Figure Legends

Figure1: Notch signaling is decreased in human Barrett’s esophagus. (A) Microarray
analysis from seven Barrett's esophagus and seven paired normal squamous esophagus fbr
status of Notch signaling pathway, GEO accession # (GSE 13083). (B) Representative image of
normal esophagus and Barrett’'s esophagus tissue from tissue microarray (TMA) stained for
NOTCH1, ICN1 and HES1 (200X Magnification). (C) Average scoring for positive staining in the

TMA and statistical analysis Fisher's exact t-test.

Figure 2: Inhibition of Notch signaling in esophageal epithelial cells changes basal cell
morphology in 3D cultures. (A) Western blotting for GFP (dnMAML), MYC and CDX1 in
EPC2-hTERT, MYC-CDX1 and MYC-CDX1-dnMAML cells. (B) Luciferase assay with Notch-
responsive pGL3-8XCSL reporter vector in MYC-CDX1-ICN1 and MYC-CDX1-ICN1-dnMAML
cells, graph represents mean + SEM (n=3). Student t-test was performed to determine
significance, *p<0.05. (C) Quantitative PCR (gPCR) for Notch downstream targets HES1 and
HESS5 in MYC-CDX1 and MYC-CDX1-dnMAML cells. Graph represents mean + SEM (n=3) and
student t-test was performed to determine significance, <*p 0.05. (D) H&E staining of
representative 3D organotypic cultures of MYC-CDX1 and MYC-CDX1-dnMAML cells, arrow
indicates elongated cells,(Magnification 200X). (E) Electron microscopy of MYC-CDX1 and
MYC-CDX1-dnMAML 3D organotypic cultures, scale bars=0.2um. (F) Graph represents relative
height of MYC-CDX1 and MYC-CDX1-dnMAML basal layer cells mean + SEM (n=4). Student t-

test was performed to determine significance, *p<0.0001.

Figure 3: Inhibition of Notch signaling in esophageal epithelial cells decreases squamous
K13+ cells and increases columnar K19+ cells in 3D organotypic culture. IHC staining of
3D organotypic cultures for squamous keratin K13 (A) and columnar keratin K19 (B) in MYC-
CDX1 (left panel) and MYC-CDX1-dnMAML cultures (right panel) (200X and 400X
Magnification).

Figure 4: Inhibition of Notch signaling in esophageal epithelial cells promotes a switch
from the squamous lineage to a columnar lineage. (A) gPCR of squamous keratins K5, K13
and K14; (B) of columnar keratins K8, K18, K19 and K20; (C) of mucin genes MUC2, MUC3B,
MUC5B and MUC17; (D) and of differentiation genes DSC1, and DSC3 in MYC-CDX1 and
MYC-CDX1-dnMAML cells. Graph represents mean + SEM (n=6). Student t-test was performed
to determine significance, *p<0.05, **p=<0.001.
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Figure 5: Knockdown of KLF4 expression reverses partially the morphological changes
induced by Notch signaling inhibition in 3D cultures. (A) gPCR of KLF4 expression in
MYC-CDX1 and MYC-CDX1-dnMAML cells. (B) Western blotting for KLF4 in EPC2-hTERT,
MYC-CDX1 and MYC-CDX1-dnMAML cells. (C) gPCR of KLF4 in MYC-CDX1-dnMAML-
shScramble and MVYC-CDX1—anAML—shKLF4 cells. (D) Western blotting for KLF4 in MYC-
CDX1-dnMAML-shScramble and MYC-CDX1-dnMAML-shKLF4 cells. (E) H&E staining of MYC-
CDX1-dnMAML-shScramble and MYC-CDX1-dnMAML-shKLF4 3D organotypic cultures (400X
Magnification). Graph represents mean + SEM (n=6). Student t-test was performed to determine

significance, *p<0.01.

Figure 6: Knockdown of KLF4 reverses lineage changes induced by Notch signaling in
esophageal keratinocytes. (A) gPCR of columnar keratins K8, K18, K19 and K20; (B) of mucin
genes MUC2, MUC3B, MUC5B and MUC17; (C) of squamous keratins K5, K13 and K14; (D)
and of squamous differentiation markers DSC1 and DSC3 in MYC-CDX1-dnMAML-shScramble
and MYC-CDX1-dnMAML-shKLF4 cells. Graph represents mean = SEM (n=6). Student t-test
was performed to determine significance, *p<0.01, **p<0.001.

Figure 7: Model. Inhibition of Notch signaling in conjunction with MYC and CDX1 expression
promotes increased expression of columnar keratins and mucin genes as well as decreased
expression of squamous keratins and other markers of differentiation. Inhibition of Nofch also
triggers changes in cell morphology in the basal layer.v Inhibition of Notch signaling promotes
KLF4 expression and the initiation of a transdifferentiation program towards a BE-like

metaplasia.
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Abstract

Background  Solid-pseudopapillary neoplasm (SPN), a
rare neoplasm of the pancreas, frequently harbors muta-
tions in exon 3 of the cadherin-associated protein beta 1
(CTNNBI) gene. Here, we analyzed SPN tissue for
CTNNBI mutations by deep sequencing using next-gener-
ation sequencing (NGS).

Methods Tissue samples from 7 SPNs and 31 other
pancreatic lesions (16 pancreatic ductal adenocarcinomas
(PDAC), 11 pancreatic neuroendocrine tumors (PNET), 1
acinar cell carcinoma, 1 autoimmune pancreatitis lesion,
and 2 focal pancreatitis lesions) were analyzed by NGS for
mutations in exon 3 of CTNNBI.

Results A single-base-pair missense mutations in exon 3
of CTNNBI was observed in all 7 SPNs and in 1 of 11
PNET samples. However, mutations were not observed in
the tissue samples of any of the 16 PDAC or other four
pancreatic disease cases. The variant frequency of
CTNNBI ranged from 5.4 to 48.8 %.

Conclusions Mutational analysis of CTNNBI by NGS is
feasible and was achieved using SPN samples obtained by
endoscopic ultrasound-guided fine needle aspiration.
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Introduction

Solid-pseudopapillary neoplasm (SPN) of the pancreas is a
rare. tumor that accounts for 0.2-2.7 % of all pancreatic
tumors [1], predominantly seen in young female patients. It
was first described by Frantz [2] in 1959. SPN of the
pancreas is characterized by low-grade malignant potential,
with an incidence of metastasis of 15 %, and tends to have
a favorable prognosis with surgical resections, considered
the standard of care, with a 5-year overall survival rate of
more than 95 % [1, 3, 4].

B-Catenin is a submembranous component of the cad-
herin-mediated cell adhesion system and acts as a down-
stream transcriptional activator of Wnt signaling. Under
normal conditions, cytoplasmic B-catenin is expressed at a
low level. Phosphorylation of both adenomatous polyposis
coli (APC) and axin by glycogen synthase kinase-3§
(GSK-3B) enhances B-catenin binding to the APC-axin
complex and targets the protein for ubiquitination and
proteasomal degradation [5]. In the nucleus, f-catenin
forms complexes with proteins such as Tcf and Lef-1 [6],
and activates the transcription of several oncogenic genes
including c-myc and cyclin DI.

Mutations in exon 3 of the B-catenin gene (also called
CTNNBI) are reported in approximately 83-100 % [7-12]
of surgically resected SPN samples. Accordingly, these
mutations are considered a unique genetic characteristic of
SPNs, differentiating them from other pancreatic tumors.

Direct sequencing is considered the gold standard for
mutational analysis. However, it is difficult to detect a
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small proportion of mutant genes using this method.
Recently, next-generation sequencing (NGS) has enabled
the evaluation of multiple genes for genomic alterations in
a single tumor, with high accuracy [13]. Less frequent
mutations can also be detected if deep sequencing is
performed.

Several studies have described the usefulness of EUS-
guided fine-needle aspiration (EUS-FNA) for diagnosing
SPNs [14-18]. SPNs could be seen as well-demarcated,
hypoechoic, solid masses that sometimes coexist with
- cystic lesions and/or calcification on EUS. Accuracy of
preoperative SPN diagnosis by EUS-FNA is reported to be
75-100 % [17, 18]; however, diagnosis by EUS-FNA is
sometimes difficult because of interpretative, sampling,
and misclassification errors or insufficient material for
immunostaining [19]. In addition, EUS-FNA samples
sometimes contain tumor cells that are too small to use for
sequencing analysis by polymerase chain reaction (PCR)-
based direct sequencing.

In the present study, we analyzed CTNNBI mutations
using EUS-FNA samples and NGS. To the best of our
knowledge, this is the first report of CTNNBI mutational
analysis using EUS-FNA samples and NGS.

Methods
Samples

Thirty-eight samples were tested: 7 SPNs, 16 pancreatic
ductal adenocarcinomas (PDAC), 11 pancreatic neuroen-
docrine tumors (PNET), and 4 other pancreatic lesions.
- Non-SPN samples were used as controls. Samples were
obtained by either EUS-ENA (n = 35) or surgery (n = 3)
at Hokkaido University Hospital, Sapporo, Japan, between
December 2008 and June 2013. All participants provided
written informed consent, and the ethics committee at
Hokkaido = University Graduate School of Medicine
approved the study.

EUS-FNA procedure

EUS-ENA was performed by a single experienced endos-
copist (FL.K.) using a curvilinear echoendoscope (GF-
UCT240-AL5; Olympus Medical Systems Co., Tokyo,
Japan) and 22-gauge needles (Echotip Ultra; Cook Japan,
Tokyo, Japan) with the patient under conscious sedation.
Briefly, the lesions were visualized by EUS, and the needle
was advanced into the lesion through the gastric or duo-
denal wall. The central stylet was removed, and a syringe
was attached to the needle hub to apply negative suction
pressure. The needle was then moved back and forth within
the lesion at least 10 times and then removed through the

@ Springer

scope, before the stylet was re-inserted into the needle. The
specimen obtained by aspiration was placed on a slide, air-
dried, alcohol-fixed, and used to prepare smears that were
stained using the rapid Romanowsky technique for quick
interpretation and assessment of sample adequacy (Diff-
Quik stain; Kokusai Shiyaku, Kobe, Japan). Diff-Quik
staining was performed on all specimens by an experienced
cytotechnologist (K.M.). Cytological and histological
diagnoses were made for the specimens obtained by EUS-
FNA [20, 21].

DNA extraction, PCR, and sequencing analysis
of CTNNBI

The FNA samples were stored in RNAlater (Life Tech-
nologies Corporation, Carlsbad, CA). Genomic DNA and
RNA were extracted from samples using an AllPrep®
DNA/RNA/Protein mini kit (Qiagen, Inc., Valencia, CA)
according to the manufacturer’s instructions. Three PNET
samples were obtained from surgery. Tumor samples were
fixed in 10 % buffered formalin and embedded in paraffin
for microdissection of the tumor tissue. Genomic DNA was
semi-automatically extracted using a QIAamp® DNA
FFPE tissue kit (Qiagen) and QIAcube® (Qiagen) accord-
ing to the manufacturer’s instructions. Total RNA con-
cenfration was determined by = spectrophotometer
(NanoDrop2000/2000c; Thermo Scientific, Tokyo, Japan),
and 5 pg total RNA were reverse transcribed using
SuperScript® I Reverse Transcriptase (Invitrogen, Carls-
bad, CA). Approximately 100 ng of each genomic DNA
sample were used for PCR. Genomic DNA was amplified
by semi-nested PCR, using the first and second primer pairs
(Table 1). Primers for the second PCR contained adaptors
and barcodes for further NGS analysis, and the PCR pro-
ducts were bidirectionally read by NGS. These primers
were designed to amplify a 228-bp DNA fragment of the
entire exon 3 of CTNNBI. The thermal cycler (Life
Technologies) was programmed as follows: initial dena-
turation at 94 °C for 7 min and 35 amplification cycles for
each PCR. Each amplification cycle comprised denatur-
ation at 94 °C for 15 s, annealing at 58 °C for 15 s, and
elongation at 72 °C for 30 s. The last cycle was followed
by a final extension at 72 °C for 5 min. The PCR products
were verified by agarose gel electrophoresis. The band of
the expected size was excised and purified using a QIA-
quick® Gel Extraction kit (Qiagen).

The concentration and amplicon size of the barcoded
libraries were determined by using an Agilent 2100 Bio-
analyzer and Agilent DNA 1000 kit (Agilent Technologies,
Inc., Santa Clara, CA).

They were pooled and mixed with Ton Spheres™ par-
ticles for emulsion PCR using the Ton OneTouch™ Sys-
tem (Life Technologies) with an JIon OneTouch™
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Table 1 Primers used in this study

Primers for the first PCR
Forward
5-CTGATTTGATGGAGTTGGACATGG-3
Reverse
3-CAGCTACTTGTTCTTGAGTGAAGG-3

Primers for the second PCR (library preparation for next-generation sequencing)

Primer pair for forward sequencing
Forward

5-CCATCTCATCCCTGCGTGTCTCCGACTCAG-barcode-CTGATTTGATGGAGTTGGACATGG-3

Reverse

5-CCTCTCTATGGGCAGTCGGTGATCAGCTACTTGTTCTTGAGTGAAGG-3

Primer pair for reverse sequencing
Forward

5-CCATCTCATCCCTGCGTGTCTCCGACTCAG-barcode-CAGCTACTTGTTCTTGAGTGAAGG-3

Reverse

5-CCTCTCTATGGGCAGTCGGTGATCTGATTTGATGGAGTTGGACATGG-3

Template kit v2 (Life Technologies) according to -the
manufacturer’s instructions. Samples were subsequently
enriched using Ion OneTouch™ ES (Life Technologies).
The final concentration of the template for emulsion PCR
was 0.4 pM. Sequencing was performed on an Jon
PGM™ (Personal Genome Machine) Sequencer by using
an Ion 314™ chip (Life Technologies) with an Ion-
PGM™ Sequencing 200 kit (Life Technologies) according
to the manufacturer’s protocol. Obtained sequences were
mapped onto the human reference genome hgl9, and
variants were detected using Ion Torrent Suite v2.2 soft-
ware (Life Technologies).

The PCR products: were also submitted to direct
sequencing using ABI Big Dye Terminator v1.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City, CA) and
the primers used for PCR. Sequencing of each PCR product
was performed with an ABI PRISM™ 310 Genetic Ana-
lyzer (Applied Biosystems). Each mutation was verified in
both sense and antisense directions.

Results
Clinicopathological features

The clinicopathological features of the 38 patients are
summarized in Table 2. The patient population comprised
24 women and 14 men, with ages ranging from 13 to
81 years (median 63.5 years). SPNs tended to be located in
the pancreatic body and tail rather than in the pancreatic
head. Other tumors involved all parts of the pancreas and
were evenly distributed. Tumor sizes ranged from 8 to
95 mm at the greatest diameter (median 23 mm).

The types of surgical procedures were as follows: three
subtotal stomach-preserving pancreaticoduodenectomies,
two duodenum-preserving pancreas head resections, seven
distal pancreatectomies (four with splenectomy and one
with spleen and left adrenal gland resection), one partial
pancreatectomy, and one left nephrectomy with metastatic
lymph node tumor resection. Two patients with PDAC had
resectable disease, whereas the other cases were
unresectable.

The histological features of the specimens with SPN
obtained by EUS-ENA are shown in Fig. 1. In most cases,
SPN showed typical findings, but in case 7, SPN was not
easily distinguished from PNET. Immunohistochemical
staining was performed for SPN and PNET samples. Two
SPNs showed a few chromogranin A-positive cells, five of
seven SPNs showed immunoreactivity against Synapto-
physin, and five SPNs showed nuclear staining for [-
catenin. All PNET samples were positive for chromogranin
A and synaptophysin, and none showed nuclear immuno-
reactivity against B-catenin. '

Genomic DNA and RNA were extracted from FNA
samples in 35 patients. For three PNET patients (Case 24,
25 and 26), surgically resected specimens were used to
obtain DNA.

Mutations in exon 3 of CTNNBI by NGS

All seven SPNs showed a single-base-pair missense
mutation in exon 3 of CTNNBI. Neither the PDAC nor
acinar cell carcinoma cases showed a CTNNBI exon 3
mutation. Of the 11 PNETs, a single-base-pair missense
mutation was detected in one sample. Variant frequency
and coverage ranged from 5.4 to 48.8 % and from 4,490 to
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Table 2 Clinicopathological features

Case Final diagnosis Sex Age Location in Tumor size Radiological Tumor markers Procedure for the final Surgical Results of immunohistochemical
pancreas (mm) feature diagnosis procedure staining
CEA CA19-9 CgA  Synaptophysin  p-Catenin
(ng/mL) (IU/mL)
1 SPN F 33 Pt 64 Solid/cystic 2 0 Surgery Dp (=) &+ Nuclear
2 SPN F 31 Pb 12 Solid/cystic 1 6 Surgery Partial -y (=) Nuclear
pancreatectomy

3 SPN F 17  Ph 23 Solid/cystic 1 <1 Surgery DpPHR (= ND

4 SPN F 36 Pbt 28 Solid/cystic 2 12 Surgery Dp (=) () Nuclear
5 SPN F 27 Pt 48 Solid/cystic 1 <1 Surgery DP ) B Nuclear
6 SPN F 13 Ph 63 Solid/cystic 1 9 Surgery DpPHR +) Nuclear
7 SPN E 26 Pb 13 Solid 1 EUS-FNA ND =) (=) ND

8 PDAC F 64 Ph 33 Solid 10 3 Surgery SSPPD ND ND ND

9 PDAC F 75 Pt 22 Solid 55 220 Surgery DpP ND ND ND

10 PDAC F 55 Ph 45 Solid 12 693 EUS-FNA ND ND ND ND

11 PDAC M 62 Pt 70 Solid 79 >10,000 EUS-FNA ND ND ND ND

12 PDAC F 76  Ph 70 Solid/cystic 4 >10,000 EUS-FNA ND ND ND ND

13 PDAC M 64 Ph 17 Solid 22 53 EUS-FNA ND ND ND ND

14 PDAC F 81 Ph 9 Solid 2 21 EUS-FNA ND ND ND ND

15 PDAC F 78 Pt 66 Solid 12 361 EUS-FNA ND ND ND ND

16 PDAC F 67 Ph 10 Solid 7 242 EUS-FNA ND ND ND ND

17 PDAC M 63 Ph 27 Solid 7 2,320 EUS-FNA ND ND ND ND

18 PDAC M 57 Ph 17 Solid 6 30 EUS-FNA ND ND ND ND

19 PDAC M 79 Ph 30 Solid 3 871 EUS-FNA ND ND ND ND

20 PDAC M 44  Pbt 28 Solid 48 2,880 EUS-FNA ND ND ND ND

21 PDAC M 78 Pt 27 Solid 3 229 EUS-FNA ND ND ND ND

22 PDAC F 67 Ph 25 Solid 15 246 EUS-FNA ND ND ND ND

23 PDAC M 80 Pt 47 Solid 440 >10,000 EUS-FNA ND ND ND ND

24 PNET F 58 Pt 23 Solid 2 14 Surgery DP +) () ND

25 PNET M 51 Ph 52 Solid/cystic 2 31 Surgery SSPPD -+ () ND

26°  PNET F 76 Lymph node 18 Solid 3 11 Surgery Left nephrectomy  (+) () ND

27°  PNET M 72 Pt 20 Solid 5 14 Surgery DP +) () ND

28 PNET F 58 Pb 18 Solid 2 14 Surgery DP +) ND

29 PNET F 78  Ph 16 Solid 2 <1 Surgery SSPPD CORCY] ND

30 PNET M 79 Pb 9 Solid 3 8 EUS-FNA ND ) P Membrane
31 PNET F 69 Pt 8 Solid 3 5 EUS-FNA ND + & ND

32 - PNET F 77 Ph 17 Solid 2 47 EUS-FNA ND ) ND

33 PNET F 45 Ph 17 Solid/cystic 3 26 EUS-FNA ND (CORENCY! ND
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= é § - 203,919, respectively. For the sample with a Vm?’ant fre-
3 i 85 3 quency of.5.39, the read depth was 15,199. The involved
5 S 202 292|583 % codons were as follows: codon 32 (three cases), codon 37
g 1= S 2 < § (two cases), and codon 41 (three cases). The results of the
% ‘5, E % E analysis are shown in Table 3. For the control samples, the
é §‘ § i 3 average base coverage depth ranged from 113 to 8,027
£ = S g & .
g ) § T7T 2228 §§ é‘ (median 7,312).
% £ < ~ < ?—j« % Mutations in exon 3 of CTNNBI by direct sequencing
318 |22 B22|58 %
:é é é Direct sequencing was performed using samplles that I?ad
o & mutations detected by NGS. One SPN case with mutation
] éa i was not able to perform direct sequencing due to an
EB § EH % 5 insufficient amount of the sample. Only one. of the seven
55: g 28 28§8 § g § cases could detect mutation by direct sequencing, as shown
Eg & also in Table 3.
2 §8 %
g a g =
< g2¢ ¢
£ g ‘E 5 Discussion
ke £58 ¢
g E % é % % g E;% %D Mutations in exon 3 of CTNNBI have been reported in
g §° % % % % 8 ‘% 8 i g various tumors, including those of the colon [22], prostate
=% Mo omERIEEE R (231, endometrium [24], and liver [25].
* g s ,%’;éb &; In SPN, cytoplasmic/nuclear immuno'rea.ctivuy foF B-
é 5| o 9o ¥ § %_g E catenin was detected during the systemic immunochisto-
§ ° : T ?:) E é; B chemical study of pediatric‘tumc?rs [7]. After the first report
8 < 2 Exo @ by Tanaka et al. [7], mutations in exon 3 of CTNNB! I?ave
§ 5 \E/n o v e §: g g E been reported in 83-100 % [7~12]. of SPNs. Prev1qus
k| RE # A studies used microdissected tumor tissue from formalin-
= o o o g§§ :§ g fixed, paraffin-embedded blocks obtair}ed l?y surgery to
5 2 % 2 fjg g = % extract genomic DNA. Single-base-pair missense muta-
i =% z3z|Effi s tions in codons 32, 33, 34, 37, and 41, and 12-basc-pair
E g 3% 333 g g § € g deletion corresponding to codons 28-32 have been
g é :.; g - documented. . .
8 § § g o g Serine 33 and 37 as }vell as threonine 41 are the s1tf:s for
5 _ g8 ¢ ‘g g GSK-3 B phosphorylation [26]. Codons 32 and 34 serve as
g E o wn N E QEE g crucial elements of 'the DSG®XS motif to crégte a rgcog-
- IR 5 R é nition site for B-TrCP and subsequent ubiquitin-mediated
é g §, é § proteasomal degradation [27, 28]. Both mechan}sms lead to
] §§ g g E the abnormal stabilization of B-catenin and its resultant
g8 £ g 3 8 % aberrant nuclear expression in SPNs.
§ g o 8 . oo o= 3 gé § ; In the present study, eight cases showed CTNNBI
== s REE § E é Ee mutations. Mutations were detected in codons 32, 37, and
E‘) g2 293|d é 2 % % 41, consistent with the findings of previous reports [7-12].
288 B E To the best of our knowledge, this is the first report of
5 w2 F e ® )G é % : 3 mutational analysis for CTNNBI using EUS-FNA samples
g a8 ES E g ; and NGS. Of the eight cases, seven were of SPN and one
| « § § %é g 8 g was of PNET. That PNET was diagnosed by the typical
é E) e § - -g ‘§ 5 a; :«; radiologic finding (a hype‘rvascular round mass that was
: % g 5 5C . g g g g ) £ 3 best visualized in the arterial contra§t enhanc;ment phgse
o |8 % 2°EEE %S .éﬂ ) on computeq ‘tomography) a.nd 1mmunohlstochemlcg1
=l = %,g 2 & staining (positive chrf)mogranln A .and sygaptophysm
£18 R EERIHFSE. - immunostaining, negative CD36 staining, and no nuclear
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Fig. 1 Histological features of
solid-pseudopapillary neoplasm
specimens obtained by
endoscopic ultrasonography-
guided fine-needle aspiration. a,
b Typical specimen (case 4).
Small and uniform neoplastic
cells have either eosinophilic or
clear vacuolated cytoplasm.
These loosely cohesive cells
surround the delicate vessels
and form pseudopapillae. ¢,

d Atypical specimen (case 7).
The specimen contains a small
number of neoplastic cells in the
fibrous stroma that do not form
apparent pseudopapillae. The
small and uniform neoplastic
cells have eosinophilic
cytoplasm and show a
plasmacytoid appearance. These
clusters are difficult to
distinguish from those of
neuroendocrine tumors

Table 3 Mutations in CTTNBI

v:,_ @J e

J‘-
R ,/Lm-

v.”.'}'

Mutated codoﬁ Nucleotide

Case  Template AA substitution  Var. freq (%) Coverage Ref cov.  Var cov.  Direct seq

1 RNA 37 N378 C/A Ser37Tyr 23.81 19,047 14,495 4,535  Undetectable
2 RNA 32 N363 A/G  Asp32Gly 5.39 16,072 15,199 866  Undetectable
3 RNA 32 N362 G/C  Asp32His 48.77 25,740 13,161 12,554 Undetectable
E gDNA 41 N390 C/T  Thré4llle 31.07 4,490 3,093 1,395  Undetectable
5 gDNA 37 N378 C/T  Ser37Phe 2648 115,799 84,609 30,665  Detectable

6 gDNA 41 N362 G/A  Asp32Asn 21.50 203,919 43,842 160,077  Undetectable
7 RNA 41 N390 C/T  Thr41lle 29.68 35,808 25,167 10,629  NA

AA amino acid, Var Freq variant frequency, Ref Cov reference coverage, Var Cov variantcoverage, Direct seq direct sequencing, gDNA genomic
DNA, Ser serine, Tyr tyrosine,Asp asparatic acid, Gly glycine, His histidine, Thr threonine, Zle isoleucine, Phephenylalanine, Asn asparagine, NA

not available

B-catenin accumulation) of an EUS-FNA sample. The
patient did not undergo surgery because of the small size
(9.6 x 5.4 mm) and low-grade malignant potential of the
lesion, which was diagnosed on the basis of EUS-FNA
specimen analysis (Ki-67 index, 1-2 %).

Several assays can be performed to detect genetic
mutations, such as hematoxylin and eosin and immuno-
histochemical staining, fluorescence in-situ hybridization,
polymerase chain reaction, and direct sequencing.
Although direct sequencing is considered the gold stan-
dard, it lacks the ability to detect small proportions of
mutant genes and technical experience is essential for
accurate result interpretation. In one study, mutant DNA
had to account for at least 30 % of wild-type DNA for the
detection of mutations by direct sequencing [29]. In our

@ Springer

study, mutations caught by NGS could be detected in only
one of seven samples by direct sequencing. Our result
showed the superiority of NGS in detecting mutations over
direct sequencing, as indicated in previous reports. This
result suggests the usefulness of FNA specimens for
genetic analyses when combined with NGS, since EUS-
FNA specimens are usually mixed with blood or tissue in
the needle tract.

To date, CTNNBI mutations have not been reported in
PNET. Gerdes et al. [30] previously performed CTNNBI
mutational analysis on 78 PDAC, 33 PNET, and 14 pan-
creatic cancer cell lines and found no mutations in exon 3
of CTNNBI. Similarly, Liu et al. [10] found no mutations
in exon 3 of CTNNBI in 14 PNET samples. Exome
sequence analysis of approximately 18,000 protein-coding
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genes of 10 PNET samples was carried out by Jiao et al.
[31] to explore the genetic basis of the disease. They
reported novel DAXX and ATRX mutations, but mutations
in CTNNBI were not detected. With regard to neuroen-
docrine tumors in other organs, Kim et al. [32] detected a
single-base-pair mutation in one of two thymus neuroen-
docrine tumors, which resulted in a replacement of iso-
leucine by serine at codon 35. Another mutation was seen
in a cell line of neuroendocrine tumor of midgut (terminal
ileum) origin [33]. To explore whether CTNNBI mutations
occur in PNET, we enrolled two more cases of PNET that
were diagnosed by surgery, but did not detect any muta-
tions. Further analysis should be performed to determine if
CTNNBI mutations occur in PNET.

One of the most important differential diagnoses of SPN
is PNET [16, 34]. Histologically, most SPNs show a sol-
idmonomorphous growth in the peripheral parts of the
lesion. In the center, tumor cells form pseudopapillary
structures [35]. PNETs are morphologically very similar to
SPNs. Immunostaining is useful in differentiating SPNs
from PNETs. SPNs specifically express vimentin and
CD10 [8, 36] and usually show focal immunoreactivity
against synaptophysin, but not for chromogranin A. On the
other hand, PNETs usually show diffuse staining for syn-
aptophysin. Strong staining for chromogranin A is
observed in differentiated neuroendocrine tumors, NETsS,
but negative or very mild staining is found in poorly dif-
ferentiated lesions [37, 38]. B—Caténin localization is also
quite different between these two tumor types. SPNs show
cytoplasmic and nuclear staining [3, 7], but PNETs show
membranous staining. Accurate diagnosis of SPNs is
sometimes difficult with EUS-FNA because of interpreta-
tive, sampling, and misclassification errors or insufficient
material for immunostaining [19]. In the present study, 1
case of SPN could not be diagnosed pathologically on the
basis of EUS-FNA samples. However, the CTNNBI
mutation was detected by NGS, and the patient was diag-
nosed as having SPN and was scheduled for surgery at the
time of reporting.

The current study was limited by two points. First, not
all of the mutational analyses were performed prior to the
final diagnosis by either EUS-FINA or surgery. Second,
being a rare tumor, the sample size was rather small.

Conclusions

Analysis of exon 3 mutations in CTNNBI by NGS is fea-

sible using EUS-FNA samples. All SPN cases showed

CTNNBI mutations. Further exploration of mutational
analyses including CTNNBI in neuroendocrine tumors is
required to determine the genetic alterations of PNET.
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