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The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects
of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation,
RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle
regulation, apoptosis, Wnt-B-catenin signaling, tumorigenesis, and viral infection. Notably,
recent studies suggest that DDX3 is a component of anti-viral innate immune signaling
pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators,
interferon (IFN) regulatory factor 3and type | IFN. However, DDX3 seems to be an important
target for several viruses, such as human immunodeficiency virus type 1 (HIV-1), hepatitis
C virus (HCV), hepatitis B virus (HBV), and poxvirus. DDX3 interacts with HIV-1 Rev or HCV
Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV
replication. Therefore, DDX3 could be a novel therapeutic target for the development of
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drug against HIV-1 and HCV.

INTRODUCTION

DDX3 belongs to the DEAD (D-E-A-D: Asp-Glu-Ala-Asp)-box
RNA helicase family, which is an ATPase-dependent RNA helicase,
is found in various organisms from yeast to human (Cordin etal.,
2006; Linder and Lasko, 2006; Linder, 2008; Jankowsky, 2011).
DDX3 has two homologs designated DDX3X (DBX) and DDX3Y
(DBY), which were located on X and Y chromosomes, respectively
(Lahn and Page, 1997; Park etal., 1998; Kim etal., 2001). DDX3X
is ubiquitously expressed in most tissues, while the expression of
DDX3Y protein islimited to the male germline (Ditton et al., 2004)
and DDX3Y seems to be involved in male fertility (Leory etal.,
1989; Mazeyrat et al., 1998; Foresta etal., 2000). DDX3 is involved
in various RNA metabolism, including transcription, translation,
RNA splicing, RNA transport, and RNA degradation (Chang and
Liu, 2010; Schrader, 2010).

REGULATION OF GENE EXPRESSION BY DDX3

DDX3 regulates gene expression at different levels, such as tran-
scription, splicing, mRNA export, and initiation of translation.
First, DDX3 participates in transcriptional regulation of gene
promoters. Indeed, DDX3 up-regulates the interferon (IFN) B
promoter (Soulat et al., 2008) and the p21%2fl/<iP1 promoter (Chao
etal., 2006), respectively. DDX3 binds to the transcription factor
Spl and enhance the p21¥2fl/<P! promoter. On the other hand,
DDX3 down-regulates the E-cadherin promoter (Botlagunta et al.,
2008). In vivo association of DDX3 with the E-cadherin or the
IFNB promoter was demonstrated by chromatin immunopre-
cipitation assay. Second, DDX3 seems to contribute to splicing.
DDX3 associates with spliced mRNAs in an exon junction complex
(EJC)-dependent manner (Merz et al., 2007) and DDX3 contains
C-terminal RS-like domain, which is stretches of protein sequence
rich in arginine and serine residues and is found in splicing factors.
Third, DDX3 contributes to the nuclear export of RNA. DDX3

Keywords: DDX3, HCV, HIV-1, innate immunity, RNA helicases, stress granules, translation, tumor suppressor

shuttles between the cytoplasm and the nucleus (Owsianka and
Patel, 1999; Yedavalli etal., 2004; Lai etal., 2008; Schrader etal,,
2008). Accordingly, DDX3 interacts with two nuclear export shut-
tle protein: CRM1 as a receptor for protein containing the nuclear
export signal (NES) and tip-associated protein (TAP) as the major
receptor for mRNA export (Yedavalli et al., 2004; Lai et al., 2008).
DDX3 interacts with CRM1 and functions in the human immun-
odeficiency virus type 1 (HIV-1) Rev-dependent nuclear export of
HIV-1 mRNA (Yedavalli et al., 2004). Depletion of TAP resulted in
nuclear accumulation of DDX3, suggesting DDX3 exports along
with messenger ribonucleoprotein (mRNP) to the cytoplasm via
the TAP-mediated pathway (Lai etal., 2008).

Forth, DDX3 plays a role in translational regulation. DDX3
localizes in cytoplasmic stress granules under stress conditions (Lai
etal., 2008; Shih etal., 2012), suggesting a role for DDX3 in trans-
lational control. DDX3 represses the cap-dependent translation
by trapping eIF4E in a translationally inactive complex to block an
interaction with eIF4G (Shih etal., 2008), indicating that DDX3
acts as a translational suppressor. Since depletion of DDX3 does
not significantly affect general translation, DDX3 may be dispens-
able for general mRNA translation (Lai et al., 2008). Indeed, DDX3
associates with eIF4E together with several translation initiation
factors, including elF4a, eIF4G, eIF2a, eIF3, and poly(A)-binding
protein (PABP), and facilitates translation of mRNA containing
structured 5" untranslated region (UTR; Lai et al., 2008; Shih et al.,
2012; Soto-Rifo etal., 2012). In contrast, others reported that pri-
mary function for DDX3 is in protein translation via an interaction
with eIF3 (Lee et al,, 2008). Accordingly, DDX3 interacts with eIF3
and 40S ribosome to support the assembly of functional 80S ribo-
some (Geissler etal., 2012). The yeast DDX3 homolog, Ded1, also
modulates translation by the formation of a translation initiation
factor elF4F-mRNA complex (Hilliker et al.,2011). Taken together,
DDX3 modulates the protein translation.
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Finally, DDX3 interacts with Ago2, which is an essential factor
in RNA interference (RNAi) pathway that cleaves target mRNA,
and acts as an essential factor involved in RNAi pathway (Kasim
etal., 2013).

DDX3 IN CELL CYCLE REGULATION AND TUMORIGENESIS

It has been indicated a role of DDX3 in cell cycle regulation,
apoptosis, and tumorigenesis. In the temperature-sensitive DDX3
mutant hamster cell line tsET24 or the DDX3 knockdown cells,
cell cycle was impedes transition from G; to S-phase (Fukumura
etal., 2003; Lai et al,, 2010). DDX3 enhances cyclin E1 during cell
cycle by a translational regulation (Lai etal., 2010). On the other
hand, DDX3 regulates the cell cycle by inhibiting cyclin D1 and
causing cell cycle arrest (Chao et al,, 2006). DDX3 is known to be
phosphorylated by cyclin B/cdc2 at threonine 204 to inhibit the
function (Sekiguchi etal., 2007). Furthermore, DDX3 interacts
with DDX5, which colocalizes with it in the cytoplasm through
the phosphorylation of both proteins during G»/M phase of cell
cycle (Choi and Lee, 2012), indicating the cell cycle-dependent
regulation of DDX3 localization and the function. During mouse
early embryonic development, DDX3 also regulates cell survival
and cell cycle (Li etal., 2014b).

It has been indicated the oncogenic role of DDX3 in
breast cancer (Botlagunta etal., 2008). Activation of DDX3 by
benzo[a]pyrene diol epoxide (BPDE) present in tobacco smoke,
can promote growth, proliferation and neoplastic transformation
of breast epithelial cells. Consistent with this finding, overex-
pression of DDX3 induced an epithelial-mesenchymal-like trans-
formation, exhibited increased motility and invasive properties,
and formed colonies in soft agar assays. In addition, DDX3 is
recruited to the E-cadherin promoter and represses the E-cadherin
expression resulting the increased cell migration and metasta-
sis (Botlagunta etal., 2008). Similarly, DDX3 also modulates cell
adhesion, motility and cancer cell metastasis via Racl-mediated
signaling pathway (Chen etal., 2014). In fact, DDX3 knockdown
reduces the cell migration, the invasive and metastatic activi-
ties, suggesting that DDX3 is required for metastasis and the
oncogenic role of DDX3 in malignant cancers. The DDX3 knock-
down also reduces the expression of levels of both Racl and
B-catenin. DDX3 regulates Racl mRNA translation through an
interaction with its 5UTR and affects B-catenin protein stabil-
ity in Racl-dependent manner. In response to Wnt signaling,
DDX3 binds to casein kinase (CK) le¢ and stimulates CKle-
mediated phosphorylation of the Wnt effector disheveled and
thereby activates B-catenin (Cruciat etal., 2013), indicating a
role of DDX3 as a regulator of Wnt-B-catenin network. More-
over, DDX3 may aid cancer progression by promoting increased
levels of the transcription factor Snail (Sun etal., 2011). Snail
is known to repress the expression of cellular adhesion pro-
teins, leading to increased cell migration and metastasis of many
types of cancer. In addition, recent study reported that posi-
tive DDX3 expression is significantly associated with large tumor
size and high TNM (Tumor, Node, and Metastasis) stage, inva-
sion, lymph node metastasis in gallbladder cancers (Miao etal.,
2013), suggesting that DDX3 is a biomarker for metastasis and
poor prognosis of gallbladder cancers. TNM classification is an
anatomically based staging system that records the primary and

regional nodal extent of the tumor and the absence or presence of
metastases.

Hypoxia is a major characteristic of solid tumors and affects
gene expression, which greatly impacts cellular and tumor tis-
sue physiology particularly respiration and metabolism. Expres-
sion of hypoxia-responsive genes is predominantly regulated by
hypoxia inducible factors (HIFs). DDX3 is aberrantly expressed
in breast cancer cells ranging from weakly invasive to aggres-
sive phenotypes (Botlagunta etal., 2011). HIF-1 binds to the
DDX3 promoter and enhances the DDX3 expression (Botla-
gunta etal., 2011), indicating a DDX3 as a hypoxia inducible
gene.

In contrast, DDX3 has been proposed to be a tumor suppres-
sor (McGivern and Lemon, 2009). In fact, DDX3 inhibits colony
formation in various cell lines and down-regulates cyclin D1 and
up-regulates the p21¥41/¢P! promoter (Chao et al., 2006). DDX3
expression is deregulated in hepatocellular carcinoma (HCG;
Chang etal, 2006; Chao etal.,, 2006). Loss of DDX3 leads to
enhanced cell proliferation and reduced apoptosis (Chang etal.,
2006). Similarly, loss of DDX3 by p53 inactivation promotes
tumor malignancy via the MDM2/Slug/E-cadherin pathway and
consequently results in poor patient outcome in non-small-cell
lung cancer (Wu etal,, 2014). In addition, DDX3 contributes
to both antiapoptotic and proapoptotic actions. Death recep-
tors are found to be capped by an antiapoptotic protein complex
containing GSK3, DDX3 and cIAP-1 and DDX3 protects from
apoptotic signaling (Sun etal., 2008). In contrast, DDX3 also
associates with p53, increases p53 accumulation, and positively
regulates DNA damage-induced apoptosis (Sun etal., 2013).
Furthermore, reduced p21%*f1/¢iPl via alteration of p53-DDX3
pathway is associated with poor relapse-free survival in early stage
human papillomavirus-associated lung cancer (Wu etal.,, 2011).
Thus, p21*1/cpl is considered to act as a tumor suppressor.
Since low/negative DDX3 expression in tumor cells is significantly
associated with aggressive clinical manifestations, low/negative
expression of DDX3 might predict poor prognosis in oral cancer
patients (Lee etal., 2014).

Altogether, DDX3 has both tumor suppression and oncogenic
properties. This may reflect on the cell type used in their exper-
iments. Further studies are necessary to clarify the potential role
of DDX3 in cell growth regulation. These studies may shed a light
on the development of drugs for chemotherapy against cancer and
viral infection described below.

DDX3 AS A TARGET OF VIRUSES

DDX3 has been implicated in a target of several viruses, including
hepatitis C virus (HCV), HIV-1, hepatitis B virus (HBV), West
Nile virus (WNV), Japanese encephalitis virus, norovirus, pes-
tivirus, vaccinia virus, and cytomegalovirus (Table 1). DDX3 is
required for several RNA viral replication such as HCV and HIV-
1, while DDX3 restricts HBV replication. At least, DDX3 may be a
therapeutic target for anti-viral drug against HCV and HIV-1.

REQUIREMENT OF DDX3 IN HCV LIFE CYCLE

Hepatitis C virus is a causative agent of chronic hepatitis, which
progresses to liver cirrhosis and HCC. HCV is an enveloped virus
with a positive single-stranded 9.6 kb RNA genome, which encodes
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Table 1| DDX3 as a target of viruses.

Virus Effect of DDX3 Viral binding Cellular function

on viral protein

replication
HCV Up-regulation Core Translational regulation
HIV-1 Up-regulation Rev Nuclear export of mRNA

Tat Translational regulation

HBV Down-regulation Pol Inhibition of IFN induction
Vaccinia virus ? K7 Inhibition of IFN induction
WNV Up-regulation ? ?

DDX3 interacts with several RNA virus including hepatitis C virus (HCV), human
immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), vaccinia virus, and
West Nile virus (WNV). DDX3 is required for HCV, HIV-1, WNV replication, while
DDX3 restricts HBV replication. Furthermore, these viral proteins suppress the
DDX3-mediated type | IFN induction though an interaction with DDX3.

alarge polyprotein precursor of ~3,000 amino acid residues (Kato
etal., 1990). This polyprotein is cleaved by a combination of the
host and viral proteases into at least 10 proteins in the follow-
ing order: core, envelope 1 (E1), E2, p7, non-structural 2 (NS2),
NS3, NS4A, NS4B, NS5A, and NS5B (Hijikata etal., 1991, 1993).
The HCV core protein is a viral structural protein, which forms
the viral nucleocapsid, is targeted to lipid droplets (LDs). Recently,
LDs have been found to be an important cytoplasmic organelle for
HCV production (Miyanari et al., 2007). Budding is an essential
step in the life cycle of enveloped viruses. HCV utilizes the endo-
somal sorting complex required for transport (ESCRT) system as
the budding machinery (Ariumi etal,, 2011b).

Several DEAD-box RNA helicases have been shown to interact
with HCV proteins and regulate the HCV replication (Schréder,
2010; Upadya etal, 2014). DDX3 was identified as an HCV

core-binding protein by yeast two-hybrid screening (Mamiva and
Worman, 1999; Owsianka and Patel, 1999; You et al., 1999). HCV
core protein was the first viral protein to be described as a
DDX3-binding protein. HCV core binds to the C-terminal RS-
like domain of DDX3 and the interaction is mediated by the
N-terminal 59 amino acid residues of HCV core. DDX3 and HCV
core colocalized in distinct spots in the perinuclear region of the
cytoplasm. However, these studies lack evidence regarding the
functional relevance of the DDX3-HCV core interaction in HCV
replication and the HCV-associated liver diseases. Recent studies
have demonstrated that DDX3 is required for HCV replication
(Ariumi etal., 2007; Randall etal,, 2007). The accumulation of
both genome-length HCV RNA (HCV-O strain, genotype 1b;
lkeda etal.,, 2005) and its replicon RNA were significantly sup-
pressed in the DDX3 knockdown cells. As well, HCV infection
(JFH1 strain, genotype 2a; Wakita et al., 2005) was also suppressed
in the DDX3 knockdown cells. Notably, HCV infection dynam-
ically redistributes DDX3 to the HCV production site around
LDs and colocalizes with HCV core (Figure 1; Ariumi etal.,
2011a). However, the specific interactions between DDX3 and
HCV core and the functional importance of these interactions for
the HCV viral life cycle remain unclear. In this regard, Muta-
genesis studies located a single amino acid in the N-terminal
domain of JFH1 core that when changed to alanine significantly
abrogated this interaction. Surprisingly, this mutation did not
alter infectious virus production and RNA replication, indicat-
ing that the core-DDX3 interaction is dispensable in the HCV
life cycle (Angus etal,, 2010). On the other hand, there is a
contradictory report that the inhibition of HCV replication due
to expression of the green fluorescent protein (GFP) fusion to
HCV core protein residues 16-36 can be reversed by overex-
pression of DDX3 (Sun etal, 2010). These results suggest that
the protein interface on DDX3 that binds the HCV core pro-
tein is important for replicon maintenance. However, infection

Uninfected cells

FIGURE 1 | Dynamic recruitment of DDX3 and DDX6 around lipid
droplets (LDs) in response to HCV-JFH1 infection. Cells were fixed

60 h post-infection with HCV (JFH1 strain) and stained with either
anti-DDX3 or anti-DDX6 antibody and were then visualized with Cy3 (red).
Lipid droplets were specifically stained with fluorescent lipophilic dye

HCV-infected cells

BODIPY 493/503 (green; Listenberger and Brown, 2007) and nuclei were
stained with DAPI (blue), respectively. Images were visualized using
confocal laser scanning microscopy. The two-color overlay images are also
exhibited (merged). Colocalization is shown in yellow. High magnification
image is also shown.
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of HuH-7 cells by HCV (JFH1) was not affected by expression
of the GFP fusion protein. These results suggest that the role of
DDX3 in HCV infection involves aspects of the viral life cycle
that vary in importance between HCV genotypes. Therefore, the
exact contribution of HCV core-DDX3 interaction remains to be
determined.

In addition to DDX3, other DEAD-box RNA helicases DDX1,
DDXS5, and DDX6 have been involved in the HCV life cycle (Goh
etal,, 2004; Tingting et al,, 2006; Jangra etal, 2010; Ariurai etal,
201 1a; Kuroki et al,, 2013). DDXI bound to both the HCV 3'UTR
and the HCV 5'UTR and DDX1 knockdown caused a marked
reduction in the replication of subgenomic replicon RNA (Tingt-
ing etal,, 2006). Furthermore, DDX5 was identified as an HCV
NS5B RNA-dependent RNA polymerase-binding protein by yeast
two-hybrid screening (Goh et al., 2004). Depletion of endogenous
DDX5 correlated with a reduction in the transcription of nega-
tive strand HCV RNA, suggesting that DDX5 participates in the
HCV RNA replication. Overexpression of HCV NS5B or the HCV
infection redistributes DDXS5 from the nucleus to the cytoplasm.
Moreover, recent study reported that knockdown of DDX5 reduces
HCV (JFH1) virus production in the supernatant, suggesting that
DDXS5 is important for a late stage of the HCV life cycle (Kuroki
etal.,, 2013).

The microRNA miR122 and DDX6/Rck/p54, a microRNA
effector, have been implicated in HCV replication (Jopling et al.,
2005; Scheller et al., 2009; Jangra etal., 2010; Ariumi etal,, 2011a).
The liver-specific and abundant miR-122 interacts with the 5UTR
of the HCV RNA genome and facilitates the HCV replication
(Jopling etal., 2005). DDX6 interacts with the eukaryotic initi-
ation factor 4E (elF-4E) to repress the translational activity of
mRNP. Furthermore, DDX6 regulates the activity of the decapping
enzymes DCPI and DCP2 and interacts directly with Argonaute-
1 (Agol) and Ago2 in the microRNA-induced silencing complex
(miRISC) and is involved in RNA silencing. DDX6 predominantly
localizes in the discrete cytoplasmic foci termed processing (P)-
body. Thus, the P-body may play arole in the translation repression
and mRNA decay machinery (Parker and Sheth, 2007; Beckham
and Parker, 2008). The knockdown of DDX6 was found to reduce
the accumulation of intracellular HCV RNA and infectious HCV

production, indicating that DDX6 is essential for the HCV RNA
replication (Scheller etal., 2009; Jangra etal.,, 2010; Ariumi etal.,
2011a). Notably, HCV (JEH]1) infection disrupts the P-body for-
mation of DDX3, DDX6, Lsml, Xrnl, PATL1, and Ago2 and
dynamically redistributes them to the HCV production site around
LDs (Figure 2; Ariumi etal., 201 1a), indicating that HCV hijacks
the P-body components around LDs and regulates the HCV repli-
cation and translation. Recent studies suggested that DDX3 is also
required for WNV, Japanese encephalitis virus, norovirus, and
pestivirus (Vashist etal., 2012; Chahar etal., 20135 Jefferson etal.,
2014; Li etal, 2014a; Tsai and Lloyd, 2014). Similarly, P-body
components LSM1, GW182, DDX3, DDX6, and XRN1 are also
recruited to WNV replication sites and positively regulate viral
replication (Chahar etal., 2013).

On the other hand, recent studies have suggested a potential
role of DDX3 and DDXS5 in the pathogenesis of HCV-related liver
diseases. DDX3 expression is deregulated in HCC (Chang etal.,
2006; Chao etal., 2006) and single-nucleotide polymorphisms
were identified in the DDX5 genes that were associated with an
increased risk of advanced fibrosis in patients with chronic hepati-
tis C (Huang et al., 2006). DDX3 has been proposed to be a tumor
suppressor (McGivern and Lemon, 2009). In fact, DDX3 inhibits
colony formation in various cell lines, including human hep-
atoma HuH-7, and up-regulates the p21%fl/P1 promoter (Chao
etal., 2006). Therefore, HCV core protein might overcome the
DDX3-mediated cell growth arrest and down-regulate p21*2fl/cipl
through an interaction with DDX3, and it might be involved in
the development of HCC.

DDX3 1S ESSENTIAL FOR HIV-1 REPLICATION

Human immunodeficiency virus type 1 is the causative agent of
acquired immune deficiency syndrome (AIDS). HIV-1 is a retro-
virus with a positive strand RNA genome of 9 kb which encodes
nine polypeptides, structural proteins, Gag (group specific anti-
gen), Pol (polymerase) and Env (envelope), the accessory proteins,
Vif, Vpu, Vpr, and Nef, and the regulatory proteins, Tat and
Rev. The gene expression of HIV-1 is regulated transcription-
ally by Tat through its binding to a nascent viral trans-activation
responsive (TAR) RNA (Berkhout etal., 1989; Jeang etal., 1999),

P-body

Xrn1, and Lsm1 around LD, an HCV production site.

Hijacking of P-body and
stress granule components
around lipid droplet

FIGURE 2 | Hijacking of P-body components around LD by HCV. HCV disrupts the P-body and hijacks the P-body components including DDX3, DDX6, Ago2,
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and post-transcriptionally by Rev through its association with
Rev-responsive element (RRE) in the env gene (Hope and Pomer-
antz, 1995; Pollard and Malim, 1998; Cullen, 2003). Since the
intron-containing host RNA cannot leave the nucleus before it is
completely spliced, HIV-1 needs to evade host surveillance system
to export unspliced or partially spliced viral RNA into cytoplasm
and produce HIV-1 structural proteins and accessory proteins. For
this, Rev contains a leucine-rich NES that recruits nuclear export
receptor CRM1 (Hope and Pomerantz, 1995; Pollard and Malim,
1998; Cullen, 2003). Upon binding to the RRE together with the
GTP-bound form of Ran (Ran-GTP), CRM1 forms the nuclear
export complex and Rev-CRM1-RRE-Ran-GTP complex exports
unspliced or partially spliced HIV-1 RNA from the nucleus to the
cytoplasm.

Several viruses are known to carry their own RNA helicases
to facilitate the replication of their viral genome, including HCV,
flavivirus, severe acute respiratory syndrome (SARS) coronavirus,
rubella virus, and alphavirus, however, HIV-1 does not encode
own RNA helicase (Utama etal., 2000; Kwong etal., 2005). Thus,
host RNA helicases may be involved in HIV-1 replication at mul-
tiple stages, including the reverse transcription of HIV-1 RNA,
HIV-1 mRNA transcription, the nucleus-to-cytoplasm transport
of HIV-1 mRNA, and HIV-1 RNA packaging (Cochrane etal.,
2006; Lorgeoux etal., 2012).

In fact, DDX3 was first found to involve in the Rev-dependent
nuclear export of unspliced and partially spliced HIV-1 RNAs
(Figure 3; Yedavalli etal., 2004). Over-expression of DDX3
enhanced the Rev-dependent nuclear export function. Conversely,
knockdown of DDX3 or expression of dominant negative mutant
of DDX3 significantly suppressed the Rev function as well as HIV-1
replication (Yedavalli etal., 2004; Ishaq etal., 2008). Rev is co-
immunoprecipitated with DDX3. DDX3 is a nucleo-cytoplasmic

shuttling protein, which binds CRM1 and localizes to nuclear
membrane pores.

In addition to DDX3, another DEAD-box RNA helicase DDX1
also associates with Rev and promotes the Rev-dependent RNA
nuclear export function (Fang etal., 2004). DDXI1 interacts with
Rev via the N-terminal domain, suggesting a role of DDX1 in
initial complex assembly. DDX1 promotes Rev oligomerization
on the RRE through this interaction (Robertson-Anderson etal.,
2011). Thus, DDX1 and DDX3 act sequentially in the Rev-
dependent RNA nuclear export. DDX1 first binds to Rev and
promotes Rev oligomerization on the RRE. Then, the oligomer-
ized Rev recruits the CRM1/DDX3 complex that subsequently
exports the RRE-containing HIV-1 RNAs into the cytoplasm (Lor-
geoux etal,, 2012). In addition to DDX1 and DDX3, we and
other group recently reported that other RNA helicases, includ-
ing DDX5, DDX17, DDX21, DHX36, DDX47, DDX56, and RNA
helicase A (RHA) associate with the Rev-dependent nuclear export
function (Figure 3; Li etal., 1999; Naji etal.,, 2012; Yasuda-Inoue
etal., 2013a; Zhou et al.,, 2013). Furthermore, DDX3 interacts with
DDXS5 and synergistically enhances the Rev-dependent nuclear
export. As well, combination of other distinct DDX RNA heli-
cases such as DDX1 and DDX3 also synergistically facilitates the
Rev function (Yasuda-Inoue etal., 2013a) suggesting that a set of
distinct Rev-interacting DEAD-box RNA helicases cooperate to
modulate the HIV-1 Rev function.

On the other hand, HIV-1 Tat activates the HIV-1 RNA synthe-
sis. Tat binds to the TAR RNA and recruits several host factors
including p300/CREB-binding protein (p300/CBP), p300/CBP-
associated factor (PCAF), SWI/SNF chromatin-remodeling com-
plex, and positive transcription elongation factor b (P-TEFb)
to stimulate both transcription initiation and elongation (Jeang
etal., 1999; Ariumi etal., 2006; Lorgeoux etal., 2012). P-TEFb
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FIGURE 3 | Role of DDX3 in the HIV-1 gene expression. DDX3 interacts with HIV-1 Rev and facilitates the Rev-dependent nuclear export of HIV-1 mRNA.
DDX3 interacts with Tat and contributes to the translation of HIV-1 mRNA. Other DEAD-box RNA helicases, including DDX1, DDX5, DDX17, DDX21, and
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contains cyclin T1 and cyclin-dependent kinase 9 (CDK9). CDK9
hyperphosphorylates the C-terminal domain (CTD) of RNA Pol
II and activates transcription elongation. The Werner syndrome
(WRN) helicase and RHA were reported to act as co-factors of
Tat and enhance the HIV-1 gene expression (Fujii etal., 2001;
Sharma etal.,, 2007). In addition to WRN and RHA, DDX3
interacts with Tat (Figure 3; Lai etal,, 2013; Yasuda-Inoue etal,
2013b). Tatis partially targeted to cytoplasmic stress granules upon
DDX3 overexpression or cell stress conditions, suggesting a poten-
tial role of Tat/DDX3 complex in translation. Accordingly, Tat
remains associated with translating mRNAs and facilitates trans-
lation of mRNAs containing the HIV-1 5'UTR. In this regard,
DDX3 is essential for translation of HIV-1 genomic RNA (gRNA;
Figure 3; Soto-Rifo etal, 2012). DDX3 directly binds to the
HIV-1 5UTR and interacts with e¢IF4G and PABP but lacking
the major cap-binding proteins eIF4E in large cytoplasmic RNA
granules (Soto-Rifo etal., 2013), indicating that DDX3 promotes
the HIV-1 gRNA translation initiation in an elF4E-independent
manner.

Both HIV-1 and HCV have been shown to utilize DDX3 as
a cofactor for viral genome replication. Therefore, DDX3 could
be an important therapeutic target for development of anti-viral
drug (Kwong etal., 2005). Indeed, small molecule inhibitors were
used to inhibit ATPase activity of DDX3 with anti-HIV-1 activity
(Maga etal., 2008, 2011; Yedavalli etal., 2008; Radi etal., 2012).

DDX3 RESTRICTS HBV REPLICATION

Hepatitis B virus is also the causative agent of chronic hepati-
tis, which progresses to liver cirrhosis and HCC worldwide. HBV
belongs to hepadnavirus family and contains a small partially
double-stranded circular DNA genome of 3.2 kb. Even though
HBV is a DNA virus, HBV replicates its DNA genome via reverse
transcription. Upon HBV infection, the HBV DNA is converted
into covalently closed circular DNA (cccDNA) as the template
for the viral transcription. Pregenomic RNA (pgRNA) of 3.5 kb
is selectively packaged into nucleocapsid together with HBV Pol.
The pgRNA is reverse transcribed by HBV Pol to generate relaxed
circular (RC) DNA. The HBV reverse transcription occurs entirely
within nucleocapsid following encapsidation.

Recently, it was shown that DDX3 specifically binds to the HBV
Pol and is incorporated into nucleocapsid together with HBV Pol
(Wang etal., 2009). However, unlike HIV-1 and HCV replica-
tion, which is enhanced by DDX3 (Yedavalli etal., 2004; Ariumi
etal., 2007; Randall etal., 2007), HBV reverse transcription was
inhibited by DDX3. In addition, recent study reported that DDX3
suppresses transcription from HBV promoter (Ko etal., 2014).
The helicase activity is dispensable for this DDX3-mediated tran-
scription suppression. Thus, DDX3 is identified as a new host
restriction factor for HBV.

ROLE OF DDX3 IN ANTI-VIRAL INNATE IMMUNITY

Viral infection triggers host innate immune responses through
activation of the transcription factors NF-kB and IFN regulatory
factor (IRF)-3 leading to type I IFN production and anti-viral state
in mammalian cells (Gale and Foy, 2005; Saito and Gale, 2007).
Similar to NF-kB, IRF-3 is retained in cytoplasm in uninfected
cells. After viral infection, IRF-3 is phosphorylated by IKKe and

TBK1 and the phosphorylated IRF-3 then homodimerizes and
translocates into the nucleus to activate type I IFN. Type I IFNs,
such as IFN-o and IFN-p are essential for immune defense against
viruses. These IFNs activate the JAK-STAT pathway to induce the
IFN-stimulated genes (ISGs), which impact immune enhancing
and antiviral action of host cells.

Double-stranded RNA (dsRNA) produced during viral repli-
cation is recognized by the host cell as pathogen-associated
molecular patterns (PAMPs) by two major pathogen recogni-
tion receptor (PRR) proteins: the Toll-like receptors (TLRs; Akira
and Takeda, 2004) and DEAD-box RNA helicases RIG-I and
Mda5 (Andrejeva etal., 2004; Yoneyama etal., 2004). RIG-I con-
tains two N-terminal caspase activation and recruitment domains
(CARD) and a C-terminal RNA helicase domain that binds to
dsRNA. Binding viral RNA to RIG-I lead to a conformational
change that allows to interact with the RIG-1/Mda5 adaptor IPS-
I/MAVS/Cardif/VISA (Kawai etal., 2005; Meyvlan etal., 2005;
Seth etal,, 2005; Xu etal., 2005) leading to the activation of
IRE-3 and NF-kB. Notably, RIG-I and Mda5 distinguish RNA
viruses and are critical for host antiviral responses (Kato etal.,
2006). RIG-I is essential for the production of IFN in response
to RNA viruses including paramyxoviruses, influenza virus and
Japanese encephalitis virus, while Mda5 is critical for picornavirus
detection.

DDX3 was recently reported to be a component of anti-viral
innate immune signaling pathway leading to type I IFN (Figure 4;
Schroder etal., 2008; Soulat etal.,, 2008; Gu etal,, 2013). Indeed,
DDX3 contributes to enhance the induction of anti-viral media-
tors, IRF3 and type I IFN. DDX3 up-regulates the IFN-f induction
through an interaction with IKKe (Figure 4; Schréoder et al., 2008;
Gu etal., 2013) or TBK1 (Soulat etal., 2008). Phosphorylation of

QVirus

HCV
NS3-4A \L

IFNB promoter

FIGURE 4 | Role of DDX3 in anti-viral innate immunity. DDX3 interacts
with TBK1/IKKe and is phosphorylated by TBK1/IKKe. TBK1/IKKe then
phosphorylates IRF3 and translocates into the nucleus leading to the
activation of IFNB promoter. DDX3 is also recruited on the IFNB promoter
and enhances the IFNB production. In contrast, HCV core, HBV Pol, or
vaccinia virus K7 interacts with DDX3 and suppresses the IFNB induction.
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DDX3 at serine 102 by IKKe was required for the recruitment of
IRF-3 into the complex. Both IKKe and TBK1 are IRF-3-activating
kinase to leading the NF-kB and IFN induction. Furthermore,
DDX3 is recruited to the IFNP promoter (Figure 4; Soulat etal,,
2008), suggesting that DDX3 acts as a transcriptional regula-
tor. In addition, DDX3 also forms a complex with RIG-I and
Mda5 and binds to IPS-1 to facilitate IFNB induction (Oshiumi
etal,, 2010b), suggesting that DDX3 acts as a viral RNA sensor
and a scaffolding adaptor to link of viral RNA with the IPS-1
complex.

In contrast, viruses must overcome the host anti-viral innate
immunity. HCV NS3-4A protease cleaves IPS-1/Cardif to block
IFNPB induction (Figure 4; Mevlan etal., 2005) In addition, HCV
core protein can disrupt the DDX3-IPS-1/MAVS/Cardif/VISA
interaction and act as a viral immune evasion protein preventing
IFNB induction (Figure 4; Oshiumi etal., 2010a). Furthermore,
DDX3 is known to bind to HBV Pol and restrict the HBV repli-
cation (Wang etal., 2009). Conversely, HBV Pol acts as a viral
immurne evasion protein by disrupting the interaction of DDX3
with TBK1/ IKKe (Figure 4; Wang and Ryu, 2010; Yu et al.,, 2010).
Similarly, vaccinia virus K7 protein targets DDX3 (Schroder etal.,
2008; Kalverda et al., 2009; Oda etal., 2009) and inhibits the IFNB
induction by preventing TBK1/ IKKe-mediated IRF activation
(Figure 4; Schroder etal., 2008). Moreover, DDX3 contributes
the DNA sensor ZBP1/DAI-dependent IFN response after human
cytomegalovirus infection (DeFilippis etal., 2010).

In conclusion, DDX3 participates in anti-viral innate immune
signaling pathway leading to type I IFN induction. In contrast,
viruses must target DDX3 and evolve mechanisms to overcome
this host immune system. Indeed, several RNA viruses sequester
and utilize DDX3 for their viral replication and prevent IFN
induction.
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Introduction RNA replication have been identified, respectively [5,6]. In

L ) . . addition, development of a robust in vitro propagation system of
More than 160 million individuals worldwide are infected with HCV based on the genotype 2a JFHI strain (HCVcc) has

hepatitis C virus (HCV), and cirrhosis and hepatocellular gradually clarified the mechanism of assembly of HCV particles
carcinoma induced by HCV infection are life-threatening diseases [7,8]. It has been shown that the interaction of NS2 protein with
[1]. Current standard therapy combining peg-interferon (IFN), structural and non-structural proteins facilitates assembly of the
ribavirin (RBV) and a protease inhibitor has achieved a sustained viral capsid and formation of infectious particles at the connection
virological response (SVR) in over 80% of individuals infected with site between the ER membrane and the surface of lipid droplets
HCV genotype 1 [2]. In addition, many antiviral agents targeting (LD) [9]. On the other hand, very low density lipoprotein (VLDL)
non-structural proteins and host factors involved in HCV associated proteins, including apolipoprotein B (ApoB), ApoE, and
replication have been applied in clinical trials [3,4]. microsomal triglyceride transfer protein (MTTP), have been

In vitro systems have been developed for the study of HCV  shown to play crucial roles in the formation of infectious HCV
infection and have revealed many details of the life cycle of HCV. particles [10-12]. Generally, ApoA, ApoB, ApoC and ApoE bind
By using pseudotype particles bearing HCV envelope proteins and the surface of lipoprotein through the interaction between
RNA replicon systems, many host factors required for entry and amphipathic o-helices and ER-derived membrane [13,14]. This
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binding of apolipoproteins enhances the stability and hydrophi-
licity of lipoprotein. However, the specific roles played by the
apolipoproteins in HCV particle formation are controversial.
Gastaminza et al. demonstrated that ApoB and MTTP are cellular
factors essential for an eflicient assembly of infectious HCV
particles [10]. However, studies by other groups demonstrated that
ApoE is a major determinant of the infectivity and particle
formation of HCV, and the ApoL fraction is highly enriched with
infectious particles [11]. In addition, Mancone et al. showed that
ApoAl is required for production of infectious particles of HCV
[15]. However, the evidence of the involvement of apolipoproteins
in HCV particle formation is dependent on knockdown data and
exogenous expression of the apolipoproteins, and thus the precise
mechanisms of participation of the apolipoproteins in HCV
assembly have not been elucidated [10,11,16].

Recently, several novel genome editing techniques have been
developed, including methods using zinc finger nucleases (ZFN),
transcription  activator like-effector nucleases (TALEN) and
CRISPR/Cas9 systems [17-19]. DNA double strand breaks
(DSBs) induced by these artificial nucleases can be repaired by
error-prone non-homologous end joining (NHE]), resulting in
mutant mice or cell lines carrying deletions, insertions, or
substitutions at the cut site. To clarify the detailed function of
gene family with redundant functions, the generation of animals or
cell lines carrying multiple mutated genes may be essential.

In this study, Huh7 cell lines deficient in both ApoB and ApoE
genes were established by using ZFNs and revealed that ApoB and
ApoE redundantly participate in the formation of infectious HCV
particles. Interestingly, the expression of other exchangeable apolipo-
proteins, i.e., ApoAl, ApoA2, ApoC1, ApoC2 and ApoC3, facilitated
HCV assembly in ApoB and Apol double-knockout cells. In addition,
the expression of amphipathic o-helices in the exchangeable
apolipoproteins restored the production of infectious particles in the
double-knockout cells through an interaction with viral particles.

Results

Several apolipoproteins participate in the production of
infectious viral particles

First, we compared expression levels of apolipoproteins between
hepatocyte and hepatic cancer cell lines including Huh7 and
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HepG2 cells (Fig. 1A and B). The web-based search engine
NextBio (NextBio, Santa Clara, CA) revealed that ApoB, ApoH
and the exchangeable apolipoproteins ApoAl, ApoA2, ApoCl,
ApoC2, ApoC3, and Apoll are highly expressed in human liver
tissues (Fig. 1A). On the other hand, the expressions of ApoAl,
ApoCl, ApoC2, ApoC3 and ApoH in hepatic cancer cell lines
were suppressed compared to those in hepatocytes (Fig. 1B). To
examine the roles of apolipoproteins in the formation of infectious
HCV particles, the effects of knockdown of ApoA2, ApoB and
ApoEl on the infectious particle production in the supernatants
were determined in Huh7 cells by focus forming assay (Fig. 1C).
The transfection of siRNAs targeting to ApoA2, ApoB and ApoE
significantly suppressed  the production of infectious HCV
particles. This inhibitory effect is well consistent with the high
level of expression of these apolipoproteins in the hepatic cancer
cell lines, suggesting that the apolipoproteins involved in HCV
assembly are dependent on the expression pattern in hepatic
cancer cell lines, including Huh7 cells [20]. Therefore, we
examined the effects of exogenous expression of the apolipopro-
teins highly expressed in the liver tissues on the infection of HCV
in the stable ApoE-knockdown Huh7 cells (Fig. 1D). In contrast to
the control-knockdown cells, expression of not only ApoE but also
ApoAl, ApoA2, and ApoCl rescued the infectious particle
formation in the Apol-knockdown cells (Fig. 1E), suggesting that
various exchangeable apolipoproteins participate in the efficient
production of infectious HCV particles.

ApoB and ApoE have a redundant role in HCV particle
formation

To obtain more convincing data on the involvement of
apolipoproteins in the production of infections HCV particles,
we established knockout (KO) Huh7 cells deficient in either ApoB
(B-KOI and B-KOZ2) or ApoLl (E-KO1 and E-KO2) by using
ZFN (Figure Sl1). Deficiencies of ApoB or ApoL expression in
these cell lines were confirmed by ELISA and immunoblotting
analyses (Figure S1). First, we examined the roles of ApoB and
ApoF on the entry and RNA replication of HCV by using HCV
pseudotype particles (HCVpp) and subgenomic replicon (SGR) of
the JFHI strain, respectively. The B-KO and E-KO cell lines
exhibited no significant effect on the infectivity of HGVpp and the
colony formation of SGR (Figure S2A and Figure 52B), suggesting
that ApoB and ApoE are not involved in the entry and replication
processes of HCV. To examine the role of ApoB and ApoL in the
propagation of HCV, HCVcc was inoculated into parental, B-KO
and E-KO cell lines at an MOI of 1, and intracellular viral RNA
and infectious titers in the supernatants were determined (Figure
S2C and Figure S2D). Although RINA replication and infectious
particle formation in B-KO cells upon infection with HCV were
comparable with those in parental Huh7 cells, E-KO cells
exhibited slight reduction of particle formation, and the expression
of ApoE in E-KO cells rescued infectious particle formation
(Figure S2C, Figure S2D, Figure S2E). Next, to examine the
redundant role of ApoB, the effect of knockdown of ApoB on
HCV assembly was determined in parental and E-KO Huh7 cell
lines (Fig. 2A). Knockdown of ApoB in E-KO cells resulted in a
more efficient reduction of infectious particle production than that
in parental Huh7 cells, suggesting that ApoB and ApoE have a
redundant role in the formation of infectious HCV particles.

To further confirm the redundant role of ApoB and ApoE in the
HCV life cycle, especially in the particle formation, 2 clones of
ApoB and ApoE double-knockout (BE-KO1 and BE-KO2) Huh7
cells were established by ZFNs (Figure S3A and Figure S3B). The
lack of ApoB and ApoE expressions was confirmed by immuno-
blotting and ELISA analyses (Figure S3C, Figure S3D, Figure
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Figure 1. Several apolipoproteins participate in HCV propagation. (A) Relative mRNA expression of the apolipoproteins in the liver tissues
(left columns) was determined using the NextBio Body Atlas application. The median expression (right columns) was calculated across all 128 human
tissues from 1,068 arrays using the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. mRNA expression for each gene was log10
transformed. (B) Log10 transformed, normalized signal intensity of the apolipoproteins in Huh7 (left columns) and HepG2 (right columns) cells were
extracted from previously published expression microarray dataset GSE32886. (C) Huh7 cells infected with HCVcc at an MOI of 1 at 6 h post-
transfection with siRNAs targeting ApoA2 (A2), ApoB (B), ApoE (E) and control (Cont), and expression levels of apolipoproteins (upper panel) and
infectious titers in the culture supernatants (lower panel) were determined by immunoblotting and a focus-forming assay at 72 h post-infection,
respectively. (D) ApoA1, ApoA2, ApoC1, ApoE and ApoH were exogenously expressed in control and ApoE-knockdown Huh7 cells by lentiviral
vectors. Expressions of the apolipoproteins were determined by immunoblotting analysis. (E) Infectious titers in the culture supernatants of control
and ApoE-knockdown Huh7 cells expressing the apolipoproteins were determined by focus-forming assay at 72 h post-infection. In all cases, asterisks
indicate significant differences (*, P<C0.05; **, P<<0.01) versus the results for control cells.

doi:10.1371/journal.ppat.1004534.g001

S3E). The BE-KO cell lines also exhibited no significant effect on further clarify the roles of ApoB in the life cycle of HCV, we
the infectivity of HCVpp (Fig. 2B) and the colony formation of established knockout Huh7 cell lines deficient in MTTP (M-KO1
SGR (Fig. 2C). Next, we examined the redundant role of ApoB and M-KO2) and in both ApoE and MTTP (EM-KO1 and EM-
and ApoE on the propagation of HCVcc. Upon infection with KO2) by using the ZFN and CRISPR/Cas9 system (Figure S4A
HCVcc at an MOI of 1, infectious titers in the supernatants of BE- and Figure S4E). The lack of MTTP, ApoB and ApoE expressions
KO1 and BE-KO2 cells were 50 to 100 times lower than those of ~ was confirmed by immunoblotting and ELISA analyses (Figure
parental Huh7 cells at 72 h post-infection, while the level of Figure S4B, Figure S4C, Figure S4D, Figure S4F, Figure S4G,
intracellular RNA replication was comparable (Fig. 2D and E). In Figure S4H). As previously reported, the secretion of ApoB was
addition, exogenous expression of ApoE in BE-KO (ApoE-res) completely abrogated in M-KO and EM-KO cells, while the
cells rescued the production of infectious viral particles to levels mRNA levels of ApoB were comparable among Huh7, M-KO
comparable to those in parental Huh7 cells (Fig. 2F and G), and EM-KO cells (Figure S4I). To examine the roles of MTTP in
suggesting that ApoB and ApoE redundantly participate in the the assembly of HCV through the secretion of ApoB, HCVcce was
particle formation of HCV. inoculated into the Huh7, B-KO, M-KO, E-KO, BE-KO and
EM-KO cell lines at an MOI of 1, and intracellular HCV

. X . X genomes and infectious titers in the supernatants were determined

MTTP participates in HCV particle formation through the (Fig. 3A-C). Although intracellular RNA replication in M-KO
maturation of ApoB and EM-KO cells was comparable with that in Huh7, B-KO, E-
It is difficult to determine the roles of ApoB in the particle KO and BE-KO cells (Fig. 3B), infectious titers in the superna-
formation of HCV, because ApoB is too large (550 kDa) to obtain tants of EM-KO cells were severely impaired as seen in BE-KO
cDNA for expression. However, previous reports have shown that cells, while those of M-KO cells were comparable to those of
expression of MTTP facilitates the secretion of ApoB [21]. To parental Huh7cells (Fig. 3C), suggesting that MTTP participates
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Figure 2. ApoB and ApoE redundantly participate in the formation of infectious HCV particles. (A) Huh7 and E-KO1 cells were infected
with HCVcc at an MOl of 1 at 6 h post-transfection with siRNAs targeting ApoB or ApoE, and infectious titers in the culture supernatants were
determined by focus-forming assay at 72 h post-infection. (B) HCVpp were inoculated into Huh7, BE-KO1 and BE-KO2 cells, and luciferase activities
were determined at 48 h post-infection. (C) A subgenomic HCV RNA replicon of the JFHT strain was electroporated into BE-KO1 and BE-KO2 cells
with/without expression of ApoE by lentiviral vector (ApoE-res), and the colonies were stained with crystal violet at 31 days post-electroporation after
selection with 400 pg/ml of G418. Huh7, BE-KO1 and BE-KO2 cells were infected with HCVcc at an MOI of 1, and intracellular HCV RNA (D) and
infectious titers in the supernatants (E) were determined at 72 h post-infection by gRT-PCR and focus-forming assay, respectively. (F) Exogenous
expression of ApoE in BE-KO1 and BE-KO2 cells by lentiviral vector was determined by immunoblotting analysis. (G) Infectious titers in the culture
supernatants of BE-KO1 (gray bars) and ApoE-res cells (red bars) infected with HCVcc at an MOI of 1 were determined at 72 h post-infection by focus-
forming assay.

doi:10.1371/journal.ppat.1004534.9002

in the HCV assembly through the regulation of ApoB secretion. apolipoproteins on the infectious particle formation, the effects of
To further confirm the roles of MTTP in HCV assembly through exogenous expression of these apolipoproteins on the propagation
ApoB secretion, the effects of exogenous expression of MTTP in of HCVec in BE-KOI cells were determined. ApoAl, ApoA2,
EM-KO cells on the infectious particle formation of HCV were ApoCl, ApoC2, ApoC3, ApoL and ApoH were expressed by
determined. Immunoblotting and ELISA analyses revealed that lentiviral vector in BE-KOI1 cells (Fig. 4B upper panel). The
exogenous expression of MTTP rescued the secretion of ApoB expressions of ApoAl, ApoA2, ApoCl, ApoC2, ApoC3 and ApoE
into the supernatants of EM-KO cells (Fig. 3D and E), while but not of ApoH enhanced extracellular HCV RNA, while they
expression of ApoE or MTTP in both BE-KO and EM-KO cells  exhibited no effect on intracellular HCV RNA (Fig. 4C). In
exhibited no effect on the intracellular RNA replication (Fig. 3F). addition, the expressions of these exchangeable apolipoproteins
Although exogenous expression of ApoE rescued the infectious enhanced the infectious particle formation in the supernatants of
particle formation of HCV in both BE-KO and EM-KO cells, BE-KO!1 cells (Fig. 4B lower panel). On the other hand, the
expression of MTTP rescued the particle formation in EM-KO expression of nonhepatic apolipoproteins, including ApoD, ApolL.l,
cells but not in BE-KO cells (Fig. 3G), supporting the notion that  and ApoQ, exhibited no effect on HCV particle formation in BE-
MTTP plays a crucial role in the HCV assembly through the KO1 cells (Figure S6). These results suggest that exogenous
~maturation of ApoB. expression of not only the ApoE but also the ApoA and ApoC
families can compensate for the impairment of HCV particle

Exchangeable apolipoproteins redundantly participate in  formation in BE-KO1 cells. Interestingly, specific infectivity
the assembly of infectious HCV particles (infectious titers/viral RNA levels in supernatants) was also
Next, to examine the roles played in HCV particles formation by enhanced by the expression of ApoAl, ApoA2, ApoCl, ApoC2,
other apolipoproteins highly expressed in the liver (Fig. 14), the ApoC3 and ApoE, suggesting that these apolipoproteins participate
expressions of ApoAl, ApoA2, ApoC1, ApoC2, ApoC3 and ApoH in the infectious but not non-infectious particle formation of HCV
in BE-KO1 cells were suppressed by siRNAs (Fig. 4A and Figure (Fig. 4D). Previous reports have suggested that the expressions of
S5). While knockdown of ApoAl, ApoC3 and ApoH exhibited no Claudinl (CLDN1), miR-122 and ApoE facilitate the production of
effect, that of ApoA2, ApoC1 and ApoC2 significantly inhibited the infectious particles in nonhepatic 293T cells [16]. Therefore, the
release of infectious particles, which was consistent with the effects of exogenous expression of exchangeable apolipoproteins on
expression pattern of endogenous apolipoproteins except for ApoH particle formation were examined in 2937 cells expressing CLDN1
in Huh7 cells (Fig. 1B), suggesting that not only ApoB and Apok and miR-122 (293T-CLDN/miR-122 cells). Exogenous expression
but also other exchangeable apolipoproteins participate in HCV of ApoAl, ApoA2, ApoCl, ApoC2, ApoC3 and ApoE, but not of
particle formation. To confirm the redundant role of these ApoH by lentiviral vector facilitated the production of infectious
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Figure 3. MTTP participates in the formation of infectious HCV particles through the maturation of ApoB. (A) Expressions of ApoB,
ApoE and MTTP in Huh7, B-KO1, M-KO1, E-KO1, BE-KO1 and EM-KO1 cells were determined by immunoblotting analysis. Cells were infected with
HCVcc at an MOI of 1, and intracellular HCV RNA (B) and infectious titers in the supernatants (C) were determined at 72 h post-infection by qRT-PCR
and focus-forming assay, respectively. The expressions of ApoB, ApoE and MTTP in BE-KO1 and EM-KO1 cells with/without expression of ApoE or
MTTP by lentiviral vector were determined by immunoblotting (D) and ELISA (E). Cells were infected with HCVcc at an MOI of 1, and intracellular HCV
RNA (F) and infectious titers in the supernatants (G) were determined at 72 h post-infection by qRT-PCR and focus-forming assay, respectively.

doi:10.1371/journal.ppat.1004534.g003

HCV particles in 293T-CLDN/miR-122 cells (Fig. 4E). On the
other hand, the expression of ApoE exhibited no effect on the
propagation of Japanese encephalitis virus (JEV) and dengue virus
(DENV) (Figure S7) in BE-KO1 cells. These results suggest that the
exchangeable apolipoproteins and ApoB redundantly and specifi-
cally participate in the formation of HCV particles.

To examine the role of exchangeable apolipoproteins in the
formation of other genotypes of HCV, the effect of exogenous
expression of these apolipoproteins on the propagation of
genotype lb and 3a chimeric HCVee, TH/JFH1 and $310/
JFH1 viruses in BE-KO1 cells was determined (Fig. 5) [22,23]. As
seen in infection with HCVcc (JFHI), expression of ApoAl,
ApoA2, ApoCl, ApoC2, ApoC3 and ApoE enhanced the
formation of infectious particles of TH/JFH1 and S310/JFH1
chimeric viruses. These results suggest that ApoAl, ApoA2,
ApoC1, ApoC2, ApoC3 and ApoE redundantly participate in the
efficient formation of infectious HCV particles of genotypes 1b, 2a
and 3a.

Apolipoproteins participate in the post-envelopment
step of particle formation

To determine the details of the assembly of infectious HCV
particles in the BE-KOI cells, intracellular infectious titers were
determined in Huh7, BE-KO1 and ApoE-res cells by using the
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freeze and thaw method. Not only intracellular but also
extracellular infection titers were impaired in BE-KO1 cells
compared with those in parental and ApoE-res cells (Fig. 6A),
suggesting that intracellular particle formation is impaired by
deficiencies in the expression of ApoB and ApoE. Previous reports
have shown that the recruitment of viral proteins around LD and
redistribution of LD are essential for HCV assembly [24]. To
clarify the roles of the exchangeable apolipoproteins on HCV
assembly in more detail, we examined the intracellular localization
of viral proteins, LD and ER in BE-KO1 and ApoE-res cells. The
localization of core proteins around LD and the membranous-web
structure forming the replication complex were observed in BE-
KOl cells upon infection with HCVcc, as reported in parental
Huh7 cells (Fig. 6B, 6C and Figure S8). However, greater
accurnulation of core proteins and LD around the perinuclear
region was detected in BE-KO1 cells in comparison with ApoE-res
cells (Fig. 6G and 6D), supporting the notion that apolipoproteins
participate in the infectious particle formation in HCV rather than
viral RNA replication. Previous studies revealed that core proteins
were mainly localized on the ER membrane upon infection with
the genotype 2a Jcl strain-based HCVce (HCVec/Jcl), and
inhibition of capsid assembly and envelopment caused accumu-
lation of core proteins on the surface of LD [25-27]. In ApoE-res
cells, core proteins of HCVcc/Jcl were mainly localized on the
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Figure 4. Exchangeable apolipoproteins redundantly participate in the formation of infectious HCV particles. (A) BE-KO1 cells infected
with HCVcc at an MOI of 1 at 6 h post-transfection with siRNAs targeting ApoA1 (A1), ApoA2 (A2), ApoC1 (C1), ApoC2 (C2), ApoC3 (C3) and ApoH (H)
and infectious titers in the culture supernatants were determined by focus-forming assay at 72 h post-infection. (B) ApoA1, ApoA2, ApoC1, ApoC2,
ApoC3, ApoE and ApoH were exogenously expressed in BE-KO1 cells by infection with lentiviral vectors, and then infected with HCVcc at an MOl of 1.
Expression of the apolipoproteins was determined by immunoblot analysis (upper), and infectious titers in the culture supernatants were determined
at 72 h post-infection by focus-forming assay (lower). (C) Extracellular and intracellular HCV RNA in BE-KO1 cells expressing apolipoproteins and
infected with HCVcc were determined at 72 h post-infection by qRT-PCR. (D) Specific infectivity was calculated as extracellular infectious titers/
extracellular HCV RNA copies in BE-KO1 cells expressing apolipoproteins at 72 h post-infection. (E} 293T cells stably expressing CLDN1 and miR-122
(293T-CLDN/miR-122 cells) were infected with the lentiviral vectors, and the expressions of the apolipoproteins were determined by immunoblot
analysis (upper). These cells were infected with HCVcc at an MOI of 1, and infectious titers in the supernatants were determined at 72 h post-infection
by focus-forming assay (lower). In all cases, asterisks indicate significant differences (¥, P<<0.05; **, P<<0.01) versus the results for control cells.
doi:10.1371/journal.ppat.1004534.g004

ER membrane, in contrast to the co-localization of core proteins were analyzed by buoyant density ultracentrifugation (Fig. 7A-B)
of HCVce (JFHI) with LD (Fig. 6E upper). However, core [28]. Secretion of viral capsids in the supernatants was severely
proteins were accumulated around LD in BE-KO1 cells infected impaired in BE-KO1 cells in comparison with that in ApoE-res
with HCVcc/Jcl, as seen in those infected with HCVec (JFHI) cells (Fig. 7A upper), in contrast to the detection of abundant
(Fig. 6E lower). These results suggest that apolipoproteins intracellular capsids in both cell lines (Fig. 7B upper). Although

participate in the steps of HCV particle formation occurring after peak levels of the core proteins and infectious titers were detected
HCV protein assembly on the LD. around 1.08 g/ml in both cell lines, the infectious titers in all

To further examine the involvement of apolipoproteins in the fractions of BE-KO1 cells were significantly lower than those in
infectious particle formation of HCV, culture supernatants and ApoE-res cells, supporting the notion that apolipoproteins

cell lysates of BE-KOI and ApoE-res cells infected with HCVec participate in the post-assembly process of HCV capsids which
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Figure 5. Exchangeable apolipoproteins participate in the formation of infectious HCV particles of genotype 1 and 3. ApoA1, ApoA2,
ApoC1, ApoC2, ApoC3, ApoE and ApoH were exogenously expressed in BE-KO1 cells by infection with lentiviral vectors, and then infected with
genotype 1b and 3a chimeric HCVcc, TH/JFH1 (A) and S310/JFH1 (B) at an MOI of 0.5. Intracellular HCV RNA and infectious titers in the culture
supernatants were determined at 72 h post-infection by gRT-PCR (upper) and focus-forming assay (lower). Asterisks indicate significant differences

(**, P<0.01) versus the results for control cells.
doi:10.1371/journal.ppat.1004534.9005

is required to confer infectivity. Next, to examine the involvement
of apolipoproteins in the envelopment of HCV particles, lysates of
BE-KO1 and ApoFE-res cells infected with HCVec were treated
with proteinase K in the presence or absence of Triton X [26].
Protection of HCV core proteins from the protease digestion was
observed in both cell lysates (Fig. 7C), suggesting that apolipopro-
teins are not involved in the envelopment of HCV particles.
Collectively, these results suggest that exchangeable apolipopro-
teins participate in the post-envelopment step of HCV particle
formation.

Amphipathic a-helices in exchangeable apolipoproteins
participate in the formation of infectious HCV particles
through the interaction with viral particles

To determine the structural relevance of apolipoproteins
involved in the HCV assembly, the secondary structures of the
apolipoproteins were deduced by using a CLC Genomics
Workbench and previous reports (Fig. 8A) [29-34]. Tandem
repeats of amphipathic a-helices were observed in the apolipo-
proteins capable of rescuing HCV assembly in BE-KO1 cells, but
not in those lacking this activity, suggesting that amphipathic o-
helices in the apolipoproteins participate in the assembly of HCV.
To examine the involvement of the ampbhipathic o-helices of the
exchangeable apolipoproteins in the particle formation of HCV,
we constructed expression plasmids encoding deletion mutants of
ApoE and ApoCl, and then these deletion mutants were
exogenously expressed in BE-KO1 cells by lentiviral vectors
(Fig. 8B and C upper panels). The expression of all of the deletion
mutants of ApoE and ApoC1 containing either N-terminal or C-
terminal amphipathic o-helices rescued the particle formation of
HCV in BE-KOI cells (Fig. 8B and C lower panels), suggesting
that amphipathic a-helices in the apolipoproteins play crucial roles
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in the production of infectious HCV particles. In addition, more
abundant full-length and truncated ApoE were detected in the
precipitates of the culture supernatants of cells infected with
HCVcc than those of mock-infected cells concentrated by
ultracentrifugation, suggesting that the amphipathic o-helices of
apolipoproteins are directly associated with HCV particles
(Fig. 8D and E). Taken together, the data in this study strongly
suggest that exchangeable apolipoproteins redundantly participate
in the infectious particle formation of HCV through the
interaction between amphipathic a-helices and viral particles.

Discussion

In this study, we demonstrated the redundant roles of ApoB and
the exchangeable apolipoproteins ApoAl, ApoA2, ApoCl,
ApoC2, ApoC3 and ApoE in the assembly of infectious HCV
particles. The deficiencies of both ApoB and ApoE inhibited the
production of infectious HCV particles in Huh7 cells, and
exogenous expression of exchangeable apolipoproteins rescued
the particle formation. cDNA microarray revealed that the
expression patterns of exchangeable apolipoproteins in hepatic
cancer cell lines are widely different from those in liver tissue. In
previous reports, ApoE and ApoB were identified as important
host factors for the assembly of infectious HCV particles [10,11],
and knockdown of ApoE and ApoB expression also inhibited the
production of infectious particles in this study. Because ApoB and
ApoE. are major apolipoproteins in VLDL, several reports have
suggested that the VLDL production machinery participates in the
production of HCV particles. Furthermore, density gradient
analyses revealed co-fractionation of HCV RNA with lipoproteins,
with the resulting complexes being termed lipoviroparticles (LVP)
[12,35]. However, it has been reported that there is no correlation
between secretion of VLDL and production of LVP [36]. In
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