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Abstract

CBP-93872 was previously identified as a G, checkpoint inhibitor using a cell-based high-throughput
screening system. However, its molecular actions as well as cellular targets are largely unknown. Here, we
uncovered the molecular mechanisms underlying abrogation of the G, checkpoint by CBP-93872. CBP-93872
specifically abrogates the DNA double-stranded break (DSB)-induced G, checkpoint through inhibiting
maintenance but not initiation of G, arrest because of specific inhibition of DSB-dependent ATR activation.
Hence, ATR-dependent phosphorylation of Nbsl and replication protein A 2 upon DSB was strongly
suppressed in the presence of CBP-93872. CBP-93872 did not seem to inhibit DNA-end resection, but did
inhibit Nbsl-dependent and ssDNA-induced ATR activation in vitro in a dose-dependent manner. Taken
together, our results suggest that CBP-93872 is an inhibitor of maintenance of the DSB-specific G, checkpoint

and thus might be a strong candidate as the basis for a drug that specifically sensitizes p53-mutated cancer
cells to DSB-inducing DNA damage therapy. Cancer Res; 74(14); 3880-9. ©2014 AACR.

Introduction

Maintaining the genomic stability of both normal cells and
cancer cells depends on coordinated networks of different
forms of the DNA damage response, which execute various cell
activities such as cell-cycle arrest, apoptosis, and premature
senescence (1). Abrogation of these systems likely leads to
extensive genomic instability and subsequent cell death upon
DNA damage. Cell-cycle arrest in response to DNA damage
plays a key role in increasing cell survival and is mediated in
mammals by at least two distinct pathways; one via ATM-p53-
p21 (2, 3) and the other via ATM/ATR-Chk1-Cdc25 (4, 5). The
former mediates both G; and G, arrest and the latter mediates
G, arrest (6-8). Given that most cancer cells have genetic
alterations in p53, their survival in the presence of DNA
damage depends on a functional Chkl-mediated G, check-
point, suggesting that reagents capable of inhibiting this
checkpoint would be promising drugs for producing synthetic
lethality to p53-deficient cancer cells.
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Signals initiated by DNA damage sensors are rapidly trans-
duced to downstream targets in a manner dependent on the
type of damage. For example, signals from DNA double-strand-
ed break (DSB) sensors are rapidly transduced to an ataxia
telangiectasia mutated (ATM) kinase (9) and a DNA-depen-
dent protein kinase catalytic subunit (DNA-PKcs) that in turn
leads to the processing of DSBs by nucleases generating an
ATR-activating structure (10-12). In contrast, a broad spec-
trum of DNA damage changes, such as a structure consisting of
single-stranded DNA (ssDNA) and a junction between ssDNA
and double-stranded DNA (dsDNA), can directly activate ATM-
and Rad3-related (ATR) kinases in a replication protein A
(RPA)- and Radl7-dependent manner, respectively (13). The
activated ATM and/or ATR transduce the damage signals to a
large number of downstream effectors, such as p53, Chk1, and
Chk2, and execute G; and G, DNA damage checkpoints (1).

On the basis of the absolute requirement for the G, DNA
damage checkpoint for p53-deficient cancer cell survival upon
DNA damage, various G, checkpoint inhibitors have been
developed and proposed for clinical application. Among them,
caffeine is one of the most extensively investigated agents that
inhibits ATM and ATR kinases and increases sensitization of
p53-deficient cells to IR irradiation. Chk1 inhibitors, such as
UCN-01 (14), CEP-3891 (15), and AZD7762 (16) are also
proposed to be potent G, checkpoint suppressors. However,
the kinases ATR and Chkl are essential for mammalian cell
survival (17-21) and ATM is also required for maintaining
genomic integrity during normal cell growth (22). Therefore,
these drugs would have unexpected deleterious effects on
normal cell function, diminishing the possibility of their
clinical application.
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CBP-93872 Is an Inhibitor of DSB-Specific Activation of ATR

We have previously identified CBP-93872 as a promising
G, checkpoint inhibitor using a high-throughput screening
system that detected abrogation of the G, checkpoint in IR-
irradiated HT-29 cells (23). However, molecular mechanisms
underlying G, checkpoint inhibition by this drug are largely
unknown. Importantly, treatment with this drug markedly
sensitized p53-mutated cancer cells to DSB-inducing DNA
damaging agents. In this study, we investigated the molecular
basis of G, checkpoint inhibition by CBP-93872 in p53-deficient
cancer cells and found that CBP-93872 specifically inhibited
DSB-mediated and Nbsl-dependent activation of ATR.

Materials and Methods

Cell culture and drug treatment

HT29 and HCT116 cells were grown in McCoy's 5A (Gibco)
supplemented with 10% fetal bovin serum (FBS) and 1%
penicillin-streptomycin (Invitrogen). NCI-H460, A549 and
MCEF7 cells were cultured in RPMI-1640 (Sigma-Aldrich) sup-
plemented with 10% FBS and 1% penicillin-streptomycin. All
cells were cultured at 37 °C under 5% CO,.

Inhibitors used in this study were as follows: CBP-93872 (20
pmol/L; kindly supplied by Chugai Pharmaceutical Co., Ltd.),
UCNO1 (300 nmol/L; Sigma-Aldrich), caffeine (2 mmol/L;
Sigma-Aldrich), KU-55933 (20 pmol/L; Sigma-Aldrich), and
Nocodazole (500 nmol/L; Sigma-Aldrich).

MMS (Sigma-Aldrich) was used at 200 pimol/L and hydroxy-
urea (Sigma-Aldrich) was used at different concentrations.

Plasmid construction

To generate lentivirus shRNA constructs, an shRNA-coding
fragment with a 5-ACGTGTGCTGTCCGT-3' loop was
digested into pENTER4-H1tetOx1 (a gift of H. Miyoshi). To
insert the HItetOx1-shRNA into a lentivirus vector, the vector
pENTER4-H1tetOx1-shRNA was mixed with CS-RFA-ETBsd
(a gift of H. Miyoshi) and treated with Gateway LR clonase
(Invitrogen).

The full-length cDNA of wild-type human Nbs1 was obtained
by RT-PCR, and ligated into pcDNA3.1-myc-His vector. To
construct Tet-on inducible lentivirus vectors, a cDNA fragment
of Nbsl containing the myc-His epitope was inserted into a
PENTERIA vector (Invitrogen). shRNA-resistant mutations
and an EDE mutation of pENTRIA Nbsl-myc-His were gen-
erated by inverse PCR with a Site-Specific Mutagenesis Kit
(Toyobo). The resultant plasmids were mixed with CS-IV-TRE-
RfA-UbC-Puro vector (a gift of H. Miyoshi), and treated with
Gateway LR clonase to generate the lentivirus vectors.

Virus generation and infection

Lentiviruses expressing the respective shRNAs were gener-
ated by cotransfection of 293T cells with pCMV-VSV-G-RSV-
RevB (a gift of H. Miyoshi), pCAG-HIVgp (a gift of H. Miyoshi),
and the respective CS-RFA-ETBsd using the calcium phos-
phate coprecipitation method. HT29 cells infected with the
viruses were treated with 10 pg/mL blasticidin (Invitrogen) for
3 days.

For the generation of cells depleted of endogenous Nbsl and
expressing ectopic NbslWt-myc-His or NbslEDE-myc-His,
HT29 cells expressing shNbs1 were infected with lentiviruses

expressing pPENTR1A Nbs1Wt-myc-His or pENTRIA Nbs1EDE-
myc-His containing an shRNA-resistant mutation. Infected
cells were treated with 10 pg/mL blasticidin and 2 pug/mL of
puromycin (Sigma-Aldrich).

To express the inducible shRNA and gene, doxycycline
(Sigma-Aldrich) was incubated in the medium at a concen-
tration of 1 pg/mL for 3 days.

shRNA target sequences

The targeting sequences used in preparing shRNA were as
follows: ATR, GCCGCTAATCTTCTAACATTA; CtIP, GCAT-
CATCCTTCAGCCCTTGA; Nbsl, GGAGGAAGATGTCAATGT-
TAG; and control, CGTACGCGGAATACTTCGA.

Measurement of mitotic indices

Cells were treated with IR, UV, or MMS, and fixed with 70%
ethanol at specific times. Nocodazole was added 1 hour after
treatment. Fixed cells were then stained with antibodies to
phospho-histone H3 at S10 (H3 pS10; 1:200; Millipore) for 1
hour, followed by 30-minute incubation with Alexa Fluor 488
secondary antibodies (1:100; Invitrogen). DNA was counter-
stained with 0.1 mg/mL propidium iodide containing RNase
for 30 minutes at 37 °C. Flow cytometry was performed using a
FACSCanto 1II flow cytometer (BD Biosciences).

Antibodies
Antibodies used in this study are listed in Supplementary
Table S1.

Immunoblotting

For preparation of whole cell extracts, cells were lysed
with immunoprecipitation kinase buffer (50 mmol/L HEPES,
pH 8.0, 150 mmol/L NaCl, 2.5 mmol/L EGTA, 1 mmol/L EDTA
1 mmol/L DTT, 0.1% Tween 20, 10% glycerol) containing a
cocktail of protease and phosphatase inhibitors. Cell lysates
were boiled with SDS sample buffer (45 mmol/L Tris-HCI, pH
6.8, 10% glycerol, 1% SDS, 0.01% bromophenol blue, 50 mmol/L
DTT). Proteins in the lysates were separated by SDS-PAGE
and transferred onto polyvinylidene difluoride membranes.
Membranes were incubated overnight with primary anti-
bodies, followed by 1 hour incubation with horseradish per-
oxidase—conjugated secondary antibodies.

Immunoprecipitation

Immunoprecipitation was performed essentially as previ-
ously described (24). For immunoprecipitation, cells were lysed
in immunoprecipitated kinase buffer containing a cocktail of
protease and phosphatase inhibitors. Cell lysates were incu-
bated with primary antibodies at 4 °C for overnight, followed by
incubation with protein G-agarose (GE Healthcare) for 1 hour.
Immunoprecipitates were thoroughly washed three times with
immunoprecipitation kinase buffer and resuspended in 2x
SDS sample buffer.

Immunohistochemical analysis

Cells on cover slips were fixed in 4% paraformaldehyde for 10
minutes at room temperature, permeabilized with 0.5% Triton
X-100 in PBS for 10 minutes, and incubated in blocking buffer
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(PBS + 5% bovine serum albumin + 0.1% Tween 20) for 30
minutes. The cells on the slips were then incubated with anti-
RPA2 and anti-y-H2AX antibodies diluted in blocking buffer
(1:500) for 2 hours at room temperature, followed by incuba-
tion with anti-rat IgG conjugated with Alexa Fluor 488 (Life
Technologies) and anti-rabbit IgG conjugated with Alexa Fluor
594 (Life Technologies) secondary antibodies diluted in block-
ing buffer (1:400) for 1 hour at room temperature. Nuclei were
counterstained with Hoechst 33342 (1:1,000).

In vitro kinase assay

ATR kinase assays were performed essentially as previously
described (25) with the following modifications. HEK293E cells
were transfected with Flag-ATR- and His-ATRIP-expressing
plasmids, and Flag-ATR was immunoprecipitated with anti-
Flag M2 antibody in TGN buffer [50 mmol/L Tris-HCI (pH 7.5),
150 mmol/L NaCl, 50 mmol/L phosphoglycerol, 10% gly-
cerol, 1% Tween 20, 1 mmol/L phenylmethylsulfonyl fluoride
(PMSF), 1 mmol/L NaF, 1 mmol/L NazVO,, 1 mmol/L DTT, and
protease inhibitors]. The precipitates were washed twice with
the TGN buffer, once with the TGN buffer supplemented with
0.5 M LiCl, and twice with the reaction buffer [10 mmol/L
HEPES (pH 7.5), 50 mmol/L NaCl, 10 mmol/L MgCl,, 50 mmol/L
glycerophosphate, 1 mmol/L DTT, and protease inhibitors]
without ATP. The in vitro kinase reactions were conducted in
the presence of 50 pmol/L ATP and purified GST-Rad17. Phos-
phorylation of Radl7 was monitored using phospho-Rad17
(Ser645) antibody (Bethyl).

Preparation of nuclear extracts

HCT116 cells were grown to <80% confluence, trypsinized,
and centrifuged (200 x g for 3 minutes at room temperature),
then washed in PBS. The cell pellets were suspended in a 5x
packed cell volume of hypotonic buffer A (10 mmol/L Hepes-
KOH, pH 7.9, 10 mmol/L KCl, 1.5 mmol/L MgCl,, 0.5 mmol/L
DTT, and 0.5 mmol/L PMSF) supplemented with a cocktail of
protease inhibitors (Nakalai Tesque) and incubated on ice for
5 minutes. Cells were then centrifuged at 500 x g for 5
minutes at 4°C, suspended in a 2x packed cell volume of
buffer A and lysed by Dounce homogenization using a tight-
fitting pestle. Nuclei were collected as a pellet by centrifu-
gation at 4,000 x g for 5 minutes at 4°C and extracted in an
equal volume of buffer C (20 mmol/L Hepes-KOH, pH 7.9, 600
mmol/L KCl, 1.5 mmol/L MgCl,, 0.2 mmol/L EDTA, 25%
glycerol, 0.5 mmol/L DTT, and 0.5 mmol/L PMSF) supple-
mented with a protease cocktail, and mixed on a rotator at
4°C for 30 minutes. Nuclear extracts (supernatants) were
recovered by centrifugation (16,000 x g for 15 minutes at
4°C) and dialyzed using Slide-A-Lyzer Dialysis Cassettes
(3,500-D protein molecular weight cutoff; Thermo Fisher
Scientific) against buffer D (20 mmol/L Hepes-KOH, pH
7.9, 100 mmol/L KCl, 0.2 mmol/L EDTA, 20% glycerol, 0.5
mmol/L DTT, and 0.5 mmol/L PMSF). Dialyzed nuclear
extracts were centrifuged (16,000 x g for 30 minutes at 4°C)
to eliminate residual precipitates. The protein concentration
of the clear supernatant was determined using Bradford's
estimation method, and aliquots were snap frozen and stored
at —80°C.

Extract-based ATR activation assay

An extract-based ATR activation assay was performed
essentially as previously described (26) with the following
modifications. Nuclear extracts were pretreated with 10
mmol/L of KU-55933 and NU7026 (Sigma-Aldrich) for 15
minutes on ice to inhibit ATM and DNA-PKcs, and supple-
mented with the reaction buffer (buffer R), which brought the
final buffer compositions to 10 mmol/L HEPES (pH 7.6), 50
mmol/L KCI, 0.1 mmol/L MgCl,, 1 mmol/L phenylmethane-
sulfonylfluoride, 0.5 mmol/L dithiothreitol, 1 mmol/L. ATP, 10
mg/mL creatine kinase, and 5 mmol/L phosphocreatine.
ssDNA (70nt) or ssDNA/dsDNA junction were incubated with
the extracts for 15 minutes at 37 °C.

Sequences of DNA oligonucleotides

§s50: 5'-AGCGCCCAATACGCAAACCGCCTCTCCCCGCGC-
GTTGGCCGA

TTCATTAA-3

ss70: 5-TGCAGCTGGCACGACAGGTTTTAATGAATCGG-
CCAACGCGCG

GGGAGAGGCGGTTTGCGTATTGGGCGCT-3'.

Results

CBP-93872 specifically suppresses the DSB-induced G,
checkpoint

To clarify the molecular basis of G, checkpoint abrogation
by CBP-93872 (Fig. 1A), we first examined whether the effect of
this drug on the G, checkpoint was dependent on the type of
DNA damage. HT-29 cells lacking functional p53 were treated
with IR, UV, or MMS in the presence or absence of CBP-93872,
and the cell cycle before entry into mitosis arrest was evaluated
by determining mitotic indices using phospho-histone H3 at
serine 10 (H3 pS10) as a mitotic marker. CBP-93872 effectively
suppressed G, arrest induced by IR treatment whereas it did
not affect that induced by UV or MMS (Fig. 1B). In contrast,
UCN-01 effectively suppressed G, arrest induced by UV and
MMS. Consistent with this, upon IR treatment, Chkl phos-
phorylation at serines 317 and 345 was notably compromised
in the presence of CBP-93872 (Fig. 1C). Interestingly, CBP-
93872 did not suppress ATM activation (phosphorylation of
ATM at S1981; ATM pS1981) and subsequent phosphorylation
of Chk2 after IR treatment. In addition, this drug did not affect
Chkl phosphorylation upon UV, MMS, or HU treatment (Fig.
1D-F). Taken together, these results suggested that the cellular
target of CBP-93872 should exist downstream of DSB-induced
ATM activation.

CBP-93872 does not inhibit initiation but does inhibit
maintenance of the DSB-induced G, checkpoint

To examine the mode of G, checkpoint suppression by CBP-
93872, we examined the percentage of H3 pS10-positive cells by
flow cytometry. Mitotic indices, in the presence of CBP-93872,
of HT29, A549, and NCI-H460 cells were significantly decreased
at 1 hour after IR treatment, but increased at 16 hours (Fig. 2A).
In contrast, reduction of these indices in the presence of
caffeine or UCN-01 was only minimal at 1 hour and markedly
increased at 12 hours. In MCEF?7 cells that possess functional
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P53, mitotic indices in the presence of CBP-93872 were con-
tinuously low. These results suggested that CBP-93872 abro-
gates maintenance of the G, checkpoint, but not its initiation,
whereas caffeine and UCN-01 inhibit both its initiation as well
as its maintenance. Consistent with this, immunoblotting
revealed that the level of H3 pS10 in the presence of CBP-
93872 was reduced at 4 hours and was elevated again at 8 hours
after IR treatment (Fig. 2B). In contrast, the levels of H3 pS10
were almost constant in the presence of UCN-01 and KU-55933,
an ATM-specific inhibitor. As expected, KU-55933 inhibited IR-
induced ATM pS1981 and subsequent phosphorylation of
Chk2. UCN-01 did not inhibit IR-induced ATM pS1981 and
Chk2 phosphorylation, but rather enhanced Chkl phosphor-
ylation at S317 and S345.

CBP-93872 suppresses DSB-induced ATR activation

We then examined whether CBP-93872 was inhibitory
upstream or downstream of ATR activation. ATR activation
was detected by its auto-phosphorylation at T1989 (25).
Immunoblotting analysis revealed that phospho-ATR at

T1989 as well as Chk1 phosphorylation were readily detected
after doses of 1 Gy or more IR treatment (Fig. 3A). CBP-93872
strongly inhibited DSB-induced ATR activation and subse-
quent Chkl phosphorylation. Importantly, UV treatment
activated ATR in a dose-dependent manner and this activa-
tion as well as UV-induced Chk1 phosphorylation were not
affected by the treatment with CBP-93872 (Fig. 3B). Treat-
ment with CBP-93872 did not affect S-phase progression with
or without UV treatment, eliminating the possibility that the
inability of CBP-93872 to inhibit UV-induced Chkl phosphor-
ylation was an indirect consequence of an altered progression
of S phase (Supplementary Fig. S1). We then examined
whether CBP-93872 directly inhibited ATR activity. An in vitro
kinase assay using recombinant wild-type ATR and ATRIP
complex revealed that CBP-93872, even at a maximum con-
centration (200 Lmol/L), failed to inhibit ATR activity whereas
VE-821, an ATR-specific inhibitor, did so effectively, indica-
ting that CBP-93872 is not a direct inhibitor of ATR (Fig. 3C).
Taken together, a molecular target of CBP-93872 should
exist during the process occurring between ATM-dependent
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generation of the ATR-activating DNA structure and ATR
activation.

CBP-93872 did not inhibit DNA-end resection at DSB sites

ATR activation in response to DSB requires conversion of
ATM-activating DSB structures into ATR-activating structures
(25, 26). DNA-ends at DSBs sites are rapidly processed by
nucleases in combination with CtIP, generating ssDNA and
ajunction between ssDNA and dsDNA (27). ssDNA is bound by
RPA, forming nuclear foci. Therefore, we used an immunohis-
tochemical analysis using anti-RPA2 antibodies to determine
whether CBP-93872 blocked DNA-end resection at DSB sites. In
control cells, RPA2 foci formation was readily detectable after
IR treatment. These nuclear foci were colocalized with YH2AX
foci, suggesting that RPA2 foci represented ssDNA regions
generated by DNA-end resection at DSB sites. Depletion of CtIP
almost completely compromised RPA2 foci formation (Fig.
4A). In contrast, RPA2 foci were readily detectable in cells
treated with CBP-93872. Interestingly, in response to DSB,
depletion of CtIP showed an abrogation of the G, checkpoint
similar to that upon treatment with CBP-93872 (28). Depletion
of CtIP did not inhibit ATM autophosphorylation at S1981, but
it did compromise Chk1 phosphorylation at $317 and S345 and

RPA2 phosphorylation (Fig. 4B). As with the CBP-93872 treat-
ment, DNA-end resection at DSB sites seemed to be required
for maintenance of the G, checkpoint in response to DSB (Fig.
4C). These results suggested that molecular targets of CBP-
93872 exist between DNA-end resection and ATR activation.

CBP-93872 inhibited ATR-dependent phosphorylation of
Nbs1 at S343

Importantly, checkpoint activation, which is evaluated by
Chk1 phosphorylation, seemed to be dependent on either Nbs1
or Radl7 depending on the type of DNA damage. On UV
treatment, Chk1 phosphorylation at S317 and S345 was almost
completely abrogated when Rad17, but not Nbs1, was depleted,
whereas on IR treatment these phosphorylations were depen-
dent on the presence of Nbsl but not Rad17 (Supplementary
Fig. S2). Treatment with CBP-93872 specifically inhibited
NBS1-dependent, but not Rad17-dependent phosphorylation
of Chk1 at S317 and S345 upon IR treatment, showing that the
inhibitory effect of CBP-93872 was only a minimal in cells
depleted of Nbsl. Consistent with this, 2 distinct modes of ATR
activation have been recently proposed (29, 30). One is depen-
dent on Rad17-TopBP1 circuitry and the other is dependent
on the ssDNA-bound MRN complex. The former has been
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Figure 3. CBP-93872 specifically inhibited DSB-induced ATR activation.
HT29 cells were treated with the indicated doses of IR (A) or UV (B) in the
presence of DMSO or CBP-93872 (20 umol/L). Cells were harvested at 2
hours after irradiation and WCEs were subjected to immunoblotting using
the indicated antibodies. C, in vitro kinase assay using recombinant
ATR-ATRIP complex and purified GST-Rad17 protein as a substrate.
GST-Rad17 was incubated with or without purified wild-type-ATR-ATRIP
(Wt-ATR-ATRIP) complex at 37°C for 30 minutes in the presence of the
indicated concentration of CBP-93872 (20 umol/L) or VE-821 (10 umol/L).
Kinase activity was stopped by boiling with SDS sample buffer, and
phosphorylation of Rad17 at Ser645 was analyzed by immunoblotting
using the specific antibodies (pRad17 Ser645).

proposed to be involved in mechanisms underlying initiation
of ATR checkpoint signaling on a junction between ssDNA and
double-stranded DNA, and the latter to be involved in the
mechanism by which the ATR checkpoint signal is amplified on
ssDNA. Therefore, we hypothesized that DSB-induced phos-
phorylation of Nbsl at S343 was at least in part caused by
activated ATR during amplification of the checkpoint signal. As
shown in Fig. 5A, depletion of ATR strongly suppressed IR-
induced Nbs1 phosphorylation at S343. Intriguingly, treatment
with CBP-93872 also markedly inhibited this phosphorylation.
Analysis of the kinetics of DSB-induced Nbs1 phosphorylation
revealed that phosphorylation increased at 2 hours and
reached a maximum at 4 to 8 hours, which was inhibited by

CBP-93872 (Fig. 5B), suggesting that this phosphorylation is
involved in the maintenance but not the initiation of the G,
checkpoint. Importantly, CBP-93872 did not affect the complex
formation of Nbs1 with Mrell and Rad50 (Fig. 5B and C). CBP-
93872 specifically inhibited IR-induced, but not UV-induced
Nbs1 phosphorylation (Fig. 5C).

An Nbs1 mutant lacking RPA binding showed a defect in
maintenance of the G, checkpoint

Given that RPA binding of Nbsl is required for MRN-
mediated ATR activation (29), we asked whether an Nbsl
mutant lacking RPA binding (EDE mutant) would exhibit a
defect in the maintenance of the G, checkpoint as with CBP-
93872 treatment. Depletion of Nbs1 resulted in the defect in
initiation and maintenance of the G, checkpoint, as shown by
the fact that the mitotic index was not decreased at 1 hour and
was increased at 24 hours after IR treatment (Fig. 5D). Ectopic
expression of wild-type Nbsl in endogenous Nbsl-depleted
cells restored the ability to arrest the cell cycle before mitosis,
even at 24 hours after treatment. In contrast, as with CBP-
93872 treatment, expression of the EDE mutant restored the
ability to initiate G, arrest in response to DSB, but failed to
maintain it. Consistent with this, as with CBP-93872 treatment,
expression of the EDE mutant restored autophosphorylation of
ATM (ATM pS1981) at 1 hour, but failed in phosphorylation of
Chk1 at S345 at 24 hours (Fig. 5E). Complex formation of the
EDE mutant with Mrell and Rad50 was confirmed by immu-
noprecipitation-immunoblotting analysis using Mrell immu-
noprecipitates (Fig. 5F). Taken together, these results indicated
that a defect in MRN-dependent activation of ATR had a
similar phenotype to that seen with CBP-93872 treatment.

CBP-93872 directly inhibited ssDNA-induced ATR
activation in vitro

Finally, we examined whether CBP-93872 suppressed
amplification of ATR checkpoint signaling on ssDNA or the
ssDNA/dsDNA junction using a recently developed in vitro
assay (29). In this system, ssDNA or the ssDNA/dsDNA
junction alone when incubated with nuclear extract was
sufficient to induce RPA2 S33 phosphorylation and this
phosphorylation was dependent upon ATR, TopBPI, and
Nbsl. CBP-93872 inhibited RPA2 phosphorylation at S33 in
the nuclear extract incubated with ssDNA in a dose-depen-
dent manner (Fig. 6A, left). However, CBP-93872 did not
affect RPA phosphorylation at S33 in the extract incubated
with the ssDNA/dsDNA junction (Fig. 6A, right). In addition,
treatment with CBP-93872 in HT29 cells strongly suppressed
RPA2 phosphorylation at S33 (Fig. 6B). Taken together, these
results suggested that CBP-93872 directly inhibited ampli-
fication of ATR checkpoint signaling by suppressing ssDNA-
dependent activation of ATR.

Discussion

Numerous G, checkpoint inhibitors have been developed
and many have been proposed as potent candidates for DSB
sensitization of p53-deficient cancer cells on the basis of the
concept that survival of p53-mutated cancer cells relies on the
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IR-induced formation of RPA2
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Chkl-mediated G, checkpoint upon DSB. For example, Chkl
seems to be a promising target because this kinase is essential
for G, arrest in response to various genotoxic stressors. Several
small molecules exhibiting inhibitory activity toward Chkl
have been identified, such as UCN-01 (14). ATM and ATR are
also candidates as targets of G, checkpoint inhibitors. In
addition, a Weel inhibitor, MK-1775, has been developed as
a potentiator of DNA damage caused by cytotoxic chemother-
apy (31). However, the majority of these inhibitors interact with
the ATP binding site of the kinase and it would be difficult to
obtain highly selective ATP-competitive kinase inhibitors as
the ATP binding site has a very similar structure in all kinases.
Furthermore, in normal cells, most of their molecular targets
play a key role in the survival and maintenance of genomic
integrity. Therefore, these inhibitors can easily cause unex-
pected deleterious effects on normal cell function, diminishing
the possibility of their clinical application.

To obtain G, checkpoint inhibitors with a novel mode of
action, a high-throughput screening system using p53-defi-
cient HT29 cells was used and CBP-93872 was identified as a
potential candidate for use as a G, checkpoint inhibitor,
although the molecular mechanisms underlying this inhibition
are largely unknown. In this study, we found that CBP-93872
inhibited ATR activation specifically following DSB. ATR acti-
vation in response to DSB requires ATM activation and the
subsequent processing of DSB ends by nucleases, generating
ssDNA regions and ssDNA/dsDNA junctions that function as
ATR-activating structures. Importantly, although ATR and
ATM themselves play key roles in cell survival and mainte-
nance of genomic integrity, respectively, during the normal cell
cycle (19, 22), the molecular pathway between ATM activation
and ATR activation seems not to be essential for normal cell
growth. Therefore, molecules that target this pathway would
be most the desirable for use as drugs, because they have far
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Figure 5. CBP-93872 inhibited ATR-mediated Nbs1 phosphorylation at S343, and a mutant Nbs1 lacking the ability to bind to RPA2 showed a similar
G2 checkpoint abrogation to that with CBP-93872 treatment. A, HT29 cells were infected with Tet-on inducible lentiviruses expressing shControl or
shATR. These cells were cultured in the presence of doxycycline (1 ug/mL) for 3 days. Cells were treated with or without IR (10 Gy) in the presence or absence of
CBP-93872 (20 umol/L). Two hours after irradiation, cells were harvested and the chromatin fractions were analyzed by immunoblotting using the
indicated antibodies. B, HT29 cells were exposed to IR (10 Gy) in the presence of DMSO (control) or CBP-93872 (20 pmol/L) and harvested at the indicated
times. Cell lystates were immunoprecipitated using anti-Mre11 antibodies. The resultant immunoprecipitates were subjected to immunoblotting using the
indicated antibodies. C, HT29 cells were mock treated or treated with IR (10 Gy) or UV (100 J/m?) in the presence or absence of CBP-93872 (20 umol/L).
Cells were harvested 2 hours after IR treatment. Inmunoprecipitation and immunoblotting were performed as in B. D, HT29 cells expressing control shRNA
(Control) or cells depleted of endogenous Nbs1 (Nbs1) were transfected with plasmids expressing myc-tagged Nbs1, either wild-type (W) or an EDE mutant (E)
that lacks the ability to bind to RPA2. Cells were treated with IR and mitotic indices were determined as in Fig. 2A. Data are presented as means =+ SD of at least
three independent experiments. E, cells were treated with IR (10 Gy) in the presence or absence of CBP-93872 (20 umol/L). One hour after irradiation,
nocodazole (500 nmol/L) was added and cells were harvested at the indicated times. The lysates were subjected to immunoblotting using the indicated
antibodies. F, cell lysates from HT29 cells expressing either wild-type or an EDE mutant Nbs1 were immunoprecipitated using anti-Mre11 antibodies.
The resultant immunoprecipitates were subjected to immunoblotting using the indicated antibodies.

less cytotoxicity and possess the ability to potentiate the
antitumor efficiency of DNA-damaging agents.

Very recently, it was reported that ATR activation following
DSB is regulated by two distinct modes (29, 30). After DNA-end
resection is initiated, the Rad17-RFC complex recognizes
generated ssDNA/dsDNA junctions and subsequently recruits
Rad9-Radl-Husl (9-1-1) complexes and TopBP1 onto the
junctions. This recruitment leads to the initiation of ATR
activation. Continued DNA-end resection results in lengthened

ssDNA regions that recruit RPA and ATR-ATRIP. MRN com-
plexes then directly bind to RPA-ssDNA through the EDE
domain of Nbsl and recruit TopBP1, activating ATR-ATRIP.
This mode of action seems to function in the amplification and
maintenance of ATR checkpoint signaling (32). CBP-93872
specifically inhibited maintenance, but not initiation, of ATR
checkpoint signaling, suggesting that it functions in Nbsl-
dependent ATR activation (Fig. 6C). Intriguingly, CBP-93872
directly inhibited ssDNA-induced but not ssDNA/dsDNA
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molecular basis underlying
checkpoint inhibition by CBP-
93872. ATR activation following
DSB is regulated by two distinct
modes. After DNA-end resection is
initiated, Rad17-(9-1-1)-TopBP1
leads to the initiation of ATR
activation. Continued DNA-end
resection recruits RPA-Nbs1
complexes and further activates
ATR. ATR activation following
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Nbs1. In this way, CBP-93872
specifically inhibits Nbs1-
dependent ATR activation.

junction activation of ATR in vitro. Consistent with this,
treatment with CBP-93872 suppressed ATR-dependent Nbsl
phosphorylation at S343 and RPA2 phosphorylation at S33.

In conclusion, although the detailed mechanism underlying
inhibition of ssDNA-induced ATR activation by CBP-93872,
including its structural basis, remains elusive, our results
showed that ssDNA-induced ATR activation is a promising
molecular target for a G, checkpoint inhibitor that specifically
sensitizes p53-mutated cancer cells to DSB-inducing DNA
damage therapy.
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