Table I. HSF1, BAG3 expression and clinicopathological variables in HCC

Parameter	Total	HSF1		P	BAG3	BAG3	
		High $n = 115$ ≥ 30	Low		High	Low n = 114 <25	
			n = 111		n = 112		
			<30		≥25		
Age (years)						72	
Age (years) ≥60	126	66	60	0.69	59	67	0.42
<60	100	49	51	0.02	53	47	0.12
Sex	100	72	31		33	7'	
Male	185	95	90	0.86	94	91	0.49
Female	41	20	21	0.00	18	23	0.47
	41	20	21		10	23	
Etiology	85	45	40	0.70	39	46	0.67
HBsAg(+)/HCV(-)	84	43	41	0.70	44	40	0.07
HBsAg(-)/HCV(+)	6	43	2		2	40	
HBsAg(+)/HCV(+)		23	28		27	24	
HBsAg(-)/HCV(-)	51	23	28		21	24	
Cirrhosis	101	24	57	0.50	(0	50	0.50
Presence	121	64	57	0.59	62	59	0.59
Absence	105	51	54		50	55	
Tumor size (cm)	4.10		0.0	0.0454		0.0	0.0054
<5	149	67	82	0.017*	66	83	0.035*
≥5	77	48	29		46	31	
No. of tumor nodules	Mary standard				*	The same of the sa	
Solitary	168	78	90	0.032*	79	89	0.22
Multiple (≥2)	58	37	21		33	25	
TNM stage							
I and II	139	62	77	0.017*	63	76	0.11
III and IV	87	53	34		49	38	
BCLC stage							
A	81	27	54	<0.001*	32	49	0.065
В	108	64	44		58	50	
C	37	24	13		22	15 .	
Differentiation							
Well	36	11	25	0.010*	10	26	0.014*
Moderate	143	74	69		75	68	
Poor	47	30	17		27	20	
Capsular formation							
Presence	184	95	89	0.73	91	93	1.0
Absence	42	20	22	200	21	21	
Vascular invasion	,-						
Present	37	24	13	0.073	22	15	0.21
Absent	189	91	98	0.075	90	99	0.21
Serum AFP level	107	71	, , ,	i iv	70		
<20	117	53	64	0.086	52	65	0.14
≥20	109	62	47	0.000	60	49	0.14
220	109	02	47		00	49	

AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; HCV, hepatitis C virus; TNM, tumor node metastasis. *Significant P value.

findings, we concluded that HSF1 expression is a necessary condition for cell growth, but it is not a sufficient condition. We, therefore, did not further investigate gain of function of HSF1.

Impaired EGF-mediated MEK/ERK activation in HSF1 KD cells and HSF1--- hepatocytes

Activation of the MEK/ERK pathway regulates many important cellular processes in carcinogenesis. To further elucidate the function of HSF1 on tumor growth, we investigated the cascade of MAPK. In WT hepatocytes and HSF1 control cells, EGF, a potent activator of MAPK, efficiently activated EGFR, MEK1/2 and ERK1/2 (Figure 2A). In contrast, activation of EGFR, MEK1/2 or ERK1/2 was significantly decreased in HSF-knockout mice (HSF-/-) hepatocytes and HSF1 KD cells (Figure 2A and B). Regarding protein levels of EGFR, MEK1/2 and ERK1/2, EGFR protein levels were significantly decreased in HSF1-/- hepatocytes and HSF1 KD compared with controls, whereas other proteins were unchanged (Figure 2A and B). This result was consistent with the previous report (31). Immunohistochemical staining revealed that HSF1 control tumor showed strong phosphorylated

ERK1/2 levels, whereas almost no ERK1/2 activation was observed in HSF1 KD tumors (Figure 2C).

Role of HSF1 in TNF- α -induced apoptosis

Since tumor growth inhibition is caused mainly by increased cell death and decreased cellular proliferation, we compared numbers of apoptotic cell deaths in HSF1 control and HSF KD xenografts using the TUNEL assay. Significantly more apoptotic tumor cells were found in HSF1 KD tumors than in HSF1 control tumors (Figure 3A). Next, we examined whether HSF1 was involved in apoptosis in vitro. FACS analysis showed very few apoptotic cells in HSF KD or HSF control in the absence of any stimuli. In contrast, treatment with TNF-α, a potent inducer of apoptosis, caused more extensive apoptotic cell death in HSF1 KD cells (23.9%) than in HSF control cells (8.7%) (Figure 3B). Furthermore, we also confirmed increased TNF-α-induced apoptosis in HSF KD cells as determined by TUNEL assay and caspase-3 activation (Figure 3C and D). To examine whether HSF1 is required for TNF-α-induced liver apoptosis in vivo, we used an LPS/GalN liver injury model that depends on TNF-α-mediated apoptosis (32). At 7h LPS/GalN

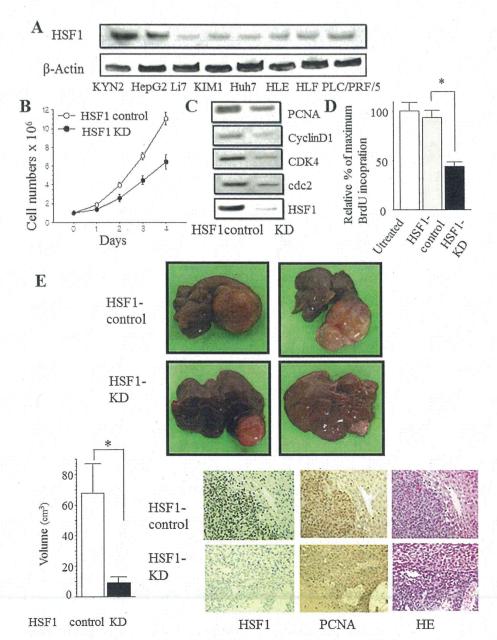


Fig. 1. Role of HSF1 in HCC growth. (A) Expression of HSF1 in the eight indicated HCC cell lines was determined by western blot analysis, using β-actin as a control. (B) Cell growth of HSF1 control KYN2 cells and HSF1 KD KYN2 cells was measured by counting the number of cells. One representative experiment from three experiments is shown. Data are plotted as mean ± SEM. (C) Expression of cell-cycle-related protein in HSF1 control KYN2 cells and HSF1 KD KYN2 cells, as determined by western blot analysis. (D) Cells were pulsed with BrdU (10 mmol/l) for 4h. Optical density values are expressed as a percentage relative to the group expressing control. *P < 0.05. Bars: SEM. (E) Growth appearance of HSF1 KD and HSF1 control cells in SCID mice after orthotopic implantation (upper panel). Orthotopic tumor volume was measured. Data are expressed as mean ± SEM (HSF1 control, n = 12; HSF1 KD, n = 12). *P < 0.05. Bars: SEM (lower left panel). HE and immunohistochemical staining for HSF1 and PCNA (original magnification: ×40): lower right panel. BrdU, bromodeoxyuridine; HE, hematoxylin and eosin.

administration, HSF-/- exhibited marked alanine aminotransferase elevation (Figure 3E), severe histological liver damage and hepatocyte apoptosis compared with WT mice (Figure 3E). This was also in accordance with the notable depression of HSF1 inducing apoptosis in vitro.

HSF1 is involved in TNF-α-mediated NF-κB activation

Regarding the association between HSF1 and antiapoptosis, expression of bcl-2-associated athanogene domain 3 (BAG3) was reportedly reduced in HSF1 KD cells compared with control cells (7,11).

In addition, microarray array analysis showed that BAG3 was dramatically downregulated in HSF1 KD cells compared with HSF1 control cells (Supplementary Table I, available at Carcinogenesis Online). Immunoblot analysis showed that BAG3 protein expression was reduced in HSF1 $^{-/-}$ hepatocytes and HSF1 KD cells relative to the respective controls (Figure 4A and B). Meanwhile, activation of IKK and NF- κ B pathway represents one of the most important antiapoptotic signals. In addition, BAG3 is also reported to control proteasomal degradation of IKK γ , the regulatory subunit (also called NF- κ B essential modulator) of the IKK complex, and

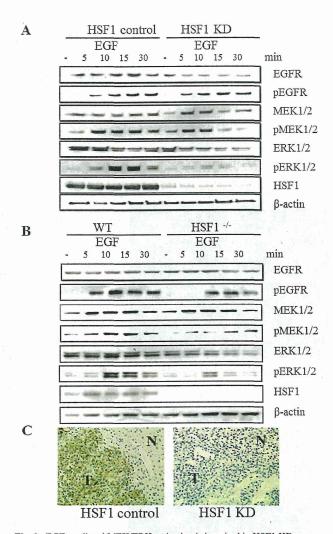


Fig. 2. EGF-mediated MEK/ERK activation is impaired in HSF1 KD cells and HSF1^{-/-} hepatocytes. (A) HSF1 control and KD cells were treated with EGF (10 ng/ml), lysed at the indicated times, gel separated and immunoblotted with antibodies against indicated proteins. (B) HSF1 WT and HSF-/- hepatocytes were treated with TNF-α (30 ng/ml), lysed in indicated times, gel separated and immunoblotted with antibodies against indicated proteins. (C) Representative phosphorylated ERK (p-ERK) staining of orthotopic tumors of HSF1 control and KD cells (original magnification: ×40). N, non-cancerous liver; T, tumor.

NF-κB activity (33). Regarding the NF-κB pathway, NF-κB activation by TNF-α was decreased in HSF1 KD cells compared with the control cells (Figure 4A). In contrast, without any treatment, basal NF-κB activity was very weak and no differences were apparent between HSF1 control cells and HSF1 KD cells (Figure 4A). Consistent with this, microarray analysis showed no apparent differences in the expression of typical NF-κB-regulated genes. We also performed NF-KB pathway analysis and found that the pathway was not overrepresented by the microarray results (Supplementary Figure 2, available at Carcinogenesis Online). Next, we investigated whether HSF1 is involved in TNF-α-mediated NF-κB activation and found that phosphorylated Iκk-B (p-IκB), a marker of NF-κB activation, was significantly decreased in HSF-/- hepatocytes and HSF1 KD cells compared with their controls. As expected, IKKy protein levels were dramatically reduced in HSF1-/- hepatocytes and HSF1 KD cells compared with their controls (Figure 4A and B). To investigate whether decreased IKKy protein was degraded via proteasome, we used the proteasomal inhibitor, MG-132, and found that protein levels of IKK γ in HSF1 KD cells recovered with the inhibitor, whereas protein expression of BAG3 was unchanged (Figure 4C). Although mRNA levels of BAG3 were significantly downregulated in HSF1 KD cells compared with HSF1 control cells, mRNA levels of IKK γ were not changed (Figure 4D). HSP70 mRNA and protein levels were similar between HSF1 control and HSF1 KD cells (Figure 4A–D). These results suggest that HSF1 positively regulated BAG3 expression, which stabilized the IKK γ protein necessary for NF- κ B activation. Immunohistochemical staining revealed that downregulation of HSF1 dramatically reduced BAG3 levels in HSF1 KD xenografts compared with the HSF1 control xenografts.

We performed real-time PCR analysis of the putative NF-κB-regulated antiapoptotic genes. The levels of A20, cellular inhibitor of apoptosis 2 (c-IAP2) RNA expression were decreased in HSF1 KD cells by TNF-α-mediated compared with HSF1 control cells, whereas cylindromatosis, cIAP1 were unchanged (Figure 4E). These results suggest that HSF1 plays an important role in tumor growth via MAPK-mediated cellular proliferation and NF-κB-mediated antiapoptosis.

HSF1 and BAG3 were frequently overexpressed in human HCCs

To analyze the involvement of HSF1 in HCCs, we examined expression levels of HSF1 in human primary HCCs. Immunoblot analysis showed that levels of HSF1 in HCC tissues were significantly higher than in non-cancerous liver tissues in 5 of 10 samples (50%) (Figure 5A). We tested 226 samples from tumor tissues of patients with HCCs by immunohistochemistry. The median percentage of positive cells was 30% (range: 0-90.0%) and we divided patients into two groups of high expressers and low expressers based on the percentage of HSF1-positive cells using a cutoff level of 30%, representing the median value of HSF1. We found that 50.9% (115/226) of tumor samples showed high HSF1 expression. Typical examples of high HSF1 expression samples are shown in Figure 5B. The characteristics of patients in this analysis are shown in Table I. Significant differences were apparent between high and low HSF1 expression groups in terms of tumor size (P = 0.017), tumor node metastasis stage (P = 0.017), Barcelona Clinic Liver Cancer stage (P < 0.001), number of tumor nodules (P = 0.032) and histological grade (P = 0.010) (Table I), but no significant correlations were observed between HSF1 expression and other clinicopathological variables such as etiology or cirrhosis (Table I). Furthermore, patients with tumors showing HSF1 overexpression displayed significantly shorter overall survival (median: 75.2 months) compared with patients whose tumors showed HSF1 low expression (median: 136.0 months; P = 0.004, log-rank test) (Figure 5C). These findings suggest that overexpression of HSF1 was frequently observed in human HCCs, particularly in tumors exhibiting aggressive features.

To explore the pathological relationship between HSF1 and BAG3 in HCC samples, we performed immunohistochemical analysis for BAG3 in 226 HCC samples, which were also analyzed for HSF1 immunohistochemistry. The median percentage of positive cells was 25% (range: 0-85.0%) and we divided them into two groups-high expressers and low expressers—based on the percentage of BAG3-positive cells using a cutoff level of 25%, representing the median value of BAG3. Representative examples of immunohistochemical reactivity for BAG3 are shown in Figure 5B. Expressions of BAG3 protein were significantly increased in HCC specimens, whereas no or only low BAG3 expression was seen in adjacent non-cancerous tissue. BAG3 expression correlated significantly with histological grade (P = 0.014), and tumor size (P = 0.035), but no significant correlations were observed between BAG3 expression and other clinicopathological variables (Table I). Furthermore, a positive correlation between expressions of HSF1 and BAG3 was found in HCC (P < 0.05; Figure 5D) and patients with tumors showing BAG3 overexpression displayed significantly shorter overall survival (median: 84.0 months) compared with those patients whose tumors showed BAG3 low expression (median: 134.2 months; P = 0.015, log-rank test) (Figure 5E). Multivariate Cox regression

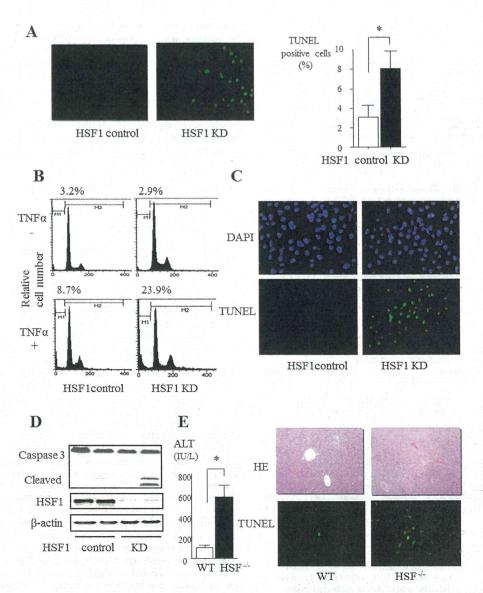


Fig. 3. Antiapoptotic effect of HSF1 in HCC cells and hepatocytes. (A) TUNEL staining was performed in tumors of HSF1 control and HSF1 KD cells from orthotopic implanted mice (left panel). TUNEL-positive cells were counted in tumors of HSF1 control and HSF1 KD cells. *P < 0.05. Bars: SEM (right panel). (B) Apoptotic cells were evaluated by FACS at 24h after incubation with TNF-α (30 ng/ml). Values indicate percentages of cells with sub- G_1 DNA content. Representative data are shown from three independent experiments. (C) TUNEL staining was performed in HSF1 control and KD cells after incubation with TNF-α. (D) Protein expressions of caspase 3, HSF1 and β-actin in TNF-α-treated HSF1 control and KD cells were determined by western blot analysis. (E) Serum ALT levels 7h after injection of WT and HSF1-/- mice with LPS (5 μg/kg) and GalN (500 mg/kg). *P < 0.05, compared with WT mice (left panel). HE and TUNEL stainings were performed in sections of livers obtained 7h after injecting LPS (5 μg/kg) and GalN (500 mg/kg) into WT and HSF1-/- mice (right panel). ALT, alanine aminotransferase; DAPI, 4′,6-diamidino-2-phenylindole; HE, hematoxylin and eosin.

analysis identified high HSF1 expression (hazard ratio: 2.07; P = 0.04) as an independent prognostic factor for overall survival (Table II).

Discussion

As a master regulator of the heat shock response, HSF1 enhances organism survival and longevity in the face of environmental challenges. However, HSF1 can also act to the detriment of organisms by supporting malignant transformation (34). As reported previously, loss of HSF1 negatively impacts tumorigenesis driven by p53 or Ras mutations (8,16). Since HSF1 does not act as a classic oncogene, the increased resistance to proteotoxic stress induced by HSF1 was suggested to support tumor initiation and growth by enabling cells to accommodate the genetic alterations that accumulate during malignancy (35). However, the specific mechanisms by which HSF1

may support the growth of tumors are not well understood. Here, we have demonstrated that HSF1 has detrimental effects on liver tumor growth. We also proposed that the antiapoptotic effect of HSF1 may play a role in HCC tumor growth.

To clarify the mechanisms underlying this effect, we investigated associations between HSF1 and the NF-κB signaling pathway. Although, in a previous study, heat shock blocked the degradation of IκB (36) and nuclear translocation of NF-κB, the recent literature has reported that the presence of constitutively active HSF1 does not block TNF-α-induced activation of the NF-κB pathway or expression of a set of NF-κB-dependent genes (37). The current study established HSF1 KD cells and showed that HSF1 was necessary for TNF-α-induced NF-κB activation. We analyzed the function of BAG3 as a candidate for the molecule connecting HSF1 with NF-κB activation. BAG3 has reportedly been characterized by the

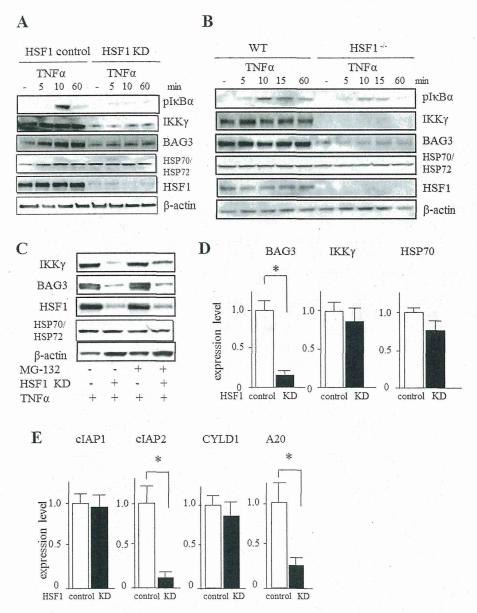


Fig. 4. HSF1 is involved in TNF- α -mediated NF- κ B activation. (A) HSF1 control and KD cells were treated with TNF- α (30 ng/ml), lysed at the indicated times, gel separated and immunoblotted with antibodies against the indicated proteins. (B) HSF1 WT and HSF- $^{\prime}$ - hepatocytes treated with TNF- α (30 ng/ml), lysed at the indicated times, gel separated and immunoblotted with antibodies against the indicated proteins. (C) HSF1 control and KD cells were treated with TNF- α (30 ng/ml) with or without MG-132, lysed at 24 h, gel separated and immunoblotted with antibodies against indicated proteins. (D) Relative mRNA levels for BAG3, IKK γ and HSP70 in HSF1 control and KD cells determined by real-time PCR. Data are expressed as mean \pm SEM. (E) Relative mRNA levels for antiapoptosis-related gene in HSF1 control and KD cells as determined by real-time PCR. Data are expressed as mean \pm SEM. (n = 4 per group). *P < 0.05. Bars: SEM. CYLD, cylindromatosis.

interaction with a variety of partners (Raf-1, steroid hormone receptors and HSP70) and is involved in regulating a number of cellular processes, particularly those associated with antiapoptosis (38). This molecule was expressed in response to stressful stimuli in a number of normal cell types and appears constitutively in a variety of tumors (33,39), and gene expression is regulated by HSF1 (40). In addition, knockdown of BAG3 protein decreased IKK γ levels, increasing tumor cell apoptosis and inhibiting tumor growth (33). Based on these considerations, we investigated whether attenuating HSF1 would enhance IKK γ protein expression, and data with MG-132 show that proteasomal degradation of IKK γ is enhanced in HSF1 KD cells. In addition, knowledge of the role BAG3 plays in preventing the proteasomal turnover of certain proteins suggests that the loss

of BAG3 in HSF1 KD cells may be responsible for the enhanced turnover of IKK γ in this setting.

NF- κ B activation is a master regulatory step in antiapoptosis. Several mechanisms have been reported regarding this antiapoptotic effect of NF- κ B activation (41). NF- κ B exerts its prosurvival activity primarily through the induction of target genes, the products of which inhibit components of the apoptotic machinery. These include Bcl- X_L and c-IAP (41), which binds directly to and inhibits the effect of caspases. This study showed that inactivation of NF- κ B promoted apoptotic effects against TNF- α in HSF1- $^{\prime}$ hepatocytes and HSF1 KD HCC cells. Real-time PCR analyses indicated that expression levels of apoptosis-related genes such as A20 and c-IAP2 were decreased by inhibition of NF- κ B activation, whereas apoptosis-related genes such

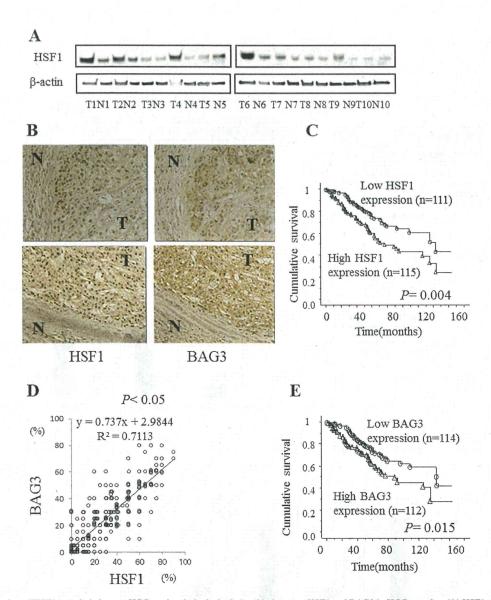


Fig. 5. Overexpression of HSF1 protein in human HCCs and pathological relationship between HSF1 and BAG3 in HCC samples. (A) HSF1 protein expression was determined in paired samples of human non-neoplastic liver and HCC by western blot, using β -actin as a control. N, non-cancerous liver; T, tumor. (B) Representative HSF1 and BAG3 staining of HCC and surrounding tissue. (C) Correlation of HSF1 overexpression with overall survival rates of patients. (D) Relationship between BAG3 and HSF1 expression in HCC. Scatterplot of BAG3 versus HSF1 with regression line displaying a correlation according to Spearman's correlation coefficient (P < 0.01). (E) Correlation of BAG3 overexpression with overall survival rates of patients.

as cIAP1 and cylindromatosis, which are known to be regulated by NF- κ B activation, were apparently unaffected. Whether gene expression regulated by NF- κ B activity differs between inducible and basal activation remains to be determined.

Regarding the relationship between HSF1 and HCC development, HSF1-deficient mice recently revealed dramatically reduced numbers and sizes of tumors compared with WT controls when tumors were induced by the chemical carcinogen, diethylnitrosamine. The same study suggested that the presence of extensive pathology associated with severe steatosis by diethylnitrosamine was prevented by HSF1 deletion and may be associated with reduced HCC development (42). On the other hand, ablation of IKK γ in liver parenchymal cells caused spontaneous development of HCC in mice, with tumor development preceded by steatohepatitis (43). Based on these observations, we assume that reductions in diethylnitrosamine-induced HCC development among HSF1-deficient mice may be associated with reduced expression of IKK γ , the reduction of which caused the steatosis.

BAG3 is a critical regulator of apoptosis in HSF1-deficient hepatocytes and HSF1 KD HCC cells. Moreover, the relationship between HSF1 and BAG3 has been shown not only in cell cultures and mouse models, but also in human HCC tissue samples; a correlation between HSF1 expression and BAG3 expression was found in HCC. Clinicopathological features and biological results provide a mechanistic link between HSF1 and HCC development via BAG3.

As for the ERK signal, a previous study demonstrated that impairment of JNK and ERK signaling in HSF1^{-/-} MEF cells was caused in part by the reduced expression of EGFR (33). We showed a slight decrease in expression of EGFR among HSF1-deficient hepatocytes and HSF1 KD cells. On the other hand, the level of reduced activation of ERK, as a downstream molecule of EGFR, was larger than expected. However, the detailed mechanisms by which HSF1 regulates MAPK need further investigation.

In conclusion, we found that HSF1 deficiency significantly diminished NF-κB and MAPK activation in HCC hepatocytes and

Table II. Multivariate analysis with a Cox proportional hazards regression model

Characteristic	Univariate analysis	Multivariate analysis	Hazard ratio (95% CI)	
Age (≥60 years)	0.22	0.15		
Gender (male)	0.92	0.53		
HCV status (positive)	0.28	0.82		
Cirrhosis (positive)	0.15	0.066		
Tumor size (≥50 mm)	<0.01*	0.011*	2.21 (1.18-4.12)	
No. of tumor nodule (multiple)	<0.01*	<0.01*	2.67 (1.38-5.62)	
Tumor differentiation (poor)	<0.01*	0.031*	2.34 (1.33-4.11)	
Capsular formation (absence)	0.18	0.36		
Vascular invasion (presence)	0.062	0.10		
TNM stage (III + IV versus I + II)	<0.01*	0.020*	2.35 (1.14-4.82)	
AFP (≥20 ng/ml)	0.18	0.36		
HSF1 expression (high)	0.018*	0.040*	2.07 (1.22-3.50)	
BAG3 expression (high)	0.043*	0.056		

AFP, alpha-fetoprotein; CI, confidence interval; HCV, hepatitis C virus; TNM, tumor node metastasis. *Significant P value.

HCC cells; accordingly, HSF1 deficiency inhibited the development of HCC. Furthermore, clinicopathological analysis demonstrated a significant correlation between HSF1 or BAG3 protein levels and prognosis. Our results demonstrate the importance of HSF1 in human HCCs and suggest inhibition of HSF1 as a novel strategy to target that subset of HCC patients in whom this protein is overexpressed.

Supplementary material

Supplementary Materials and methods, Table I and Figures 1 and 2 can be found at http://carcin.oxfordjournals.org/

Funding

Ministry of Education, Culture, Sports, Science and Technology, Japan (to N.S.); Japan Society for the Promotion of Science (24390185, 24659359); Ministry of Health, Labour and Welfare Japan; Japan Health Sciences Foundation; grants-in-aid for scientific research (22300317) and Uehara Memorial Foundation (to S.M.).

Conflict of Interest Statement: None declared.

References

- El-Serag,H.B. (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 142, 1264–1273.e1.
- Cheng, A.L. et al. (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. *Lancet Oncol.*, 10, 25–34.
- Breuhahn, K. et al. (2011) Strategies for hepatocellular carcinoma therapy and diagnostics: lessons learned from high throughput and profiling approaches. Hepatology, 53, 2112–2121.
- 4. Pirkkala, L. et al. (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J., 15, 1118-1131
- 5. Sorger, P.K. (1991) Heat shock factor and the heat shock response. *Cell*, **65**, 363–366.
- Guertin, M.J. et al. (2010) Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genet., 6, e1001114.
- 7. Mendillo, M.L. *et al.* (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. *Cell*, **150**, 549, 562
- Page, T.J. et al. (2006) Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol. Biosyst., 2, 627–639.
- Dai, C. et al. (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell, 130, 1005–1018.
- Hayashida, N. et al. (2006) A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J., 25, 4773-4783.

- 11. Jacobs, A. T. et al. (2007) Heat shock factor 1 attenuates 4-hydroxynonenal-mediated apoptosis: critical role for heat shock protein 70 induction and stabilization of Bcl-XL. J. Biol. Chem., 282, 33412–33420.
- Vydra, N. et al. (2006) Spermatocyte-specific expression of constitutively active heat shock factor 1 induces HSP70i-resistant apoptosis in male germ cells. Cell Death Differ., 13, 212–222.
- 13. Neckers, L. et al. (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res., 18, 64–76.
- 14. Khalil, A.A. et al. (2011) Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim. Biophys. Acta, 1816, 89–104.
- Chuma, M. et al. (2003) Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology, 37, 198–207.
- 16. Cai, L. et al. (2003) The tumor-selective over-expression of the human Hsp70 gene is attributed to the aberrant controls at both initiation and elongation levels of transcription. Cell Res., 13, 93–109.
- 17. Min, J.N. et al. (2007) Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene, 26, 5086-5097.
- Santagata, S. et al. (2011) High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc. Natl Acad. Sci. USA, 108, 18378–18383.
- Dudeja, V. et al. (2011) Prosurvival role of heat shock factor 1 in the pathogenesis of pancreatobiliary tumors. Am. J. Physiol. Gastrointest. Liver Physiol., 300, G948–G955.
- 20. Hoang, A.T. et al. (2000) A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am. J. Pathol., 156, 857-864.
- Ishiwata, J. et al. (2012) State of heat shock factor 1 expression as a putative diagnostic marker for oral squamous cell carcinoma. Int. J. Oncol., 40, 47–52.
- Kojiro, M. et al. (2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology, 49, 658-664.
- Fabregat, I. et al. (2007) Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int., 27, 155–162.
- 24. Nakagawa, H. et al. (2011) Apoptosis signal-regulating kinase 1 inhibits hepatocarcinogenesis by controlling the tumor-suppressing function of stress-activated mitogen-activated protein kinase. Hepatology, 54, 185–195.
- Sun,B. et al. (2008) NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene, 27, 6228–6244.
- Maeda, S. et al. (2005) IKKbeta couples hepatocyte death to cytokinedriven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell, 121, 977–990.
- 27. Beeram, M. et al. (2005) Raf: a strategic target for therapeutic development against cancer. J. Clin. Oncol., 23, 6771–6790.
- 28. Whittaker, S. et al. (2010) The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 29, 4989–5005.
- 29. Inouye, S. et al. (2003) Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol. Cell. Biol., 23, 5882–5895.
- Chuma, M. et al. (2004) Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma. J. Hepatol., 41, 629–636.
- O'Callaghan-Sunol, C. et al. (2006) Heat shock transcription factor (HSF1) plays a critical role in cell migration via maintaining MAP kinase signaling. Cell Cycle, 5, 1431–1437.

- 32. Nowak, M. et al. (2000) LPS-induced liver injury in D-galactosaminesensitized mice requires secreted TNF-alpha and the TNF-p55 receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol., 278, R1202-R1209.
- 33. Ammirante, M. et al. (2010) IKK {gamma} protein is a target of BAG3 regulatory activity in human tumor growth. Proc. Natl Acad. Sci. USA, 107,
- 34. Meng, L. et al. (2010) Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. *Oncogene*, **29**, 5204–5213.
- 35. Solimini, N.L. et al. (2007) Non-oncogene addiction and the stress phenotype of cancer cells. Cell, 130, 986–988.

 36. Malhotra, V. et al. (2002) Heat shock inhibits activation of NF-kappaB in
- the absence of heat shock factor-1. Biochem. Biophys. Res. Commun., 291, 453-457.
- 37. Janus, P. et al. (2011) NF-κB signaling pathway is inhibited by heat shock independently of active transcription factor HSF1 and increased levels of inducible heat shock proteins. Genes Cells, 16, 1168-1175.

- 38. Rosati, A. et al. (2011) BAG3: a multifaceted protein that regulates major cell pathways. Cell Death Dis., 2, e141.
- 39. Homma, S. et al. (2006) BAG3 deficiency results in fulminant myopathy
- and early lethality. Am. J. Pathol., 169, 761–773.

 40. Franceschelli, S. et al. (2008) Bag3 gene expression is regulated by heat shock factor 1. J. Cell. Physiol., 215, 575–577.
- Luo, J.L. et al. (2005) IKK/NF-kappaB signaling: balancing life and death– a new approach to cancer therapy. J. Clin. Invest., 115, 2625–2632.
- 42. Jin, X. et al. (2011) Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab., 14, 91-103.
- 43. Luedde, T. et al. (2007) Deletion of NEMO/IKK gamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell, 11, 119-132.

Received December 4, 2012; revised August 22, 2013; accepted August 28, 2013

VIRAL IMMUNOLOGY Volume 27, Number 6, 2014 © Mary Ann Liebert, Inc. Pp. 285–294 DOI: 10.1089/vim.2013.0140

The J6JFH1 Strain of Hepatitis C Virus Infects Human B-Cells with Low Replication Efficacy

Masato Nakai,^{1,2} Tsukasa Seya, Misako Matsumoto, Kunitada Shimotohno, Naoya Sakamoto, and Hussein H. Aly^{1,*}

Abstract

Hepatitis C virus (HCV) infection is a serious health problem worldwide that can lead to hepatocellular carcinoma or end-stage liver disease. Current treatment with pegylated interferon, ribavirin, and NS3/4A protease inhibitor would lead to a good prognosis in a large population of patients, but there is still no effective vaccine for HCV. HCV robustly infects hepatocytes in the liver. However, extrahepatic manifestations such as mixed cryoglobulinemia, a systemic immune complex-mediated disorder characterized by B-cell proliferation, which may evolve into overt B-cell non-Hodgkin's lymphoma, have been demonstrated. HCV-RNA is often found to be associated with peripheral blood lymphocytes, suggesting a possible interaction with peripheral blood mononuclear cells (PBMCs), especially B-cells with HCV. B-cell HCV infection was a matter of debate for a long time, and the new advance in HCV in vitro infectious systems suggest that exosome can transmit HCV genome to support "infection." We aimed to clarify the susceptibility of primary B-cells to HCV infection, and to study its functional effect. In this article, we found that the recombinant HCV J6JFH1 strain could infect human B-cells isolated from the peripheral blood of normal volunteers by the detection of both HCV-negative-strand RNA by reverse transcription polymerase chain reaction, and NS5A protein. We also show the blocking of HCV replication by type I interferon after B-cell HCV infection. Although HCV replication in B-lymphocytes showed lower efficiency, in comparison with hepatocyte line (Huh7) cells, our results clearly demonstrate that human Blymphocytes without other non-B-cells can actually be infected with HCV, and that this interaction leads to the induction of B-cells' innate immune response, and change the response of these cells to apoptosis.

Introduction

CHRONIC INFECTION BY HEPATITIS C VIRUS (HCV) is the major cause of liver cirrhosis and hepatocellular carcinoma. About 3.1% of the global population is infected with HCV (50). Historically, a combination therapy with pegylated interferon (IFN) and ribavirin was used for patients infected with genotype 1 HCV. NS3/4A protease inhibitors were recently developed in addition to pegylated IFN and ribavirin, and their combinations have been clinically tried for HCV treatment since then. Although >70% of patients with high viral loads of HCV genotype 1b have a sustained viral response by the therapy using simeprevir or telaplevir with pegylated IFN and ribavirin (17,22), the remaining patients fail to eliminate the virus, and drug resistance remains an issue that must be resolved. Recent development of directacting antiviral (DAA) drugs (such as daclatasvir, asuna-

previr, and sofosbuvir) are a promising therapeutic option beyond IFN in the treatment of HCV patients (6,32).

HCV is a single-stranded, positive-sense RNA virus in the Hepacivirus genus of the Flaviviridae family. Although HCV is known to infect hepatocytes in the liver and induce hepatitis *in vivo*, *in vitro* cultured primary hepatocytes barely support the HCV life cycle: only hepatoma Huh7 cells and its subclones can efficiently maintain the HCV life cycle of a very limited number of HCV strains *in vitro* (53).

Chronic hepatitis patients with HCV sometimes show other extrahepatic complications such as lymphoproliferative diseases (LPD), including cryoglobulinemia and B-cell malignant lymphoma, autoimmune diseases, and dermatitis (1,12,15,16). Epidemiological analysis shows that chronic HCV patients have higher rates of LPDs than non-HCV-infected populations (36,48,52). Several reports suggested that some lymphotropic HCV strains effectively infected human

Departments of ¹Microbiology and Immunology, and ²Gastroenterology, Hokkaido University Graduate School of Medicine, Kita-ku, Ianan

^{*}Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan.
*Present affiliation: Department of Virology II, National Institute of Infectious Diseases, Toyama, Tokyo, Japan.

286 NAKAI ET AL.

lymphocytes (20,47), leading to the above-mentioned abnormalities. Infection of lymphocytes with HCV has been a matter of debate for a long time. More than one decade ago, several reports described the existence of HCV-RNA in peripheral blood mononucleated cells (PBMCs) (30,40). The detection rate of HCV-RNA in PBMCs was increased if patients were infected with human immunodeficiency virus (HIV) together with HCV (44). This phenomenon indicated that immune-suppressive circumstances and/or HIV antigen might enhance the replication activity of HCV in lymphoid cells (44). Moreover, it was reported that continuous release of HCV by PBMCs was detected in HCV-infected patients, especially in HIV co-infected patients (7). In addition to HCV-HIV co-infected patients, a low level of HCV replication could be detected in peripheral lymphoid cells from HCV mono-infected patients after antiviral treatment (34,45). Moreover, it was reported that HCV persisting at low levels long after therapy-induced resolution of chronic hepatitis C remained infectious (34). This continuous viral presence could present a risk of infection reactivation.

It has been reported that HCV replication was detected in various kinds of lymphoid cells. Many reports describing the existence of HCV in B-lymphocytes and B-cell lymphoma have been published (21,25,51). Among B-lymphocytes, CD27+ memory B-lymphocytes were more resistant to apoptosis than CD27 - B-lymphocytes. CD27 + B-lymphocytes were reported as a candidate subset of the HCV reservoir in chronic hepatitis C (CH-C) (38). On the other hand, others claimed that distinguishing RNA association from true HCV replication was problematic, together with multiple artifacts complicated detection and quantitation of the replicative intermediate minus strand RNA (29,31), and also the failure of retroviral (37) and lentiviral (8) pseudoparticles bearing HCV envelope glycoproteins (HCVpp) to infect primary Bcells or B-cell lines. This led to continuous debate about HCV infection into B-lymphocytes, and the riddle remained

Using the recent progress in HCV infection systems, we intended to clarify this debate and analyze HCV infection in human lymphocytes and its functional results. Here, albeit in a lower efficiency compared to HCV infection into Huh7 cells, we report that two different strains of recombinant HCV viruses could infect primary human lymphocytes not only by the detection of HCV-RNA positive and negative strands proliferation, but also NS5A protein detection, and the detection of the activity of luciferase reporter encoded by the recombinant HCV-genome. Blocking of HCV entry using anti-CD81 antibody (Ab), and replication by IFN-α or NS3/4A protease inhibitors successfully suppressed HCV infection. We also found that HCV infection into B-lymphocytes led to the initiation of host response including apoptosis resistance.

Materials and Methods

Cells and reagents

Huh7.5.1 cells were kindly provided by Dr. Francis V Chisari (The Scripps Research Institute, La Jolla, CA). Cells were cultured in high-glucose Dulbecco's modified Eagle's medium (DMEM; Gibco/Invitrogen, Tokyo, Japan) supplemented with 2 mM L-Glutamine, 100 U of penicillin/mL, 100 µg of streptomycin/mL, 1 × MEM non-essential amino acid (Gibco/Invitrogen), and 10% fetal bovine serum (FBS).

Human peripheral blood mononuclear cells (PBMCs) were obtained from healthy volunteers by density gradient centrifugation using Ficoll Paque plus (GE-Healthcare, Waukesha, WI). CD19+ blood cells (representative of human primary B-cells) and CD19- cells (non-B-cells) were separated by MACS CD19 Beads (Milteny Biotec, Bergisch Gladbach, Germany). Purity of CD19+ B-cells was >95% after two-cycle separation. The cells were cultured in RPMI1640 (Gibco/Invitrogen) supplemented with 100 U of penicillin/mL, 100 μg of streptomycin/mL, and 10% FBS.

The following reagents were obtained as indicated: anti-CD81 Ab (BD Pharmingen, Franklin Lakes, NJ); PE anti-CD80 Ab, APC anti-CD86 Ab, and PE-labeled anti-CD19 Ab (eBioscience, San Diego, CA); recombinant IFN-α (Peprotech, Oak Park, CA); BILN2601 (Behringer, Willich, Germany); and Viaprobe 7AAD (BD Bioscience) and Annexin-V-Fluos (Roche, Mannheim, Germany).

Virus propagation

pJ6-N2X-JFH1 was kindly provided from Dr. Takaji Wakita (National Institute of Infectious Diseases, Tokyo) (2). pJc1-GLuc2A was gifted from Dr. Brett D. Lindenbach (Yale University, New Haven) (41). In vitro RNA transcription, gene transfection into Huh7.5.1 cells, and preparation of J6JFH1 and Jc1/GLuc2A viruses were performed as previously reported (53). Briefly, the HCV cDNA in plasmids were digested by XBaI and transcribed by T7 Megascript Kit (Invitrogen, Carlsbad, CA). RNA transfection into Huh7.5.1 was performed by electroporation using Gene Pulser II (Bio-Rad, Berkeley, CA) at 260 V and 950 Cap. Culture supernatant were collected on days 3, 5, 7, and 9 of postelectroporation, and concentrated with an Amicon Ultra-15 Centrifugal Filter unit (Millipore, Billerica, MA). The titer of HCVcc was checked by the immunofluoresence method using NS5A antibody when Huh7.5.1 was reinfected with these HCVcc.

Virus infection

Primary B-cells and non-B-cells were cultured with the J6JFH1 HCV strain at a multiplicity of infection (MOI)=1–3 for 3 h, and cells were harvested after four extensive washes in culture medium. On days 1–6, cells were collected, washed with 0.25% trypsin-EDTA/saline, and incubated with 0.25% trypsin-EDTA for 5 min at 37°C. Then, suspended cells were collected as a source of total RNA. In some experiments, B-cells were infected with the Jc1/GLuc2A strain at MOI=5 for 3 h. Cells were washed five times in $1\times$ phosphate buffered saline (PBS), and cultured until day 6 for determination of viral replication as GLuc activity with BioLux Gaussia luciferase assay kits (41).

RNA purification, RT-PCR, and quantitative PCR

Total RNA was extracted by using Trizol Reagent (Invitrogen) according to the manufacturer's instructions. Using 100–400 ng of total RNA as a template, we performed RT-PCR and real-time RT-PCR as previously described (3,4). Primer sets are shown in Supplementary Table S1 and Table S2 (Supplementary Data are available online at www.lie bertpub.com/vim).

Real-time PCR was used for quantification of positivestrand and negative-strand HCV RNA. Total Trizol-extracted RNA was analyzed by RT-PCR with a modification of the previously described strand-specific rTth RT-PCR method (10,13). RT primers for complementary DNA synthesis of positive and negative strand HCV RNA are shown in Supplementary Table S1. Positive-strand and negative-strand HCV PCR amplifications were performed using Power SYBR Green PCR Master Mix (Applied Biosystems, Warrington, UK) with 200 nM of paired primers (Supplementary Table S1). The PCR conditions were 95°C for 10 min, followed by 40 cycles at 95°C for 15 sec and 60°C for 1 min.

Virus production and releasing assay

Primary human B-cells were infected with J6JFH1 at MOI=1. Six days postinfection, the supernatant was collected ("releasing samples"), cells were repeatedly frozen and thawed, and the supernatant was collected ("assembly samples"). Viral titers of "releasing samples" and "assembly samples" were determined with Huh7.5.1 cells using J6JFH1 virus (MOI=0.001 and 0.01) as control. Total RNA was recovered from the cells on days 2, 4, and 6, and determined with HCV-RNA to check reinfectivity.

Indirect immunofluorescence

Indirect immunofluorescence (IF) expression of HCV proteins was detected in the infected cells using rabbit IgG anti-NS5A antibody (Cl-1) (3). Goat anti-rabbit Alexa 594 (Invitrogen) was used as secondary Ab. Fluorescence detection was performed on the Zeiss LSM 510 Meta confocal microscope (Zeiss, Jena, Germany) (13).

Luciferase assay

Primary B-cells were infected with Jc1/Gluc2A by using concentrated Medium or Mock Medium (PBS-electropolated Huh7.5.1 medium). Media were collected on days 0, 2, 4, and 6 postinfection, cleared by centrifugation (16,000 g for 5 min), and mixed with 0.25 volume of Renilla 5 lysis buffer (Promega, Madison, WI) to kill HCV infectivity. GLuc activity was measured on a Berthold Centro LB 960 luminescent plate reader (Berthold Technologies, Bad Wildbad, Germany) with each 20 μ L sample injected with 50 μ L BilLux Gaussia Luciferase Assay reagent (New England Biolabs, Ipswich, MA), integrated over 1 sec.

Cell survival assay

Apoptosis assay: Primary B cells were infected with J6JFH1 virus. Cells were collected 48 h after infection, stained by 7AAD Cell Viability assay kit and Annexin V, and analyzed by FACS Calibur (BD) (13).

ATP assay

Primary B-cells were infected with J6JFH1 virus or Mock concentrated medium. Cells were resuspended and cultured at Lumine plate (Berthold Technologies) postinfection. ATP activities were determined 72h later using CellTiter-Glo[®] Luminescent Cell Viability Assay (Promega) according to the manufacturer's protocol.

miRNA detection

Total RNA was extracted by using Qiazol Reagent (Invitrogen). These RNA was purificated and reverse transcripted

to cDNA by using the miScript II RT Kit. Synthesized cDNA was used to determine the expression levels of miR-122 (24). Total miRNA was prepared by using Qiazol and miScript II RT kit (Invitrogen), and miR-122 expression was determined by using miScript SYBR Green PCR Kit and miScript Primer Assay (Invitrogen) according to the manufacturer's protocol. U6 small nuclear RNA was used as an internal control.

Results

J6JFH1 infects and replicates in primary B-cells

To address HCV infectivity into primary B-cells, PBMC were isolated from the blood of healthy volunteers and were sorted into CD19+ cells (primary B-lymphocytes) and CD19- cells (non-B-cells). Their purities were >95%. These cells were then incubated with the J6JFH1 HCV. Total RNA was collected on days 2, 4, and 6. The Huh7.5.1 strain was used as positive control. Both Huh7.5.1 and primary Bcells, but not non-B-cells, showed an increase in intracellular HCV-RNA titer, albeit primary B-cells showed lower efficiency than Huh7.5.1 (Fig. 1A). We adjusted the HCV-RNA values using GAPDH as an internal control (Fig. 1B). To confirm J6JFH1 replication in primary B-cells using IF, we also measured the expression of HCV-NS5A, which is a nonstructural protein produced only by the virus secondary to replication. Although the expression was far lower than Huh7.5.1 cells, we managed to detect the NS5A expression in J6JFH1 infected primary B-cells (Fig. 1C).

We examined what kinds of HCV-entry receptors human primary B-cells expressed in our setting. Human CD81, SRB1, and NPC1L1 were expressed, but not the tight junction proteins claudin1 and occludin in mRNA levels (Supplementary Fig. S1). We could not detect miR122 in primary B-cells (Supplementary Fig. S2), expression of which makes the cells permissive to HCV (24). Human CD81 is a primary entry receptor for HCV in hepatocytes (42). Blocking human CD81 by its specific Ab resulted in blockage of HCV infection into primary B-cells, as shown by the suppression of HCV-RNA titer (Fig. 2), suggesting that HCVcc particles enter B-cells also using CD81 receptor. HCV-RNA titer was not suppressed by non-specific Ab (data not shown).

We then examined the effect of the different drugs used to suppress HCV replication (recombinant human IFN, and HCV protease inhibitor, BILN2601). Inhibition of HCV-RNA replication was observed when B-cells were treated with rhIFN-α or BILN2601 (Fig. 2) after infection. BILN2601 showed efficient inhibitory effect on replication of HCV RNA in Huh7.5.1 cells (Supplementary Fig. S3). As control studies, we confirmed that the production of HCV RNA was reduced in Huh7.5.1 cells by CD81 Ab, IFN-α, or BLIN2601 (Supplementary Fig. S4). In both Huh 7.5.1 and B-cells, BLIN2601 most effectively block HCV replication. These data reinforce that HCV is actually replicating in primary B-cells, and that activation of innate immunity by IFN treatment or blocking the NS3/4A protease function is a critical factor in blocking HCV replication in primary B-cells. These data suggest that our system can be used for screening the function of different inhibitors on HCV replication in B-cells.

HCV negative-strand RNA detected in human B-cells

To confirm HCV replication in primary B-cells further, we tested for an increase of negative-strand HCV-RNA after

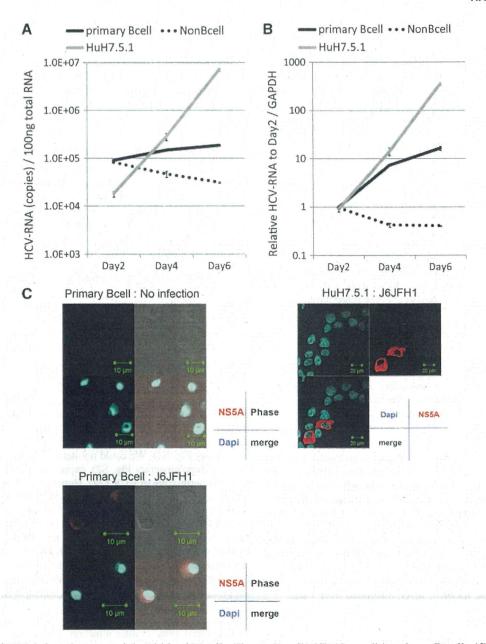
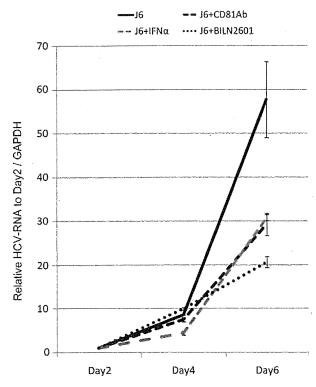



FIG. 1. J6JFH1 infects human peripheral blood B-cells. Human B-cells (CD19+ cells) and non-B-cells (CD19- cells) were separated by MACS as described in Materials and Methods. Primary B-cells, non-B-cells, and Huh7.5.1 cells were infected with J6JFH1 at MOI=1 for 3 h. After infection, cells were washed twice with culture medium and continued culture. On days 2, 4, and 6, total RNA was collected and HCV-derived RNA was determined by reverse transcription polymerase chain reaction (RT-PCR). GAPDH was used as internal control. (A) HCV-RNA not adjusted by GAPDH. (B) HCV-RNA adjusted by GAPDH. (C) Immunofluorescence analysis of J6JFH1-infected human B-cells and Huh7.5.1 cells. Six days postinfection. Red, NS5A; blue: Dapi; phase: phase-shift microscope.

infection, since the negative-strand RNA is not yielded if HCV particles or RNA just adhere to the cell surface of human primary B-cells without internalization (9,14,19,35, 42,43). We measured the synthesis of plus-strand and minus-strand HCV-RNA separately using strand-specific RT primers and rTth polymerase as previously described (4). The titer increase of minus-strand HCV-RNA indicates HCV-RNA replication. As shown in Figure 3, both minus-

and plus-strand HCV-RNA increased time dependently in primary B-cells, and both types of RNA concomitantly decreased in non-B-cells (Fig. 3A and B). Plus- and minus-strand RNA were exponentially increased in Huh7.5.1 cells infected with J6JFH1 (Fig. 3C). These results indicated that primary human B-cells supported J6JFH1 infection and replication, although viral replication levels in B-cells were modest compared with those in Huh7.5.1 cells. These results

FIG. 2. J6JFH1 B-cell infection is blocked by anti-CD81 Ab, IFN-α, or an NS3/4A inhibitor. Anti-CD81 neutralizing Ab (20 μ g/mL) was added to the B-cell culture 1 h before infection. Otherwise, recombinant IFN-α rhIFN-α, 200 IU/mL) or BLIN2601 (250 nM, which is IC75; see Supplementary Fig. S3) was added 1 h after infection. On days 2, 4, and 6, total RNA was extracted, and HCV-RNA was determined by RT-PCR. The values were adjusted by GAPDH.

may reflect the fact that the NS5A protein is difficult to detect in infected B-cells using IF assay.

B-cells can be infected with different HCV strains

We next used the Jc1/GLuc2A strain to investigate whether different HCV strains infect primary B-cells. Primary B-cells, non-B-cells (data not shown), and Huh7.5.1 cells were infected with the Jc1/GLuc2A strain. After five washes, supernatant was collected (day 0 samples). On days 2, 4, and 6, medium was collected. Luciferase activity was determined for all samples by luminescence (GLuc). GLuc activity and detection of RNA increased exponentially in Huh7.5.1 cells infected with the Jc1/GLuc2A strain (Fig. 4A). GLuc activity on day 4 to day 6 increased more in primary B-cells than in non-B-cells (Fig. 4B). These results suggest that HCV replication is substantial, but low in the HCV line Jc1/GLuc2A.

B-cells neither produce nor release detectable level of HCV infectious particles

We collected supernatants of J6JFH1-infected primary human B-cells to measure productive infection in B-cells. The supernatant was then added to culture of Huh7.5.1 cells, and we compared infection with control Huh7.5.1 cells, whose

cells were infected with a low MOI (0.01 and 0.001) of J6JFH1 collected from media of the infected Huh7.5.1 cells. HCV-RNA titer in the Huh7.5.1 titrating cells was decreased over time after co-culture with B-cell supernatants obtained from either "releasing samples" "assembly samples." In contrast, HCV-RNA titers were slightly increased over time in the Huh7.5.1 titrating cells that had been infected with medium collected from low MOI-J6JFH1-infected Huh7.5.1 cells (Fig. 5). These results indicated that primary human B-cells were infected with J6JFH1 but failed to assemble or produce particles into the supernatant.

Host response to HCV infection into primary B-cells

Next, we determined whether B-cell activation was induced in HCV-infected B-cells that survived under HCV infection. We measured induction of CD80 and CD86 as B-cell activation markers. After 2–3 days of infection, the CD80/86 levels on B-cells treated with J6JFH1 were compared with those treated with medium from mock-infected cells (concentrated Huh7.5.1 medium) by FACS analysis (Fig. 6A). We found that CD80/86 were upregulated in infected cells compared to mock-infected cells.

Since B-cell lymphoma is a known complication of chronic HCV infection (20,36) and acquiring apoptotic resistance is essential for the development of cancer (21,51,38), we measured the ability of B-cells to escape apoptosis after HCV infection. B-cell apoptosis spontaneously occurs during culture at 37°C. The percent of apoptosis of primary B-cells was decreased in FACS analysis using 7AAD viaprobe + annexinV (Fig. 6B) and ATP assays postinfection (Fig. 6C). These results suggest that primary B-cells are protected from apoptosis by infection with HCVcc. It has been reported that B-cells were vulnerable to apoptotic cell death at various stages of peripheral differentiation and during signal responses (18). Thus, the results infer that HCV stimulation interferes with B-cell apoptotic signal in human B-cells.

Discussion

We show evidence suggesting that human peripheral B-cells can be infected with HCV strains. Establishment of J6JFH1 infection was evaluated by minus-strand PCR amplification, production of core and NS5A proteins, and protection from apoptosis. An increase in HCV RNA in B-cells was inhibited by an exogenously added antibody against CD81 that blocked HCV receptor function. Furthermore, blocking HCV replication in B-cells by type I IFN and NS3/4A protease inhibitor confirmed the presence of HCV infection/replication in human B-cells. The results were corroborated with another HCV strain, Jc1/GLuc2A. Although we failed to establish an EBV-transformed B-cell line to reproduce HCV infection of B-cells, peripheral blood B-cells were infected with J6JFH1 in 12 independent experiments.

One of the well-known complications of chronic HCV infection is LPD, including cryoglobulinemia and B-cell malignant lymphoma, indicating the involvement of B-cells in the course of the disease (1,12,15,16). However, many reports describing the existence of the HCV genome in B-cells and lymphomas (21,25,51) and HCV replication in B-cells have been controversial due to multiple artifacts complicated in detection and quantitation of the replicative

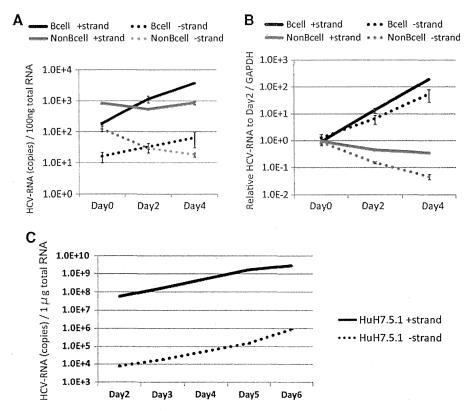


FIG. 3. HCV negative strand RNA is detected in human B-cells. By using rTth methods, HCV strand-specific RNA was determined in J6JFH1-infected human B-cells. (A) Not only plus strand HCV-RNA but also minus strand HCV-RNA were increased in a time-dependent manner in human B-cells. (B) When HCV-RNA was adjusted by GAPDH that was used as an internal control, HCV-RNAs in B-cells were substantially increased compared with those in non-B-cells. (C) Plus and minus strand HCV-RNAs were efficiently amplified in J6JFH1-infected Huh 7.5.1 cells. The level of HCV-RNA exponentially increased in this hepatocyte line.

intermediate minus strand RNA (29,31). This has led to a continuous debate about HCV infection in B-lymphocytes.

HCV entry into B-cells has also been previously reported to be absent because retroviral (37) and lentiviral (8) pseudoparticles bearing HCV envelope glycoproteins (HCVpp) did not infect primary B-cells or B-cell lines. In our study, while we succeeded in infecting Huh7.5.1 cells efficiently with retroviral pseudoparticles for expressing both HCV E1/E2 and the control VSV-G, we failed to establish the same infection in B-cells, suggesting that the block of pseudoparticle entry into B-cells is not related to HCV glycoproteins alone.

Total PBMCs reportedly facilitate HCV attachment but not internalization (42), so HCV infection of B-cells is abrogated in total PBMCs (35). The cause of HCV absorption is unclear, but incomplete sets of HCV receptors in non-B PBMC cells permit attachment of HCV without internalization. B-cells possess CD81, SRBI, LDL-R, and NPC1L1. Because B-cells are not adherent cells, they do not express claudin 1 and occludin, which forms a receptor complex for HCV (9,14,19,43). Claudin 1 and occludin are components of tight junctions and serve as HCV receptors in human hepatocytes. In infection studies using cells expressing these proteins, however, claudin 1 and occludin only upgrade infection efficacy and are dispensable to infection (5), al-

though CD81 is essential for establishment of infection (42). Lack of claudin 1 and occludin or miR122 might be a cause of the low HCV infection efficiency observed in human B-cells. Function blocking of CD81 by its specific antibody suppressed HCV infection in primary B-lymphocytes, which imply that HCV entry into primary B-lymphocyte is dependent on the direct interaction phenomenon between HCV virus particles and CD81 receptor and is not mediated by other nonspecific (CD81 independent) pathways such as exosomal transfer of HCV from Huh7 cells to nonhepatic cells, such as dendritic cells (46).

Previous report using *in vitro* prepared recombinant HCV JFH1 particles (HCVcc) failed to establish HCV infection in B-lymphocyte cell lines (39). While HCV is known to infect human hepatocytes *in vivo* leading to chronic viral hepatitis, in the *in vitro* conditions, only the combination between Huh7 cells and its derived clones supported robust replication and infection with only JFH1 or its derived chimeras (5). Neither hepatocyte cell lines including primary hepatocytes nor other HCV strains could reproduce HCV infection efficiently *in vitro* (5). These data suggest that the clonal selection of HCV quasispecies by hepatoma Huh7 cells is essential for this robust infection *in vitro*. The situation would be similar to the JFH1 story in B-cell HCV infection.

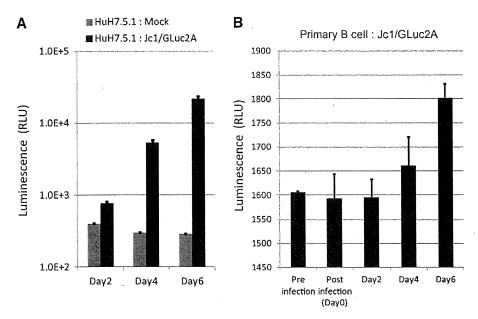


FIG. 4. Jc1/GLuc2A strain infects human B-cells with an increase of Gluc activity. Human B-cells and Huh7.5.1 cells were infected with the JC1/GLuc2A strain that contains secretory luciferase derived from *Gaussia* (GLuc) at MOI=5. Huh7.5.1 cells were used as control. GLuc activity was increased as time cultured. The GLuc activity was saturated in Huh7.5.1 (A). On the other hand, GLuc activity was increased from day 4 in human B-cells (B).

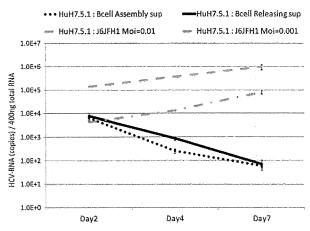
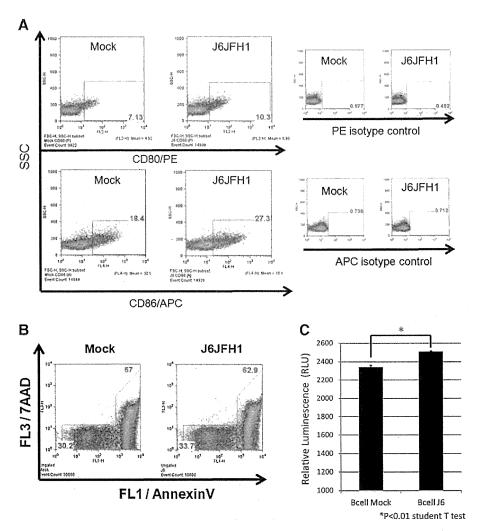



FIG. 5. B-cells infected with J6JFH1 fail to produce virus particles. Human B-cells were infected with J6JFH1 for 3 h, washed twice with phosphate buffered saline (PBS), and cultured. Six days after infection, the supernatant was collected ("releasing samples"). Cells were periodically frozen and thawed five times, and the supernatant was collected ("assembly samples"). For evaluation of the infectious virions, Huh7.5.1 cells were treated with these "releasing samples" or "assembly samples." Similarly, Huh7.5.1 cells were treated with J6JFH1 at low MOI (MOI=0.01 and 0.001) in parallel. After the treatment, cells were washed and cultured. On days 2, 4, and 7, cells were harvested to collect HCV-RNA. Total RNA was extracted from each samples, and HCV-RNA was determined by RT-PCR methods.

B-cell apoptosis spontaneously occurs during culture at 37°C. We found that B-cell apoptosis was blocked by J6JFH1 infection, as reported previously using Raji cells (11). B-cell apoptosis usually occurs secondary to viral infection, but HCV is particular since apoptotic signaling interferes with infection, leading to protection from cell death. However, B-cell survival was not due to primary infection, because the percent of cells circumventing apoptosis was usually higher than cells infected with HCV. We could not define the pathways that participated in apoptosis regulation by HCV, although a previous report (11) suggested that E2-CD81 engagement was related to B-lymphocyte disorders and weak neutralizing antibody response in HCV patients. Since B-cell lymphoma is a known complication of chronic HCV infection (27), the inability of infected cells to undergo apoptosis can be associated with the development of cancer (28,33,49). In this context, B-cell lymphoma often occurs in mice with Cre-initiated HCV transgenes (26). It is notable that anti-apoptotic effect of HCV core gene was reported in genotype 3a in Huh7 cells (23) and, here, genotype 2a in B-cells. In another report (51), HCV strains established from B-cell lymphoma persistently infected with HCV were genotype 2b. B-cell HCV infection might not be linked to some specific genotypes of HCV.

We believe that our report shows that human primary B-cells can be infected *in vitro* with HCV, and that this infection is dependent on HCV particles binding with its receptor CD81 and is not nonspecific entry (e.g., exosomal mediated). We also show that this infection could be blocked with antibodies interfering with this binding, or with drugs that suppress HCV replication. Although no virion was generated from B-cells in HCV infection, it is still likely that B-cells serve as a temporal reservoir of HCV in the blood circulation. If B-cells permit HCV infection, RNA sensors

FIG. 6. J6JFH1 infection activates B-cells and protects the cells from apoptosis. Human B-cells were infected with J6JFH1 at MOI=1 for 3 h, washed twice with PBS, and cultured. Two days after inoculation, cells were washed and suspended with FACS buffer. (**A**) The cells were incubated with PE-conjugated anti-human CD80 antibody, APC-conjugated CD86 antibody, or PE/APC-conjugated mouse IgG1 isotype control for 30 min. Then, the cells were washed and resuspended in FACS buffer. Cells were analyzed by FACS. (**B**) Annexin V and 7AAD viaprobe were added and cultured at 18°C for 10 min. Then, cells were analyzed by FACS. (**C**) 2×10^5 human B-cells were infected with J6JFH1- or Mock-concentrated medium for 3 h. Cells were then washed, resuspended, and cultured in a 96-well white microwell plate. Two days later, ATP activity was determined with a CellTiter-Glo® Luminescent Cell Viability Assay Kit (Promega). ATP activity was adjusted by day 0 ATP activity.

RIG-I and MDA5 in B-cells might recognize HCV RNA and evoke intracellular signaling, including by transcription factors NF- κ B and IRF-3/7 (5). Activation of the cytokine network is triggered in human B-cells in response to HCV RNA. In fact, host factors liberated by HCV-infecting B-cells have been previously reported in HCV patients (1,12,15,16,52). Although patients' outcomes would be more than we can be predicted from our results, this system would actually benefit the future study on B-cell-virus interaction.

Acknowledgments

We are grateful to Drs. Frank Chisari (Scripps Research Institute, San Diego, CA) for the Huh7.5.1 cells, Takaji Wakita (National Institute of Infectious Diseases, Tokyo)

for supplying the J6JFH1 plasmid, and Brett Lindenbach (Yale University, New Haven, CT) for providing us with the pJc1-GLuc2A HCV strain.

This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, and Culture (Specified Project for "Carcinogenic Spiral") and the Ministry of Health, Labor, and Welfare of Japan, and by the Program of Founding Research Centers for Emerging and Reemerging Infectious Diseases, MEXT. Financial support by the Takeda Science Foundation, the Yasuda Cancer Research Foundation, and the Iskra Foundation are gratefully acknowledged.

Author Disclosure Statement

No competing financial interests exist.

References

- Agnello V, Chung RT, and Kaplan LM. A role for hepatitis C virus infection in type II cryoglobulinemia. N Engl J Med 1992:327:1490-1495.
- Aizaki H, Morikawa K, Fukasawa M, et al. Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J Virol 2008;82:5715–5724.
- 3. Aly HH, Oshiumi H, Shime H, et al. Development of mouse hepatocyte lines permissive for hepatitis C virus (HCV). PLoS One 2011;6:e21284.
- 4. Aly HH, Qi Y, Atsuzawa K, et al. Strain-dependent viral dynamics and virus-cell interactions in a novel in vitro system supporting the life cycle of blood-borne hepatitis C virus. Hepatology 2009;50:689–696.
- Aly HH, Shimotohno K, Hijikata M, and Seya T. In vitro models for analysis of the hepatitis C virus life cycle. Microbiol Immunol 2012;56:1–9.
- Asselah T, and Marcellin P. Second-wave IFN-based triple therapy for HCV genotype 1 infection: simeprevir, faldaprevir and sofosbuvir. Liver Int 2014;34:60–68.
- Bare P, Massud I, Parodi C, et al. Continuous release of hepatitis C virus (HCV) by peripheral blood mononuclear cells and B-lymphoblastoid cell-line cultures derived from HCV-infected patients. J Gen Virol 2005;86:1717–1727.
- Bartosch B, Dubuisson J, and Cosset FL. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med 2003;197; 633–642.
- Bartosch B, Vitelli A, Granier C, et al. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 2003;278:41624–41630.
- Castet V, Fournier C, Soulier A, et al. Alpha interferon inhibits hepatitis C virus replication in primary human hepatocytes infected in vitro. J Virol 2002;76:8189–8199.
- Chen Z, Zhu Y, Ren Y, et al. Hepatitis C virus protects human B lymphocytes from Fas-mediated apoptosis via E2-CD81 engagement. PLoS One 2011;6:e18933.
- 12. Donada C, Crucitti A, Donadon V, et al. Systemic manifestations and liver disease in patients with chronic hepatitis C and type II or III mixed cryoglobulinaemia. J Viral Hepat 1998;5:179–185.
- Ebihara T, Shingai M, Matsumoto M, Wakita T, and Seya T. Hepatitis C virus-infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells. Hepatology 2008;48:48–58.
- 14. Evans MJ, von Hahn T, Tscherne DM, et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007;446:801–805.
- Ferri C, Caracciolo F, Zignego AL, et al. Hepatitis C virus infection in patients with non-Hodgkin's lymphoma. Br J Haematol 1994;88:392–394.
- Frangeul L, Musset L, Cresta P, Cacoub P, Huraux JM, and Lunel F. Hepatitis C virus genotypes and subtypes in patients with hepatitis C, with and without cryoglobulinemia. J Hepatol 1996;25:427–432.
- Fried MW, Buti M, Dore GJ, et al. Once-daily simeprevir (TMC435) with Pegylated interferon and ribavirin in treatment-naïve genotype 1 hepatitis C: the randomized PILLAR Study. Hepatology 2013;58:1918–1929.
- Harwood NE, and Batista FD. New insights into the early molecular events underlying B cell activation. Immunity 2008;28:609-619.

- Hsu M, Zhang J, Flint M, et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 2003;100: 7271–7276.
- Inokuchi M, Ito T, Uchikoshi M, et al. Infection of B cells with hepatitis C virus for the development of lymphoproliferative disorders in patients with chronic hepatitis C. J Med Virol 2009;627:619–627.
- Ito M, Masumi A, Mochida K, et al. Peripheral B cells may serve as a reservoir for persistent hepatitis C virus infection.
 J Innate Immun 2010;2:607–617.
- 22. Jacobson IM, McHutchison JG, Dusheiko G, et al. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011;364:2405–2416.
- Jahan S, Khaliq S, Siddiqi MH, et al. Anti-apoptotic effect of HCV core gene of genotype 3a in Huh-7 cell line. Virol J 2011:8:522.
- Kambara H, Fukuhara T, Shiokawa M, et al. Establishment of a novel permissive cell line for the propagation of hepatitis C virus by expression of microRNA miR122. J Virol 2012;86:1382–1393.
- 25. Karavattathayyil SJ, Kalkeri G, Liu HJ, *et al.* Detection of hepatitis C virus RNA sequences in B-cell non-Hodgkin lymphoma. Am J Clin Pathol 2000;113:391–398.
- 26. Kasama Y, Sekiguchi S, Saito M, et al. Persistent expression of the full genome of hepatitis C virus in B cells induces spontaneous development of B-cell lymphomas in vivo. Blood 2010;116;4926–4933.
- Kondo Y, and Shimosegawa T. Direct effects of hepatitis C virus on the lymphoid cells. World J Gastroenterol 2013; 19:7889–7895.
- 28. Ladu S, Calvisi DF, Conner EA, Farina M, Factor VM, and Thorgeirsson SS. E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology 2008;135:1322–1332.
- Lanford RE, Chavez D, Chisari FV, and Sureau C. Lack of detection of negative-strand hepatitis C virus RNA in peripheral blood mononuclear cells and other extrahepatic tissues by the highly strand-specific rTth reverse transcriptase PCR. J Virol 1995;69:8079–8083.
- Laskus T, Radkowski M, Wang LF, Vargas H, and Rakela J. The presence of active hepatitis C virus replication in lymphoid tissue in patients coinfected with human immunodeficiency virus type 1. J Infect Dis 1998;178:1189–1192.
- 31. Lerat H, Berby F, Trabaud MA, *et al.* Specific detection of hepatitis C virus minus strand RNA in hematopoietic cells. J Clin Invest 1996:97:845–851.
- Lok AS, Gardiner DF, Hézode C, et al. Randomized trial of daclatasvir and asunaprevir with or without PegIFN/RBV for hepatitis C virus genotype 1 null responders. J Hepatrol 2014;60:490–499.
- Lowe SW, and Lin AW. Apoptosis in cancer. Carcinogenesis 2000;21:485–495.
- 34. MacParland SA, Pham TN, Guy CS, and Michalak TI. Hepatitis C virus persisting after clinically apparent sustained virological response to antiviral therapy retains infectivity in vitro. Hepatology 2009;49:1431–1441.
- 35. Marukian S, Jones CT, Andrus L, *et al.* Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology 2008;48:1843–1850.
- Mazzaro C, Franzin F, Tulissi P, et al. Regression of monoclonal B-cell expansion in patients affected by mixed cryoglobulinemia responsive to alpha-interferon therapy. Cancer 1996;77:2604–2613.

- 37. McKeating JA, Zhang LQ, Logvinoff C, *et al.* Diverse hepatitis C virus glycoproteins mediate viral infection in a CD81-dependent manner. J Virol 2004;78:8496–8505.
- 38. Mizuochi T, Ito M, Takai K, and Yamaguchi K. Peripheral blood memory B cells are resistant to apoptosis in chronic hepatitis C patients. Virus Res 2011;155:349–351.
- Murakami K, Kimura T, Shoji I, et al. Virological characterization of the hepatitis C virus JFH-1 strain in lymphocytic cell lines. J Gen Virol 2008;89:1587–1592.
- Muratori L, Gibellini D, Lenzi M, et al. Quantification of hepatitis C virus-infected peripheral blood mononuclear cells by in situ reverse transcriptase-polymerase chain reaction. Blood 1996;88:2768–2774.
- 41. Phan T, Beran RKF, Peters C, Lorenz IC, and Lindenbach BD. Hepatitis C virus NS2 protein contributes to virus particle assembly via opposing epistatic interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. J Virol 2009;83:8379–8395.
- 42. Pileri P, Uematsu Y, Campagnoli S, et al. Binding of hepatitis C virus to CD81. Science 1998;282:938–941.
- 43. Ploss A, Evans MJ, Gaysinskaya VA, et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 2009;457:882–886.
- 44. Qu J, Zhang Q, Li Y, *et al.* The Tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10. BMC Immunol 2012;13:15.
- Radkowski M, Gallegos-Orozco JF, Jablonska J, et al.
 Persistence of hepatitis C virus in patients successfully treated for chronic hepatitis C. Hepatology 2005;41:106–114.
- Ramakrishnaiah V, Thumann C, Fofana I, et al. Exosomemediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A 2013; 110:13109–13113.

- 47. Sarhan MA, Pham TNQ, Chen AY, and Michalak TI. Hepatitis C virus infection of human T lymphocytes is mediated by CD5. J Virol 2012;86:3723–3735.
- 48. Schmidt WN, Stapleton JT, LaBrecque DR, et al. Hepatitis C virus (HCV) infection and cryoglobulinemia: analysis of whole blood and plasma HCV RNA concentrations and correlation with liver histology. Hepatology 2000;31: 737–744.
- Schulze-Bergkamen H, Krammer P.H. Apoptosis in cancer—implications for therapy. Semin Oncol 2004;31: 90–119.
- Seto WK, Lai CL, Fung J, et al. Natural history of chronic hepatitis C: genotype 1 versus genotype 6. J Hepatol 2010; 53:444–448.
- 51. Sung VM, Shimodaira S, Doughty AL, *et al.* Establishment of B-cell lymphoma cell lines persistently infected with hepatitis C virus *in vivo* and *in vitro*: the apoptotic effects of virus infection. J Virol 2003;77:2134–2146.
- 52. Turner NC. Hepatitis C and B-cell lymphoma. Ann Oncol 2003:14:1341–1345.
- Wakita T, Pietschmann T, Kato T, et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med 2005;11:791–796.

Address correspondence to:
Dr. Tsukasa Seya
Department of Microbiology and Immunology
Hokkaido University Graduate School of Medicine
Kita 15, Nishi 7
Kita-ku
Sapporo 060-8638
Japan

E-mail: seya-tu@pop.med.hokudai.ac.jp

Hepatology Research 2015

doi: 10.1111/hepr.12459

Review Article

New molecularly targeted therapies against advanced hepatocellular carcinoma: From molecular pathogenesis to clinical trials and future directions

Makoto Chuma, 1,2* Katsuimi Terashita, 1 and Naoya Sakamoto 1*

¹Department of Gastroenterology and Hepatology, Hokkaido University, Sapporo, and ²Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan

Hepatocellular carcinoma (HCC) can be lethal due to its aggressive course and lack of effective systemic therapies for advanced disease. Sorafenib is the only systemic therapy that has demonstrated an overall survival benefit in patients with advanced HCC, and new agents for treatment of advanced HCC are needed. The multiple pathways involved in HCC oncogenesis, proliferation and survival provide many opportunities for the development of molecularly targeted therapies. Molecular targets of interest have expanded from angiogenesis to cancer cell-directed oncogenic signaling pathways for treatment of advanced HCC. Agents targeting vascular endothelial growth factor receptor, epidermal growth factor receptor, fibroblast growth factor receptor, platelet-derived growth factor receptor, c-mesenchymal-epithelial transition factor-1

and mammalian target of rapamycin signaling have been actively explored. This article focuses on the evaluation of molecular agents targeting pathogenic HCC and provides a review of recently completed phase III drug studies (e.g. involving sorafenib, sunitinib, brivanib, linifanib, erlotinib, everolimus, ramucirumab or orantinib) and ongoing drug studies (e.g. involving lenvatinib, regorafenib, tivantinib or cabozantinib) of molecularly targeted agents in advanced HCC, including a brief description of the biologic rationale behind these agents.

Key words: clinical trials, hepatocellular carcinoma, molecularly targeted therapy, novel agents, sorafenib

INTRODUCTION

EPATOCELLULAR CARCINOMA (HCC) is the sixth most common cancer and the third most common cause of cancer-related deaths worldwide.¹ Because a considerable number of patients are diagnosed when the disease becomes advanced, only approximately a third of all HCC patients are eligible for potentially curative treatments, such as resection or transplantation.² Surgical resection or transplantation provides good survival rates (i.e. beyond 65% at 5 years).³ Unfortunately, the prognosis for patients with advanced stage HCC (Barcelona Cancer Liver Clinic [BCLC] stage C) is extremely poor, with a median

overall survival (OS) of 6.6 months.4 In advanced cases, only one systemic therapy is effective: the multikinase inhibitor sorafenib, which was approved by the U.S. Food and Drug Administration and which represented a breakthrough in the management of the disease.^{5,6} However, the median life expectancy of patients with HCC on sorafenib is only 1 year, indicating the clear need to improve their outcomes. Hepatocarcinogenesis is a complex multistep process involving a number of genetic and epigenetic alterations,7,8 our knowledge of several key molecular pathways implicated in HCC pathogenesis has revealed potential targets for therapeutic interventions, including vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), plateletderived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR), RAS/RAF/mitogenactivated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathways. This review will examine our current understanding of these pathways as well as the efficacy and safety data pertaining to the most promising

Correspondence: Dr Makoto Chuma, Department of Gastroenterology and Hepatology, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan. Email: chumamakoto@gmail.com *These authors contributed equally to this work.

Received 16 September 2014; revision 15 November 2014; accepted 25 November 2014.

molecularly targeted agents beyond sorafenib. In this article, we first describe the pathogenesis of HCC and then provide an update on the recent data on clinical trials using molecularly targeted agents.

PATHOGENESIS OF HCC

HEPATOCELLULAR CARCINOMA IS a hypervascular tumor, and the central role of angiogenesis in its initiation, growth and subsequent dissemination to other tissues is well recognized. Angiogenesis in HCC is mediated by a complex network of growth factors, acting on both tumor cells and endothelial cells. The most widely recognized angiogenic factors are VEGF, FGF and PDGF. These activate receptor tyrosine kinases (RTK) and the RAS/RAF/MEK/ERK pathway and the PI3K pathway in endothelial cells (Fig. 1). 10,11 VEGF and its receptors play a major role in tumor angiogenesis. In fact, VEGF is a potent permeability factor that promotes

cell migration during invasion and acts as an endothelial growth factor that stimulates endothelial cell proliferation, inducing the budding of new blood vessels around the growing tumor masses. In human specimens and serum, increased expression of VEGF correlates with aggressive behavior of HCC and poor prognosis.12 FGF and its family of receptors has also been implicated in HCC growth, invasion and angiogenesis. 13 While VEGF is the main driver of tumor angiogenesis, there is crosstalk between VEGF and FGF signaling in angiogenesis.14 The upregulation of FGF has been suggested to mediate resistance to anti-VEGF receptor (VEGFR) therapy. The great majority of the HCC cases have overexpression of at least one FGF and/or FGF receptor (FGFR).10 Hence, blocking the FGFR is another potentially important approach for the treatment of HCC. PDGF is involved in the development of immature tumor vessels, 15 while angiopoietins exert their action via stabilization of vessels by recruiting surrounding pericytes and smooth

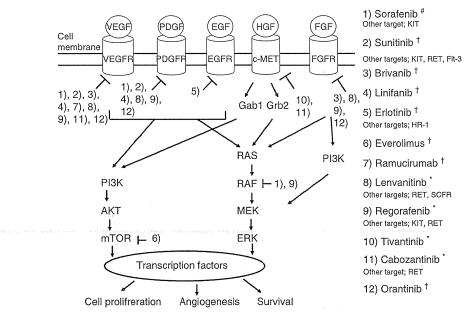


Figure 1 Schematic diagram of key molecular targets and targeted agents in hepatocellular carcinoma. "Approved globally in patients with advanced hepatocellular carcinoma (HCC). 'Completed studies of phase III of molecularly targeted agents in advanced HCC. c-MET, c-mesenchymal-epithelial transition factor-1; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; Flt-3, Fms-like tyrosine receptor kinase-3; Gab1, GRB2-associated binding protein 1; Grb2, growth factor receptor bound protein 2; HER-1, human epidermal growth factor receptor-1; HGF, hepatocyte growth factor; MEK, mitogen-activated protein kinase/ERK kinase; mTOR, mammalian target of rapamycin; PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth factor receptor; PI3K, phosphatidylinositol 3-kinase; RET, rearranged during transfection; SCFR, stem cell growth factor receptor kit; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor.