Wright EC, et al. Maintenance peginterferon therapy and other factors associated with hepatocellular

- carcinoma in patients with advanced hepatitis C. Gastroenterology 2011;140:840-849.
- Richardson P, Duan Z, Kramer J, et al. Determinants of serum alpha-fetoprotein levels in hepatitis C-infected patients. Clin Gastroenterol Hepatol 2012;10:428–433.

Reprint requests

Address requests for reprints to: Naoki Hiramatsu, MD, PhD, Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka 565-0871, Japan. e-mail: hiramatsu@gh.med.osaka-u.ac.jp; fax: (81) 6-6879-3629.

Acknowledgments

Other institutions and participants in the Osaka Liver Forum were as follows: Higashiosaka City Central Hospital, Itami City Hospital, Otemae Hospital, Suita Municipal Hospital, Nippon Telegraph and Telephone Corporation West Osaka Hospital, Ashiya Municipal Hospital, Nishinomiya Municipal Central Hospital, Saiseikai Senri Hospital, Kaizuka City Hospital, Izumiotsu Municipal Hospital, Osaka Kaisei Hospital, Kano General Hospital, Saso Hospital, and Meiwa Hospital.

Conflicts of interest

This author discloses the following: Tetsuo Takehara received scholarship funds from Merck Sharp & Dohme K.K. Co, Ltd, and Chugai Pharmaceutical Co, Ltd. The remaining authors disclose no conflicts.

Funding

Supported by a Grant-in-Aid for Research on Hepatitis from the Ministry of Health Labour and Welfare of Japan, and Scientific Research from the Ministry of Education, Science, and Culture of Japan.

ORIGINAL INVESTIGATION

Genome-wide association study identifies a *PSMD3* variant associated with neutropenia in interferon-based therapy for chronic hepatitis C

Etsuko Iio·Kentaro Matsuura·Nao Nishida·Shinya Maekawa·Nobuyuki Enomoto·Mina Nakagawa·Naoya Sakamoto·Hiroshi Yatsuhashi·Masayuki Kurosaki·Namiki Izumi·Yoichi Hiasa·Naohiko Masaki·Tatsuya Ide·Keisuke Hino·Akihiro Tamori·Masao Honda·Shuichi Kaneko·Satoshi Mochida·Hideyuki Nomura·Shuhei Nishiguchi·Chiaki Okuse·Yoshito Itoh·Hitoshi Yoshiji·Isao Sakaida·Kazuhide Yamamoto·Hisayoshi Watanabe·Shuhei Hige·Akihiro Matsumoto·Eiji Tanaka·Katsushi Tokunaga·Yasuhito Tanaka

Received: 2 October 2014 / Accepted: 8 December 2014 / Published online: 17 December 2014 © Springer-Verlag Berlin Heidelberg 2014

Abstract Cytopenia during interferon-based (IFN-based) therapy for chronic hepatitis C (CHC) often necessitates reduction of doses of drugs and premature withdrawal from therapy resulting in poor response to treatment. To identify genetic variants associated with IFN-induced neutropenia, we conducted a genome-wide association study (GWAS) in 416 Japanese CHC patients receiving IFN-based therapy. Based on the results, we selected 192 candidate single nucleotide polymorphisms

E. Iio and K. Matsuura equally contributed to this work (shared first authorship).

Electronic supplementary material The online version of this article (doi:10.1007/s00439-014-1520-7) contains supplementary material, which is available to authorized users.

E. Iio·K. Matsuura·Y. Tanaka (☒)
Department of Virology and Liver Unit, Nagoya City University
Graduate School of Medical Sciences, Kawasumi, Mizuho,
Nagoya 467-8601, Japan
e-mail: ytanaka@med.nagoya-cu.ac.jp

E. Iio · K. Matsuura

Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan

N. Nishida · N. Masaki

The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan

N. Nishida · K. Tokunaga Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan (SNPs) to carry out a replication analysis in an independent set of 404 subjects. The SNP rs2305482, located in the intron region of the *PSMD3* gene on chromosome 17, showed a strong association when the results of GWAS and the replication stage were combined (OR = 2.18, $P = 3.05 \times 10^{-7}$ in the allele frequency model). Logistic regression analysis showed that rs2305482 CC and neutrophil count at baseline were independent predictive factors for IFN-induced neutropenia (OR = 2.497, P = 0.0072 and OR = 0.998, P < 0.0001, respectively). Furthermore, rs2305482 genotype was associated with the doses of pegylated interferon (PEG-IFN) that could be tolerated in hepatitis C virus genotype 1-infected patients treated with PEG-IFN plus ribavirin, but not with treatment efficacy. Our results suggest that genetic

S. Maekawa · N. Enomoto

First Department of Internal Medicine, University of Yamanashi, Chuo 409-3898, Japan

M. Nakagawa · N. Sakamoto

Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-0034, Japan

N. Sakamoto · S. Hige

Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo 060-0814, Japan

H. Yatsuhashi

Clinical Research Center, National Nagasaki Medical Center, Omura 856-8562, Japan

M. Kurosaki · N. Izumi

Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino 180-0023, Japan

testing for this variant might be useful for establishing personalized drug dosing in order to minimize druginduced adverse events.

Introduction

Chronic hepatitis C virus (HCV) infection is a significant risk factor for progressive liver fibrosis and hepatocellular carcinoma. Antiviral treatment improves the natural course in chronic hepatitis C (CHC) (George et al. 2009; Yoshida et al. 2004). Newly-developed treatments involving directacting antivirals (DAAs), including nonstructural (NS) 3/4A protease inhibitors have shown promising outcomes in combination with pegylated interferon (PEG-IFN) plus ribavirin (RBV) in several clinical trials. Thus, >70 % of patients infected with HCV genotype 1 are reported to achieve sustained virological responses (SVR) (Jacobson et al. 2011; Poordad et al. 2012; Zeuzem et al. 2011). Furthermore, interferon-free (IFN-free) therapies are expected to be useful especially in IFN-resistant patients and may become the standard of care in the near future. However, IFN-based regimens have been standard-of-care therapies over the last couple of decades.

IFN-based therapies are associated with various adverse effects. Cytopenia is common due to bone marrow suppression cased by IFN or DAA and hemolysis by RBV. This is particularly the case in patients with advanced hepatic fibrosis, but can sometimes also occur in those with mild fibrosis. This then often necessitates dose reduction or premature withdrawal from therapy, resulting in poor response to treatment. For instance, it was reported that rates of viral clearance were

significantly reduced in patients who could not be maintained on at least 80 % of their drug doses for the duration of PEG-IFN/RBV therapy (McHutchison et al. 2002). Therefore, pretreatment prediction of possible adverse effects in order to avoid them and undergo therapy safely is desirable.

Recent genome-wide association studies (GWASs) have identified two important host genetic variants influencing CHC treatment: (1) single nucleotide polymorphisms (SNPs) near the interleukin-28B (IL28B) gene, which are strongly associated with response to therapy for chronic HCV genotype 1 infection (Ge et al. 2009; Suppiah et al. 2009; Tanaka et al. 2009), and (2) SNPs in the inosine triphosphatase (ITPA) gene, which accurately predict RBVinduced anemia in European-American (Fellay et al. 2010) and Japanese population (Ochi et al. 2010). We validated the association between this ITPA genetic variant and RBVinduced anemia (Sakamoto et al. 2010), and reported that the ITPA genotype affects the tolerated doses of RBV and treatment response in a stratified group (Kurosaki et al. 2011; Matsuura et al. 2014). Additionally, our GWAS showed that DDRGK1/ITPA variants are strongly associated with IFN-induced thrombocytopenia as well as anemia during PEG-IFN/RBV therapy (Tanaka et al. 2011). Thompson et al. (2012) also reported that the ITPA genetic variant was associated with anemia and thrombocytopenia during PEG-IFN/RBV therapy. However they identified no genetic determinants of IFN-induced neutropenia at the level of genome-wide significance by their GWAS in populations of European Americans, African Americans and Hispanics.

Hence, to identify genetic variants associated with IFN-induced neutropenia, we conducted a GWAS in Japanese CHC patients.

Y. Hiasa

Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon 791-0295, Japan

T. Ide

Division of Gastroenterology, Department of Medicine, Kurume University, Kurume 830-0011, Japan

K. Hino

Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki 701-0114, Japan

A. Tamor

Department of Hepatology, Osaka City Graduate School of Medicine, Osaka 545-8585, Japan

M. Honda · S. Kaneko

Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa 920-0934, Japan

S. Mochida

Division of Gastroenterology and Hepatology, Internal Medicine, Saitama Medical University, Iruma 350-0495, Japan

H. Nomura

The Center for Liver Disease, Shin-Kokura Hospital, Kitakyushu 803-8505, Japan

S. Nishiguchi

Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8131, Japan

C. Okuse

Department of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan

Y. Itol

Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan

H. Yoshiji

Third Department of Internal Medicine, Nara Medical University, Kashihara 634-8522, Japan

I. Sakaida

Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan

Materials and methods

Patients

From 2007 to 2012, samples for the GWAS were obtained from 416 CHC patients who were treated at 22 hospitals (liver units with hepatologists) throughout Japan. In the following stage of replication analysis, samples were collected in an independent set of 404 Japanese CHC patients. Most patients were treated with PEG-IFN-α2b (1.5 μg/kg body weight subcutaneously once a week) or PEG-IFN- $\alpha 2a$ (180 µg once a week) plus RBV (600–1,000 mg daily according to body weight) for 48 weeks for HCV genotype 1 and 24 weeks for genotype 2. Treatment duration was extended in some patients up to 72 weeks for genotype 1 and 48 weeks for genotype 2 according to physicians' preferences. Other patients were treated with PEG-IFN-α2a or IFN monotherapy, or IFN-α2b plus RBV in standard doses of the regimens. The doses of drugs were reduced according to the recommendations on the package inserts or the clinical conditions of the individual patients. Erythropoietin or other growth factors were not given. Patients chronically infected with hepatitis B virus or human immunodeficiency virus, or with other causes of liver disease such as autoimmune hepatitis and primary biliary cirrhosis, were excluded from this study. Written informed consent was obtained from all individual participants in this study and the study protocol conformed to the ethics guidelines of the Declaration of Helsinki and was approved by the institutional ethics review committees.

Inclusion criteria of neutropenia

In the initial stage of GWAS, we defined the inclusion criteria of the case group as minimum neutrophil counts of <750/mm³ at week 2 or 4 during IFN-based therapy, since the dose reduction of IFN is recommended at those levels on the package inserts. Thereafter we did it as minimum

K. Yamamoto

Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-0914, Japan

H. Watanabe

Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan

S. Hige

Department of Gastroenterology, Sapporo Kosei General Hospital, Sapporo 060-0033, Japan

A. Matsumoto · E. Tanaka Department of Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan neutrophil counts of <600/mm³ at week 2 or 4 in the following GWAS and the replication stages.

SNP genotyping and data cleaning

We conducted two stages of GWAS using the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Inc. Santa Clara, CA) according to the manufacturer's instructions. The cut-off value was calculated to maximize the difference, which was also close to median change. At GWAS, the average overall call rate of patients in the case and the control group reached 98.66 and 98.79 %, respectively. We then applied the following thresholds for SNP quality control (QC) in data cleaning: SNP call rate ≥95 % for all samples, minor allele frequency (MAF) >1 % for all samples. A total of 601,578 SNPs on autosomal chromosomes passed the QC filters and were used for association analysis. All cluster plots of SNPs showing P < 0.0001 in association analyses by comparing allele frequencies in both groups were checked by visual inspection and SNPs with ambiguous genotype calls were excluded. In the replication study, the genotyping of 192 candidate SNPs in an independent set of 404 Japanese HCV-infected patients was carried out using the DigiTag2 assay (Nishida et al. 2007). Successfully genotyped SNPs in the replication analysis had a >95 % call rate, and cleared Hardy-Weinberg equilibrium (HWE) $P \ge 0.001$. One SNP could not be genotyped, and hence we obtained data on 191 SNPs including rs9915252. Three SNPs, rs4794822, rs3907022, and rs3859192 located around the proteasome 26S subunits non-ATPase 3 (PSMD3) gene and rs8099917 near the IL28B gene were genotyped by TaqMan SNP Genotyping Assays (Applied Biosystems, Carlsbad, CA) following the manufacturer's protocol.

Laboratory and histological tests

Blood samples were obtained at baseline and at appropriate periods after the start of therapy and for hematologic tests, blood chemistry, and HCV RNA. Fibrosis was evaluated on a scale of 0–4 according to the METAVIR scoring system. The SVR was defined as an undetectable HCV RNA level by Roche COBAS Amplicor HCV Monitor test, v.2.0 (Roche Molecular Diagnostics, Pleasanton, CA) with a lower detection limit of 50 IU/ml or Roche COBAS AmpliPrep/COBAS TaqMan HCV assay (Roche Molecular Diagnostics, Pleasanton, CA) with a lower detection limit of 15 IU/ml 24 weeks after the completion of therapy. Serum granulocyte colony-stimulating factor (G-CSF) levels were analyzed using Human G-CSF Quantikine ELISA Kit (R&D Systems, Inc., Minneapolis, MN).

Expression quantitative trait locus analysis

Expression quantitative trait locus analysis (eQTL) was conducted using the web-based tool, Genevar (http://www.sanger.ac.uk/resources/software/genevar) (Yang et al. 2010). We evaluated the correlations between rs2305482 genotypes and the expression of transcripts of *PSMD3* or colony-stimulating factor 3 (*CSF3*) by the Spearman's rank correlation coefficient.

Statistical analysis

In the GWAS and the replication stages, the observed association between a SNP and neutropenia induced by IFN-based therapy was assessed by the Chi square test with a two-by-two contingency table in three genetic models: the allele frequency model, the dominant-effect model and the recessive-effect model. Significance levels after Bonferroni correction for multiple testing were $P = 8.31 \times 10^{-8}$ (0.05/601,578) in the GWAS stage and $P = 2.62 \times 10^{-4} (0.05/191)$ in the replication stage. Categorical variables were compared between groups by the Chi square test, and non-categorical variables by the Student's t test or the Mann-Whitney U test. Multivariate logistic regression analysis with stepwise forward selection was performed with P < 0.05 in univariate analysis as the criteria for model inclusion. To evaluate the discriminatory ability of neutrophil counts at baseline to predict neutropenia during IFN-based therapy, receiver operating characteristic curve (ROC) curve analysis was conducted. Changes of serum G-CSF levels from baseline to the period with neutropenia during IFN-based therapy were compared by the repeated measure analysis of variance (ANOVA). Correlations between neutrophil counts and serum G-CSF levels were analyzed using Pearson's correlation coefficient test. P < 0.05 was considered significant in all tests.

Results

Genetic variants associated with IFN-induced neutropenia

We conducted two stages of GWAS by changing the terms of neutrophil counts, followed by the replication analysis (Fig. 1). The characteristics of the patients in each group for the GWAS and the replication stage are summarized in Table 1. At the first stage of GWAS (GWAS-1st), we genotyped 416 Japanese CHC patients with minimum neutrophil counts of <750/mm³ (Case-G1, n = 114) and $\geq 1,000/\text{mm}^3$ (Control-G, n = 302) at week 2 or 4 during IFN-based therapy. Here there may still be mixed with undesirable samples that should be removed from the case group. Therefore, we designed and carried out the second stage of GWAS (GWAS-2nd) comparing the patients with more severe neutropenia to the control group: in patients with minimum neutrophil counts of <600/mm³ (Case-G2, n = 50) and $\ge 1,000/\text{mm}^3$ (Control-G, n = 302) at week 2 or 4 using the same samples as used in GWAS-1st. Supplementary Fig. 1 shows a genome-wide view of the single-point association data based on allele frequencies in GWAS-1st and GWAS-2nd. No association between SNPs and IFN-induced neutropenia reached a genome-wide level of significance [Bonferroni criterion $P < 8.31 \times 10^{-8} (0.05/601,578)$]. Therefore, we selected the candidate SNPs principally

Fig. 1 Outline of the study design. *Neut* neutrophil counts, *SNP* single nucleotide polymorphism, *QC* quality control, *OR* odds ratio

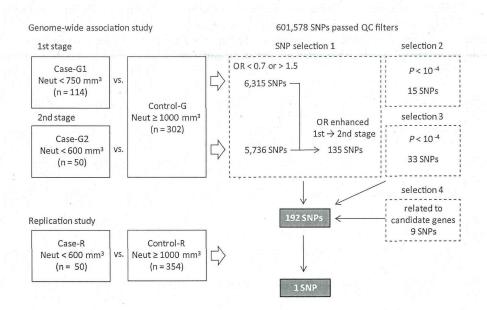


Table 1 Clinical characteristics of patients in GWAS and the replication study

4	GWAS			Replication study	
	Case-G1 $(n = 114)$	Case-G2 $(n = 50)$	Control-G $(n = 302)$	Case-R $(n = 50)$	Control-R $(n = 354)$
At baseline					
Gender, male/female	48/66	21/29	170/132	24/26	208/146
Age, years	57.9 (8.7)	57.1 (8.3)	57.2 (11.2)	59.1 (10.2)	56.7 (9.6)
Neutrophil count, /mm ³	1,800 (777)	1,662 (897)	2,750 (984)	1,570 (552)	2,724 (985)
Hemoglobin, g/dL	13.6 (1.3)	13.5 (1.3)	14.2 (1.5)	13.6 (1.6)	14.3 (1.5)
Platelet count, ×109/L	141 (42)	132 (46)	164 (54)	140 (47)	162 (60)
ALT, IU/L	82.9 (88.6)	70.4 (53.1)	81.5 (77.9)	87.8 (82.7)	85.2 (71.1)
HCV genotype, 1/2/ND	95/18/1	40/10/0	250/51/1	45/5/0	277/77/0
HCV RNA, log IU/mL	5.9 (0.8)	5.9 (1.0)	6.1 (0.8)	6.1 (0.9)	6.1 (0.8)
Liver fibrosis, F0-2/F3-4/ND	62/22/30	25/10/15	168/70/64	21/6/23	229/87/38
rs8099917, TT/TG + GG/ND	74/39/1	35/15/0	189/109/4	31/17/2	278/70/6
Regimen					
PEG-IFN + RBV/IFN + RBV/PEG- IFN/IFN mono	112/0/0/2	48/0/0/2	277/9/9/7	44/4/2/0	351/0/3/0
At week 4					
Neutrophil count, /mm ³	606 (126)	496 (104)	1,551 (501)	501 (89)	1,533 (484)

Data are expressed as number for categorical data or the mean (standard deviation) for non-categorical data

GWAS genome-wide association study, ALT alanine transaminase, ND not determined, PEG-IFN pegylated interferon, IFN mono, interferon monotherapy, RBV ribavirin

by comparing between GWAS-1st and GWAS-2nd as follows. There were 6,315 and 5,736 SNPs with odds ratios (ORs) <0.7 or >1.5 at GWAS-1st and GWAS-2nd, respectively. Of these, the ORs of 135 SNPs were more notable at GWAS-2nd than at GWAS-1st. In addition to the 135 SNPs, we selected 15 and 33 SNPs with $P < 10^{-4}$ at GWAS-1st and GWAS-2nd, and added 9 SNPs which are located around the candidate genetic regions identified by the GWAS stage and are non-synonymous or related to diseases in previous reports. Consequently, we carried out the replication analysis focusing on this total of 192 SNPs.

In the subsequent replication analysis, we carried out genotyping of the 192 candidate SNPs in an independent set of 404 Japanese HCV-infected patients with minimum neutrophil counts of $<600/\text{mm}^3$ (Case-R, n=50) and $\geq 1,000/\text{mm}^3$ (Control-R, n = 354) at week 2 or 4 during IFN-based therapy (Table 1; Fig. 1). The results in the replication stage combined with GWAS-2nd are shown in Supplementary Table 1. Several SNPs such as rs11743919 and rs2457840 showed strong associations with low P value, however, the MAF of them were <5 %. In general, low frequent SNPs tend to show unsettled associations, especially in statistical analysis with small number of samples. Therefore, we excluded these SNPs from the final candidates. Consequently, we determined the SNP rs2305482, located in the intron of PSMD3 gene on chromosome 17, as the most promising candidate, which showed a strong association with IFN-induced neutropenia in the combined results of GWAS-2nd and the replication stage (OR = 2.18; 95 % CI = 1.61–2.96, $P = 3.05 \times 10^{-7}$ in the allele frequency model) (Table 2).

Association of SNPs located in *PSMD3-CSF3* with neutropenia

A previous GWAS showed that rs4794822 located between the PSMD3 and CSF3 genes was associated with neutrophil counts in Japanese patients including 14 different disease groups (Okada et al. 2010). As shown in Fig. 2, rs4794822 is in strong linkage disequilibrium (LD) with rs2305482 which we identified in the present study. Thus, the pairwise LD (r^2) in the HapMap JPT: Japanese in Tokyo, Japan, is 0.66. Because the SNP rs4794822 is not included in the Affymetrix Genome-Wide Human SNP Array 6.0, we additionally genotyped it together with three other SNPs (rs9915252, rs3859192 and rs3907022) located in the same LD block around the PSMD3 gene (Fig. 2). The allele frequency of each SNP was compared between patients with minimum neutrophil counts of <600/mm³ (Case-G2 + R: Case-G2 plus Case-R, n = 100) and $\geq 1,000/\text{mm}^3$ (Control-G + R: Control-G plus Control-R, n = 656) at week 2 or 4 during IFN-based therapy. This showed that, rs4794822 was also strongly associated with neutropenia during IFN-based therapy (OR = 2.24; 95 % CI = 1.63-3.07, $P = 3.63 \times 10^{-7}$ in the allele frequency model) (Table 3).

 Table 2
 SNP associated with interferon-induced neutropenia

dbSNP rsID	Nearest	Risk	Allele	Stage	Case			Control			OR ^a (95 % CI)	P value ^b
	gene	allele	(1/2)		111	12	22	11	12	22		
rs2305482	PSMD3	C	C/A	GWAS-1st	23 (20.4)	52 (46.0)	38 (33.6)	26 (8.6)	143 (47.4)	133 (44.0)	1.61 (1.17–2.20)	2.95×10^{-3}
				GWAS-2nd	12 (24.5)	28 (57.1)	9 (18.4)	26 (8.6)	143 (47.4)	133 (44.0)	2.37 (1.54–3.65)	6.47×10^{-5}
				Replication	12 (24.4)	20 (40.8)	17 (34.7)	33 (9.5)	136 (39.1)	179 (51.4)	1.99 (1.30–3.06)	1.46×10^{-3}
				Combined	24 (24.5)	48 (49.0)	26 (26.5)	59 (9.1)	279 (42.9)	312 (48.0)	2.18 (1.61–2.96)	3.05×10^{-7}

Data of allele distribution represent number (%). Data of subjects whose genotypes were not determined were excluded

SNP single nucleotide polymorphism

^a Odds ratio for the allele frequency model

^b P value by the Chi square test for the allele frequency model

^c Allele distributions in GWAS-2nd and replication were combined

Predictive factors for IFN-induced neutropenia

The following analyses were carried out for rs2305482 and rs4794822 using the subjects in Case-G2 + R and Control-G + R. Neutrophil counts at baseline correlated with rs2305482 and rs4794822 genotypes (Supplementary Fig. 2), and strongly affected IFN-induced neutropenia as shown by ROC analysis (area under the curve = 0.860) (Supplementary Fig. 3). Furthermore, gender, hemoglobin level, and platelet count at baseline were also significantly associated with IFN-induced neutropenia by univariate analysis (Table 4). Therefore, we analyzed pretreatment predictive factors for IFN-induced neutropenia in logistic regression models that included the following variables: gender, neutrophil count, platelet count, and rs2305482 or rs4794822 genotypes. In addition to neutrophil count, rs2305482 CC was an independent predictive factor for IFN-induced neutropenia (OR = 2.497; 95 % CI = 1.281– 4.864, P = 0.0072) (Table 5) as was rs4794822 CC (OR = 2.272; 95 % CI = 1.337-3.861, P = 0.0024) (Supplementary Table 2).

Impact of *PSMD3-CSF3* SNPs on tolerated drug doses and treatment efficacy

To evaluate the impact of PSMD3-CSF3 SNPs on doses of drugs given, and on treatment efficacy, we selected 380 HCV genotype 1-infected patients treated with PEG-IFN/ RBV for 48 weeks. They were selected as having information available on the doses of PEG-IFN/RBV that they had received (Supplementary Table 3). It was reported that rates of viral clearance were significantly reduced in patients who could not be maintained on at least 80 % of their drug doses for the duration of PEG-IFN/RBV therapy (McHutchison et al. 2002). In reference to this result, we stratified the patients into three groups according to the doses of PEG-IFN or RBV administered, as follows: <60%, ≥ 60 to <80%, $\ge 80\%$ of the planned doses for 48 weeks. The proportion of patients in the <60 % group for PEG-IFN was significantly higher in patients possessing rs2305482 CC than in those with AA/AC (P = 0.005), whereas there was no association for RBV (Fig. 3). The same results were found in the analysis of rs4794822 (Supplementary Fig. 4). However, the univariate analysis of pretreatment factors associated with SVR showed that there was no association between SVR and rs2305482 or rs4794822 genotypes (Supplementary Table 3).

Candidate SNP-gene association analysis in IFN-induced neutropenia

To investigate whether the SNPs associated with neutropenia affect the expression of nearby genes, we conducted

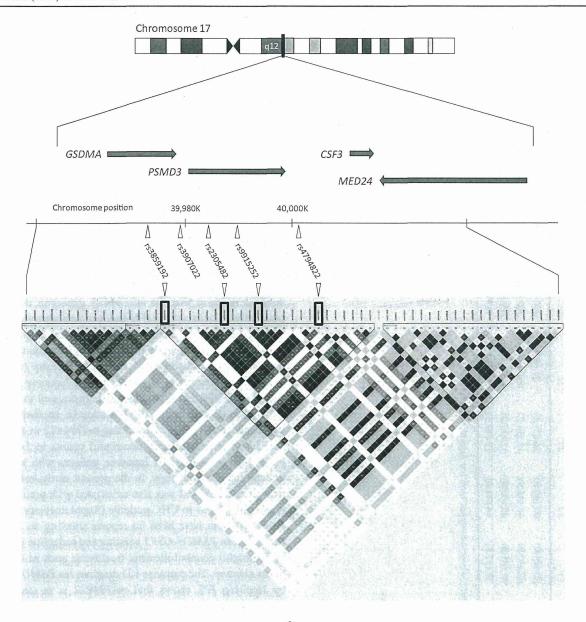


Fig. 2 Position on chromosome and pairwise linkage disequilibrium (r^2) diagrams in the HapMap JPT around the PSMD3-CSF3 locus

an eQTL analysis. The C allele of rs2305482, a risk for neutropenia, was associated with higher expression levels of *PSMD3* in the populations of LWK: Luhya in Webuye, Kenya (rho = 0.30, P = 0.006), and MEX: Mexican ancestry in Los Angeles, California (rho = 0.36, P = 0.015) (Supplementary Fig. 5a), whereas it was associated with lower expression levels of *CSF3* in CHB: Han Chinese in Beijing, China, in the probe of ILMN_1655639 (rho = -0.48, $P = 5.5 \times 10^{-6}$) (Supplementary Fig. 5b), and in MEX in that of ILMN_1706852 (rho = -0.33, P = 0.028) (Supplementary Fig. 5c).

CSF3 encodes a cytokine, known as G-CSF which is produced by different type of cells such as macrophages,

monocytes, stromal cells in the bone marrow, fibroblast, and endothelial cells. The eQTL analysis is based on the whole-genome gene expression variations in lymphoblastoid cell lines derived from HapMap individuals. Therefore, it was still necessary to analyze gene expression in G-CSF producing cells, as well as expression at the protein level. Hence, we measured serum G-CSF levels at baseline and week 2 or 4 (at the time of minimum neutrophil counts) in 127 CHC patients receiving IFN-based therapy. There were no differences in serum G-CSF levels at baseline and the time of minimum neutrophil counts as well as in their changes according to rs2305482 or rs4794822 genotypes (Supplementary Fig. 6a, b). In addition, neutrophil counts

Table 3 Association of SNPs located in PSMD3-CSF3 with interferon-induced neutropenia

dbSNP rsID	Nearest	Risk	Allele	Case-G2 + R^a ($n = 100$)	$R^a (n = 100)$		Control-G + R^{b} ($n = 656$)	$R^b (n = 656)$		OR° (95 % CI)	P value ^d
	gene	allele	(1/2)	111	12	22	11	12	22		
rs9915252	PSMD3	Ð	G/C	23 (24.0)	47 (49.0)	26 (27.1)	57 (8.9)	276 (43.3)	304 (47.7)	2.13 (1.57–2.89)	9.64×10^{-7}
rs4794822	PSMD-CSF3	C	C/T	42 (42.9)	45 (45.9)	11 (11.2)	130 (21.2)	308 (50.2)	176 (28.7)	2.24 (1.63–3.07)	3.63×10^{-7}
rs3907022	GSDMA-PSMD	A	A/G	41 (41.8)	45 (45.9)	12 (12.2)	129 (21.3)	306 (50.6)	170 (28.1)	2.11 (1.54-2.89)	2.31×10^{-6}
rs3859192	GSDMA	C	C/T	37 (37.8)	44 (44.9)	17 (17.3)	123 (19.9)	313 (50.7)	181 (29.3)	1.82 (1.34-2.48)	1.04×10^{-4}

Data of allele distribution represent number (%). Data of subjects whose genotypes were not determined were excluded

SNP single nucleotide polymorphism

^a Case-G2 + R: Case-G2 plus Case-R

^b Control-G + R: Control-G plus Control-R

^c Odds ratio for the allele frequency model

P value by the Chi square test for the allele frequency model

did not correlate with serum G-CSF levels at baseline and the time of minimum neutrophil counts (Supplementary Fig. 7a), and there was no difference in the changes of serum G-CSF levels from baseline to the time of minimum neutrophil counts between patients with minimum neutrophil counts of $\geq 1,000/\text{mm}^3$ and $<600/\text{mm}^3$ (Supplementary Fig. 7b).

Discussion

The present GWAS first showed a strong association between genetic variant and IFN-induced neutropenia, namely, with rs2305482 in *PSMD3* on chromosome 17. Although neutrophil counts at baseline were associated with the rs2305482 genotype and the incidence of neutropenia during IFN-based therapy, the logistic regression analysis revealed that the rs2305482 genotype was independently associated with IFN-induced neutropenia.

Intriguingly, the PSMD3-CSF3 locus was reported to be associated with total white blood cell (WBC) counts based on GWAS of populations with European ancestry (Crosslin et al. 2012; Soranzo et al. 2009) and in Japanese (Kamatani et al. 2010). These findings were replicated in African Americans (Reiner et al. 2011). Moreover, another GWAS by Okada et al. (2010) showed that rs4794822 in PSMD3-CSF3 was associated with neutrophil counts in 14 different groups of diseases in Japanese patients who were not undergoing chemotherapy. In the present study, rs4794822 as well as rs2305482 was also associated with pretreatment neutrophil counts in CHC patients (Supplementary Fig. 2). However, there have been no reports showing an association between PSMD3-CSF3 variants and reduction of WBC or neutrophil counts following treatments such as IFN and chemotherapy. The pairwise LD diagram for PSMD3-CSF3 by HapMap JPT shows that rs4794822 is in strong LD with rs2305482, which we identified here (Fig. 2). In the present study, both rs2305482 and rs4794822 were associated with IFN-induced neutropenia. Collectively, previous reports together with our results imply that the PSMD3-CSF3 locus is associated with neutropenia in CHC patients under IFN-based therapy as well as with neutrophil counts in healthy individuals and patients without bone marrow suppressive therapy.

In further clinical investigation, the rs2305482 and rs4794822 genotypes were associated with the doses of PEG-IFN that could be given to HCV genotype 1-infected patients treated with PEG-IFN/RBV (Fig. 3; Supplementary Fig. 4). Unfortunately, we could not collect the detailed information about the reason for the reduction of PEG-IFN in this group. However, we highly suppose that these SNPs affected the doses of PEG-IFN through neutropenia in some cases, since neutropenia is one of the major

Table 4 Un	nivariate analysi	of pretreatment factors	associated with	interferon-induced neutropen	ia
------------	-------------------	-------------------------	-----------------	------------------------------	----

	Case-G2 + R^a ($n = 100$)	$Control-G + R^b (n = 656)$	P value ^c
Gender, male/female	45/55	378/278	0.018
Age, years	58.1 (9.3)	56.9 (10.4)	0.262
Neutrophil count, /mm ³	1,614 (735)	2,742 (979)	< 0.001
Hemoglobin, g/dL	13.5 (1.5)	14.2 (1.5)	< 0.001
Platelet count, ×10 ⁹ /L	136 (46)	163 (57)	< 0.001
ALT, IU/L	79.1 (69.7)	83.5 (74.3)	0.574
HCV RNA, log IU/ml	6.0 (0.9)	6.1 (0.8)	0.164
Liver fibrosis, F0-2/F3-4/ND	46/16/38	397/157/102	0.674
rs2305482, AA + AC/CC/ND	74/24/2	591/59/6	< 0.001
rs4794822, TT $+$ TC/CC/ND	56/42/2	484/130/42	< 0.001

Data are expressed as number for categorical data or the mean (standard deviation) for non-categorical data

ALT alanine transaminase, ND not determined

Table 5 Logistic regression analysis of pretreatment factors associated with interferon-induced neutropenia

1-19-22	OR (95 % CI)	P value
Gender, female	1.229 (0.734–2.059)	0.4331
Neutrophil count, /mm ³	0.998 (0.997-0.998)	< 0.0001
Platelet count, ×109/L	1.005 (0.953-1.059)	0.8604
rs2305482, CC	2.497 (1.281-4.864)	0.0072

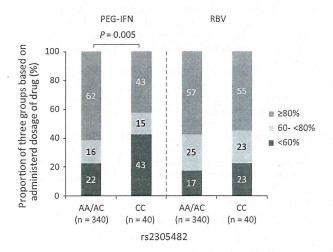


Fig. 3 Administered doses of PEG-IFN and RBV according to rs2305482 genotypes. The patients were stratified into three groups according to the doses of PEG-IFN or RBV administered, as follows: <60 %, \geq 60 to <80 %, \geq 80 % of the planned doses for 48 weeks. The proportion of patients receiving <60 % of the PEG-IFN doses was significantly higher in patients with rs2305482 CC than in those with AA/AC (P=0.005, by the Chi square test). PEG-IFN pegylated interferon, RBV ribavirin

reasons for the dose reduction of PEG-IFN in PEG-IFN/RBV therapy. While, there were no associations between SVR and rs2305482 or rs4794822 genotypes (Supplementary Table 3).

PSMD3 encodes the proteasome 26S subunit, non-ATPase 3, a member of the 26S proteasome family, and is involved in the control of cell cycle transition via the ubiquitin-proteasome pathway (Bailly and Reed 1999). CSF3 encodes G-CSF, which controls the production, differentiation, and function of granulocytes (Nagata et al. 1986). Recombinant G-CSF is widely used to treat patients with severe neutropenia during chemotherapy. Therefore, we hypothesize that PSMD3-CSF3 variants may influence neutrophil counts through affecting the process of endogenous G-CSF synthesis during IFN-based therapy or other bone marrow suppressive therapies. However, eQTL analysis by Okada et al. (2010) showed that rs4794822 was significantly associated with the expression level of PSMD3, rather than that of CSF3 in the JPT and CHB populations. Our eQTL analysis showed that the risk allele for neutropenia at rs2305482 correlated with higher expression levels of PSMD3 in LWK and MEX populations (Supplementary Fig. 5a), whereas with lower expression levels of CSF3 in MEX and especially in CHB populations (Supplementary Fig. 5b, c). However, these results were not replicated in the other probe of CSF3. Additionally, we analyzed serum G-CSF levels in CHC patients receiving IFN-based therapy. Although serum G-CSF levels were thought to be increased in response to neutropenia regardless of rs2305482 and rs4794822 genotypes, there was no evidence that they were lower in patients with a risk allele of these SNPs at baseline and during the neutropenic period (Supplementary Fig. 6). Moreover, neutrophil counts did not correlate with serum

^a Case-G2 + R: Case-G2 plus Case-R

^b Control-G + R: Control-G plus Control-R

c Categorical variables were compared between groups by the Chi square test and non-categorical variables by the Student's t test

G-CSF levels at baseline and the time of minimum neutrophil counts (Supplementary Fig. 7a). Further functional analyses of these genes and polymorphisms are required to elucidate the reason for the association between *PSMD3-CSF3* and IFN-induced neutropenia as well as neutrophil counts in healthy individuals.

In previous reports, *PLBC4*, *DARC*, *CXCL2*, and *CDK5* loci have also been associated with neutrophil or WBC counts in healthy individuals or patients who were not under chemotherapy (Crosslin et al. 2012; Kamatani et al. 2010; Okada et al. 2010; Reiner et al. 2011). However, there were no associations with these loci discernible in our GWAS.

The important limitation of this study is that the association between rs2305482 and IFN-induced neutropenia was not statistically significant in a genome-wide level. Thompson et al. (2012) also identified no genetic determinants of IFN-induced neutropenia during PEG-IFN/RBV therapy at the level of genome-wide significance by their GWAS. Unlike our study design, they analyzed the association between the reduction of neutrophil counts at week 4 and any SNPs. Indeed, we analyzed the association between the reduction of neutrophil counts at week 2 or 4 and rs2305482 or rs4794822, but there was no significant association. Therefore, further independent replication analyses which are designed in the similar way as our study are desirable.

IFN-free therapies are expected to be useful especially in IFN-resistant patients and may become the standard of care in the near future. However, combination therapies of DAA and IFN will continue to be used for some time. Our findings contribute to our understanding of the genetic factors influencing IFN-induced neutropenia. Furthermore, these genetic variants may be associated with neutropenia during chemotherapies for various malignant diseases as well as IFN-based therapy for CHC. Therefore, genetic testing of these variants might be useful for establishing personalized doses of such therapies to minimize drug-induced adverse events. Additionally, our results might contribute to the elucidation of the mechanism of drug-induced neutropenia.

Acknowledgments We thank Ms. Yasuka Uehara-Shibata, Yuko Ogasawara-Hirano, Yoshimi Ishibashi, Natsumi Baba, Megumi Yamaoka-Sageshima, Takayo Tsuchiura, Yoriko Mawatari (Tokyo University), and Dr. Shintaro Ogawa (Nagoya City University) for technical assistance. This work was supported by the Ministry of Health, Labor, and Welfare of Japan (H25-kanen-ippan-005) to Yasuhito Tanka and Katsushi Tokunaga, KAKENHI (22133008) Grant-in-Aid for Scientific Research on Innovative Areas to Katsushi Tokunaga, and KAKENHI (24790728) Grant-in-Aid from the Ministry of Education, Culture, Sports, Science of Japan for Young Scientists (B) to Nao Nishida.

Conflict of interest The following authors are currently conducting research sponsored by the companies: Yasuhito Tanaka, Keisuke Hino,

and Yoshito Itoh by Merck Sharp & Dohme, Corp., Chugai Pharmaceutical Co., Ltd., and Bristol-Myers Squibb; Nobuyuki Enomoto, Shuhei Nishiguchi, and Eiji Tanaka by Merck Sharp & Dohme, Corp. and Chugai Pharmaceutical Co., Ltd.; Naoya Sakamoto by Chugai Pharmaceutical Co., Ltd., Bristol-Myers Squibb, Merck Sharp & Dohme, Corp., and Otsuka Pharmaceutical Co., Ltd.; Hiroshi Yatsuhashi by Chugai Pharmaceutical Co., Ltd.; Akihiro Tamori by Merck Sharp & Dohme, Corp., Satoshi Mochida by Merck Sharp & Dohme, Corp., Chugai Pharmaceutical Co., Ltd., Bristol-Myers Squibb, and Toray Medical Co., Ltd. The other authors have no conflict of interest.

Compliance with ethical standards All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual participants included in the study.

References

- Bailly E, Reed SI (1999) Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitindependent proteolysis of cell cycle regulatory proteins in budding yeast. Mol Cell Biol 19:6872–6890
- Crosslin DR, McDavid A, Weston N, Nelson SC, Zheng X, Hart E, de Andrade M, Kullo IJ, McCarty CA, Doheny KF, Pugh E, Kho A, Hayes MG, Pretel S, Saip A, Ritchie MD, Crawford DC, Crane PK, Newton K, Li R, Mirel DB, Crenshaw A, Larson EB, Carlson CS, Jarvik GP (2012) Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network. Hum Genet 131:639–652. doi:10.1007/s00439-011-1103-9
- Fellay J, Thompson AJ, Ge D, Gumbs CE, Urban TJ, Shianna KV, Little LD, Qiu P, Bertelsen AH, Watson M, Warner A, Muir AJ, Brass C, Albrecht J, Sulkowski M, McHutchison JG, Goldstein DB (2010) ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 464:405–408. doi:10.1038/nature08825
- Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401. doi:10.1038/nature08309
- George SL, Bacon BR, Brunt EM, Mihindukulasuriya KL, Hoffmann J, Di Bisceglie AM (2009) Clinical, virologic, histologic, and biochemical outcomes after successful HCV therapy: a 5-year follow-up of 150 patients. Hepatology 49:729–738. doi:10.1002/ hep.22694
- Jacobson IM, McHutchison JG, Dusheiko G, Di Bisceglie AM, Reddy KR, Bzowej NH, Marcellin P, Muir AJ, Ferenci P, Flisiak R, George J, Rizzetto M, Shouval D, Sola R, Terg RA, Yoshida EM, Adda N, Bengtsson L, Sankoh AJ, Kieffer TL, George S, Kauffman RS, Zeuzem S (2011) Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 364:2405–2416. doi:10.1056/NEJMoa1012912
- Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, Nakamura Y, Kamatani N (2010) Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42:210–215. doi:10.1038/ng.531
- Kurosaki M, Tanaka Y, Tanaka K, Suzuki Y, Hoshioka Y, Tamaki N, Kato T, Yasui Y, Hosokawa T, Ueda K, Tsuchiya K, Kuzuya T,

- Nakanishi H, Itakura J, Takahashi Y, Asahina Y, Matsuura K, Sugauchi F, Enomoto N, Nishida N, Tokunaga K, Mizokami M, Izumi N (2011) Relationship between polymorphisms of the inosine triphosphatase gene and anaemia or outcome after treatment with pegylated interferon and ribavirin. Antivir Ther 16:685–694. doi:10.3851/IMP1796
- Matsuura K, Tanaka Y, Watanabe T, Fujiwara K, Orito E, Kurosaki M, Izumi N, Sakamoto N, Enomoto N, Yatsuhashi H, Kusakabe A, Shinkai N, Nojiri S, Joh T, Mizokami M (2014) ITPA genetic variants influence efficacy of PEG-IFN/RBV therapy in older patients infected with HCV genotype 1 and favourable IL28B type. J Viral Hepat 21:466–474. doi:10.1111/jvh.12171
- McHutchison JG, Manns M, Patel K, Poynard T, Lindsay KL, Trepo C, Dienstag J, Lee WM, Mak C, Garaud JJ, Albrecht JK (2002) Adherence to combination therapy enhances sustained response in genotype-1-infected patients with chronic hepatitis C. Gastroenterology 123:1061–1069
- Nagata S, Tsuchiya M, Asano S, Kaziro Y, Yamazaki T, Yamamoto O, Hirata Y, Kubota N, Oheda M, Nomura H et al (1986) Molecular cloning and expression of cDNA for human granulocyte colonystimulating factor. Nature 319:415–418. doi:10.1038/319415a0
- Nishida N, Tanabe T, Takasu M, Suyama A, Tokunaga K (2007) Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay. Anal Biochem 364:78–85. doi:10.1016/j.ab.2007.02.005
- Ochi H, Maekawa T, Abe H, Hayashida Y, Nakano R, Kubo M, Tsunoda T, Hayes CN, Kumada H, Nakamura Y, Chayama K (2010) ITPA polymorphism affects ribavirin-induced anemia and outcomes of therapy—a genome-wide study of Japanese HCV virus patients. Gastroenterology 139:1190–1197. doi:10.1053/j.gastro.2010.06.071
- Okada Y, Kamatani Y, Takahashi A, Matsuda K, Hosono N, Ohmiya H, Daigo Y, Yamamoto K, Kubo M, Nakamura Y, Kamatani N (2010) Common variations in PSMD3-CSF3 and PLCB4 are associated with neutrophil count. Hum Mol Genet 19:2079–2085. doi:10.1093/hmg/ddq080
- Poordad F, Bronowicki JP, Gordon SC, Zeuzem S, Jacobson IM, Sulkowski MS, Poynard T, Morgan TR, Molony C, Pedicone LD, Sings HL, Burroughs MH, Sniukiene V, Boparai N, Goteti VS, Brass CA, Albrecht JK, Bacon BR (2012) Factors that predict response of patients with hepatitis C virus infection to boceprevir. Gastroenterology 143(608–18):e1–e5. doi:10.1053/j.gastro.2012.05.011
- Reiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, Austin MA, Dean E, Arepalli S, Britton A, Chen Z, Couper D, Curb JD, Eaton CB, Fornage M, Grant SF, Harris TB, Hernandez D, Kamatini N, Keating BJ, Kubo M, LaCroix A, Lange LA, Liu S, Lohman K, Meng Y, Mohler ER 3rd, Musani S, Nakamura Y, O'Donnell CJ, Okada Y, Palmer CD, Papanicolaou GJ, Patel KV, Singleton AB, Takahashi A, Tang H, Taylor HA Jr, Taylor K, Thomson C, Yanek LR, Yang L, Ziv E, Zonderman AB, Folsom AR, Evans MK, Liu Y, Becker DM, Snively BM, Wilson JG (2011) Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS Genet 7:e1002108. doi:10.1371/journal.pgen.1002108
- Sakamoto N, Tanaka Y, Nakagawa M, Yatsuhashi H, Nishiguchi S, Enomoto N, Azuma S, Nishimura-Sakurai Y, Kakinuma S, Nishida N, Tokunaga K, Honda M, Ito K, Mizokami M, Watanabe M (2010) ITPA gene variant protects against anemia induced by pegylated interferon-alpha and ribavirin therapy for Japanese patients with chronic hepatitis C. Hepatol Res 40:1063–1071. doi:10.1111/j.1872-034X.2010.00741.x
- Soranzo N, Spector TD, Mangino M, Kuhnel B, Rendon A, Teumer A, Willenborg C, Wright B, Chen L, Li M, Salo P, Voight BF,

- Burns P, Laskowski RA, Xue Y, Menzel S, Altshuler D, Bradley JR, Bumpstead S, Burnett MS, Devaney J, Doring A, Elosua R, Epstein SE, Erber W, Falchi M, Garner SF, Ghori MJ, Goodall AH, Gwilliam R, Hakonarson HH, Hall AS, Hammond N, Hengstenberg C, Illig T, Konig IR, Knouff CW, McPherson R, Melander O, Mooser V, Nauck M, Nieminen MS, O'Donnell CJ, Peltonen L, Potter SC, Prokisch H, Rader DJ, Rice CM, Roberts R, Salomaa V, Sambrook J, Schreiber S, Schunkert H, Schwartz SM, Serbanovic-Canic J, Sinisalo J, Siscovick DS, Stark K, Surakka I, Stephens J, Thompson JR, Volker U, Volzke H, Watkins NA, Wells GA, Wichmann HE, Van Heel DA, Tyler-Smith C, Thein SL, Kathiresan S, Perola M, Reilly MP, Stewart AF, Erdmann J, Samani NJ, Meisinger C, Greinacher A, Deloukas P, Ouwehand WH, Gieger C (2009) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41:1182-1190. doi:10.1038/ng.467
- Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, Bassendine M, Spengler U, Dore GJ, Powell E, Riordan S, Sheridan D, Smedile A, Fragomeli V, Muller T, Bahlo M, Stewart GJ, Booth DR, George J (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41:1100–1104. doi:10.1038/ng.447
- Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, Nakagawa M, Korenaga M, Hino K, Hige S, Ito Y, Mita E, Tanaka E, Mochida S, Murawaki Y, Honda M, Sakai A, Hiasa Y, Nishiguchi S, Koike A, Sakaida I, Imamura M, Ito K, Yano K, Masaki N, Sugauchi F, Izumi N, Tokunaga K, Mizokami M (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41:1105–1109. doi:10.1038/ng.449
- Tanaka Y, Kurosaki M, Nishida N, Sugiyama M, Matsuura K, Sakamoto N, Enomoto N, Yatsuhashi H, Nishiguchi S, Hino K, Hige S, Itoh Y, Tanaka E, Mochida S, Honda M, Hiasa Y, Koike A, Sugauchi F, Kaneko S, Izumi N, Tokunaga K, Mizokami M (2011) Genome-wide association study identified ITPA/DDRGK1 variants reflecting thrombocytopenia in pegylated interferon and ribavirin therapy for chronic hepatitis C. Hum Mol Genet 20:3507–3516. doi:10.1093/hmg/ddr249
- Thompson AJ, Clark PJ, Singh A, Ge D, Fellay J, Zhu M, Zhu Q, Urban TJ, Patel K, Tillmann HL, Naggie S, Afdhal NH, Jacobson IM, Esteban R, Poordad F, Lawitz EJ, McCone J, Shiffman ML, Galler GW, King JW, Kwo PY, Shianna KV, Noviello S, Pedicone LD, Brass CA, Albrecht JK, Sulkowski MS, Goldstein DB, McHutchison JG, Muir AJ (2012) Genome-wide association study of interferon-related cytopenia in chronic hepatitis C patients. J Hepatol 56:313–319. doi:10.1016/j.jhep.2011.04.021
- Yang TP, Beazley C, Montgomery SB, Dimas AS, Gutierrez-Arcelus M, Stranger BE, Deloukas P, Dermitzakis ET (2010) Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 26:2474–2476. doi:10.1093/bioinformatics/btq452
- Yoshida H, Tateishi R, Arakawa Y, Sata M, Fujiyama S, Nishiguchi S, Ishibashi H, Yamada G, Yokosuka O, Shiratori Y, Omata M (2004) Benefit of interferon therapy in hepatocellular carcinoma prevention for individual patients with chronic hepatitis C. Gut 53:425–430
- Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, Roberts S, Focaccia R, Younossi Z, Foster GR, Horban A, Ferenci P, Nevens F, Mullhaupt B, Pockros P, Terg R, Shouval D, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Picchio G, Beumont M (2011) Telaprevir for retreatment of HCV infection. N Engl J Med 364:2417–2428. doi:10.1056/NEJMoa1013086

Naturally occurring, resistance-associated hepatitis C virus NS5A variants are linked to IL28B genotype and are sensitive to interferon-based therapy.

Running Head: Naturally occurring RAVs and IFN therapy

Jun Itakura ¹⁾, Masayuki Kurosaki ¹⁾, Hitomi Takada ¹⁾, Natsuko Nakakuki ¹⁾, Syuya Matsuda ¹⁾, Kouichi Gondou ¹⁾, Yu Asano ¹⁾, Nobuhiro Hattori ¹⁾, Yoshie Itakura ¹⁾, Nobuharu Tamaki ¹⁾, Yutaka Yasui ¹⁾, Shoko Suzuki ¹⁾, Takanori Hosokawa ¹⁾, Kaoru Tsuchiya ¹⁾, Hiroyuki Nakanishi ¹⁾, Yuka Takahashi ¹⁾, Syinya Maekawa ²⁾, Nobuyuki Enomoto ²⁾, Namiki Izumi ¹⁾

¹⁾ Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cyo, Musashino-shi, Tokyo, Japan

²⁾ First Department of Internal Medicine, University of Yamanashi, Yamanashi, Japan,

Corresponding author

Namiki Izumi, M.D.

Division of Gastroenterology and Hepatology

Musashino Red Cross Hospital

1-26-1 Kyonan-cho

Musashino-shi, Tokyo, 180-8610, Japan

Phone: 81-422-32-3111

Fax: 81-422-32-9551.

E-mail: nizumi@musashino.jrc.or.jp

This manuscript contains 2506 words, excluding reference.

This manuscript includes 4 tables and 2 figures.

There are no conflicts of interests for the study.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/hepr.12474

Abstract

BACKGROUND & AIMS: The presence of resistance-associated variants (RAVs) may attenuate the efficacy of direct acting antivirals (DAAs) in combination therapy for hepatitis C. The aim of this study was to characterize the NS3 and NS5A regions of hepatitis C virus (HCV) in naturally occurring RAVs.

METHODS: The NS3 and NS5A regions of HCV were amplified by nested PCR and their nucleotide sequences were determined by direct sequencing in 493 genotype 1b patients naive to DAA-based therapies. The effect of baseline RAVs on response to pegylated interferon and ribavirin therapy was analyzed in 65 patients after stratification by IL28B genotype.

RESULTS: The incidence of RAVs was 7.9% in NS3 (V36I/L: 1.2%, T54S: 2.8%, Q80K/R: 3.0%, A156S: 0.2%, and D168E/T: 2.4%), and 20.2% in NS5A (L31I/M: 2.2% and Y93H: 19.0%). The incidence in interferon experienced and naive patients was similar. The incidence of Y93H in NS5A was significantly higher in the IL28B TT genotype (rs8099917) than non-TT (27.1% vs. 9.5%, p<0.001). The virological response to peg-interferon plus ribavirin therapy was not affected by the presence of RAVs in IL28B TT genotype.

CONCLUSION: RAVs, especially Y93H in the NS5A region, were highly prevalent in DAA-naïve patients with genotype 1b HCV in Japan and were linked to IL28B TT genotype.

Interferon-based therapy could be an alternative for patients with RAVs because these variants did not attenuate the response to that therapy. The analysis of RAVs may impact the selection of the optimal treatment strategy.

Key words: direct acting antivirals, HCV, IL28B genotype, interferon-based therapy, resistance-associated variants

Abbreviations

HCV, hepatitis C virus; IFN, interferon; ISDR, interferon sensitivity determining region; NVR, non-virological response; Peg-IFN, pegylated interferon; PCR, polymerase chain reaction; PR therapy, Peg-IFN plus RBV combination therapy; RAV, resistance-associated variant; RBV, ribavirin; RNA, ribonucleic acids; SVR, sustained virological response;

Introduction

Interferon (IFN) has formed the basis of standard treatment for chronic hepatitis C since the 1990s. Combination therapy with pegylated IFN (Peg-IFN) and ribavirin (RBV) achieves a sustained virological response rate of 40-50% in genotype 1 and over 80% in genotype 2/3. The recent development of direct acting antivirals (DAAs), which specifically inhibit the activity of viral proteins essential for replication, has improved significantly the efficacy of therapy.

DAAs are classified according to the target HCV protein, NS3/4A, NS5A and NS5B (1-3). DAAs are highly potent but their efficacy is attenuated in the presence of HCV variants with resistance to their activity. Many such resistance-associated variants (RAVs) have been characterized and several hot spots for variation have been reported (4-9). Naturally occurring RAVs are present in a proportion of patients (10) but their prevalence has not been determined completely. The relationship between RAVs and response to interferon-based therapy is not known and their association with previously established factors that affect the efficacy of interferon-based therapy, such as mutations in the ISDR region of NS5A (11) and core protein (12) and SNPs in the human IL28B gene (13-15), also is not known.

Theoretically, the presence of RAVs could attenuate the efficacy of interferon-free combination therapy with DAAs. In fact, baseline RAVs involving amino acid position 168

of NS3 and amino acid positions 31 and 93 of NS5A significantly attenuated the sustained virological response (SVR) rates of interferon-free Asunaprevir (NS3 protease inhibitor) and Daclatasyir (NS5A inhibitor) combination therapy; the SVR rate was 50% in patients with D168E in NS3, 48% in interferon-ineligible/intolerant patients with L31M/V and/or Y93H in NS5A, and 29% in non-responder patients with L31M/V and/or Y93H in NS5A(16). In Simeprevir plus Peg-IFN and RBV combination therapy, Q80K in NS3 attenuated the efficacy in genotype 1a patients (17). On the basis of this evidence, the treatment guidance for hepatitis C released by the American Association for the Study of Liver Disease and the Infectious Diseases Society of America (IDSA), and recommendations on treatment of hepatitis C released by the European Association for the Study of the Liver, recommend that Simeprevir combination therapy is not indicated in patients with Q80K in NS3 (18,19). As seen above, the analysis of RAVs at baseline may be crucial in the era of DAA-based therapy.

The aim of this study was to characterize naturally occurring RAVs in the NS3 and NS5A regions of hepatitis C virus.

Patients and Method

Patients

Serum was obtained from a total of 493 HCV genotype-1b infected patients, who had not been exposed to DAAs. Of them, 308 had been treated previously by interferon-based therapy, 61 with standard IFN, 24 with standard IFN plus RBV, 23 with Peg-IFN and 190 with Peg-IFN plus RBV. The clinical backgrounds of patients are shown in Table 1. Fibrosis staging was categorized according to the METAVIR score: F0, no fibrosis; F1, portal fibrosis without septa; F2, portal fibrosis with few septa; F3, numerous septa without cirrhosis; and F4, cirrhosis. Sequences of the ISDR and the core region of HCV were determined by direct sequencing after amplification by reverse-transcription and polymerase chain reaction, as reported previously. Genetic polymorphism in a SNP located near the IL28B gene (rs8099917) was determined by Taq-man PCR assay. Briefly, DNA was isolated from peripheral blood using the standard phenol-chloroform method. Genotyping was carried out using a predesigned TaqMan probe (Applied Biosystems, Foster City, CA) according to the manufacturer's protocol. Written informed consent was obtained from each patient and the study protocol conformed to the ethical guidelines of the Declaration of Helsinki and was approved by the institutional ethics review committee.