Table 2 Downregulated miRNAs in hepatocarcinogenesis | miRNA | Expression levels | Targets | Main tested samples | References | |---------------|-------------------|-------------------------------|---------------------------------------|------------| | let-7a | Downregulated | STAT3 | Cultured cells | [94] | | let-7c | Downregulated | | Human tissues, cultured cells | [95] | | let-7g | Downregulated | COL12A | Cultured cells, human tissues | [96] | | miR-7 | Downregulated | PIK3CD | Cultured cells, human tissues | [97] | | miR-10a | Downregulated | EphA4 | Cultured cells | [98] | | miR-10b | Downregulated | | Human tissues | [99] | | miR-15a/16 | Downregulated | | Cultured cells | [100] | | miR-21 | Downregulated | | Human tissues | [82] | | miR-26a | Downregulated | IL-6 | Human tissues, xenograft model | [101] | | | Downregulated | CyclinD2, E2 | Cultured cells, mouse model | [102] | | miR-29 | Downregulated | Bel2, Mel1 | Human tissues, cultured cells | [103] | | miR-29b | Downregulated | MMP-2 | Human tissues, cultured cell | [104] | | miR-29c | Downregulated | SIRT1 | Cultured cells | [105] | | miR-34a | Downregulated | CCL22 | Human tissues, cultured cells | [106] | | miR-99a | Downregulated | PLK1 | Human tissues, cultured cells | [107] | | | Downregulated | IGF-1R | Human tissues, cultured cells | [108] | | miR-100 | Downregulated | PLK1 | Human tissues, cultured cells | [107] | | miR-101 | Downregulated | EZH2, EED | Human tissues, cultured cells | [109] | | | Downregulated | | Human tissues, cultured cells | [95] | | | Downregulated | Mcl1 | Cultured cells, human tissues | [110] | | | Downregulated | Fos | Human tissues, cultured cells | [111] | | miR-122 | Downregulated | c-Myc | Human tissues, cultured cells | [112] | | | Downregulated | | Cultured cells | [113] | | | Downregulated | MTTP | Knockout mice | [32] | | | Downregulated | IL6, TNF | Knockout mice | [31] | | | Downregulated | IGF-1R | Human tissues | [114] | | | Downregulated | Cyclin G1 | Human tissues, cultured cells | [115] | | miR-124 | Downregulated | ROCK2, EZH2 | Human tissues, cultured cells | [116] | | | Downregulated | CDK6, VIM, SMYD3, IQGAP1 | Human tissues, cultured cells | [117] | | miR-125a/125b | Downregulated | | Human tissues, cultured cells | [118] | | miR-125b | Downregulated | SUV39H | Human tissues, cultured cells | [119] | | | Downregulated | Mcl1, Bclw, IL6R | Human tissues, cultured cells | [120] | | | Downregulated | | Human tissues, cultured cells | [95] | | | Downregulated | PIGF, MMP-2, MMP-9 | Human tissues, cultured cells | [121] | | | Downregulated | Lin28B | Human tissues, cultured cells | [122] | | miR-139 | Downregulated | ROCK2 | Human tissues, cultured cells | [123] | | miR-139-5p | Downregulated | | Human tissues, cultured cells | [95] | | miR-140-5p | Downregulated | TGFBR1, FGF9 | Human tissues, cultured cells | [124] | | | | DNMT1 | Knockout mice | [125] | | miR-141 | Downregulated | DLC-1 | Human tissues | [126] | | miR-145 | Downregulated | | Human tissues | [60] | | | Downregulated | IRS1, IRS2, IGF-1R, b-catenin | Human tissues, cultured cells | [127] | | | Downregulated | | Human tissues | [85] | | miR-148a | Downregulated | c-Met | Human tissues, cultured cells | [128] | | | Downregulated | HRIP | Mouse xenograft model, cultured cells | [129] | | | Downregulated | e-cadherin | Human tissues, cultured cells | [130] | | | Downregulated | c-Myc | Cultured cells | [131] | | miR-152 | Downregulated | DNMT1, GSTP1, CDH1 | Human tissues | [132] | Table 2 continued | miRNA | Expression levels | Targets | Main tested samples | References | |---------------|-------------------|-----------------------|-------------------------------|------------| | miR-195 | Downregulated | NF-κB pathway | Cultured cells | [133] | | | Downregulated | VEGF, VAV2, CDC42 | Cultured cells, human tissues | [134] | | | Downregulated | Cyclin D1, CDK6, E2F3 | Cultured cells, human tissues | [135] | | miR-198 | Downregulated | | Human tissues | [60] | | miR-199a/b-3p | Downregulated | PAK4 | Human tissues, cultured cells | [30] | | miR-199b | Downregulated | | Human tissues | [85] | | miR-200a | Downregulated | H3 acetylation | Human tissues, cultured cells | [136] | | miR-200b | Downregulated | | Human tissues, cultured cells | [95] | | miR-200c | Downregulated | | Human tissues | [82] | | miR-200 | Downregulated | | Human tissues | [82] | | miR-203 | Downregulated | ABCE1 | Human tissues, cultured cells | [117] | | miR-214 | Downregulated | HDGF | Human tissues, cultured cells | [137] | | miR-222 | Downregulated | | Human tissues | [82] | | miR-223 | Downregulated | STMN1 | Human tissues | [138] | | miR-224 | Downregulated | | Human tissues | [139] | | miR-363-3p | Downregulated | c-Myc | Cultured cells | [131] | | miR-375 | Downregulated | ATG7 | Human tissues, cultured cells | [140] | | | Downregulated | AEG-1 | Human tissues, cultured cells | [141] | | miR-429 | Downregulated | Rab18 | Cultured cells | [142] | | miR-449 | Downregulated | c-MET | Xenograft, cultured cells | [143] | | miR-520e | Downregulated | NIK | Human tissues, cultured cells | [69] | | miR-612 | Downregulated | AKT2 | Cultured cells, human tissues | [144] | | miR-637 | Downregulated | STAT3 activation | Human tissues, cultured cells | [145] | | miR-1271 | Downregulated | GLP3 | Human tissues, cultured cells | [99] | **Fig. 2** A model bridging chronic inflammation and transformation by miRNA. Inflammation triggers activation of NF-κB, which leads to transcription of LIN28B. LIN28B inhibits the production of Let-7. Let-7 normally inhibits IL-6 expression, resulting in higher levels of IL-6 than are achieved by NF- κ B activation. IL-6 mediated STAT3 activation is necessary for transformation and IL-6 activates NF- κ B, completing a positive feedback loop miRNAs, as a new class of gene expression regulators, may be involved in chronic inflammation-induced carcinogenesis and, in fact, several studies have clarified one such linkage, in which miRNAs may serve as a bridge between continuous inflammation and carcinogenesis. A flagship report addresses a positive feedback loop of an inflammatory response mediated by NF-κB that activates Lin28B transcription (Fig. 2) [40]. LIN28B, which is an inhibitor of miRNA processing, reduces let-7 levels. Let-7 inhibits IL-6 expression, resulting in higher levels of IL-6 than achieved by NF- κ B activation. IL-6-mediated STAT3 activation is necessary for transformation and IL-6 activates NF- κ B, completing a positive feedback loop. Although the experiments mainly used MCF10A cells (breast cancer cells), a similar feedback loop was observed in HCC tissues. The authors termed these mechanisms an Fig. 3 A model describing a positive feedback loop mediated by miRNAs from transient HNF4 α inhibition to transformation. Transient silencing of HNF4 α is mediated by miR-24 and miR-629, both of which are induced by STAT3 activation following IL-6 stimulation. miR-124, whose promoter region contains HNF4 α -binding sites, targets IL-6R and, thus, HNF4 α silencing results in reduced expression of miR-124 and enhanced expression of IL-6R and activation of STAT3, which induces miR-24 and miR-629. This microRNA feedback-inflammatory loop is thought to be crucial in IL-6-mediated liver cancer "epigenetic switch" because the loop maintains the epigenetic transformed state even in the absence of induction by inflammation (Fig. 2). Another report addressed hepatocarcinogenesis induced by transient inhibition of HNF4 α (Fig. 3) [41]. HNF4 α was reported to be involved in liver oncogenesis, although discrepant reports have also been published [42–44]. In that report, transient HNF4 α silencing was sufficient to maintain cell transformation. Through a miRNA library screen, miR-24 and miR-629 were identified to target HNF4a. Interestingly, both miRNAs were induced following HNF4\alpha silencing, supporting their involvement in the HNF4α-dependent feedback loop. miR-24 and miR-629 contain the STAT3-binding motif in their promoter region. The authors showed that in response to IL-6, STAT3 binding to their promoters increased, resulting in miRNA expression. They also identified miR-124, whose promoter region contains HNF4α binding sites. miR-124 targets IL-6R and, thus, HNF4α silencing results in reduced expression of miR-124 and enhanced expression of IL-6R and activation of STAT3. The importance of these feedback loops was confirmed in vivo using a mouse HCC model induced by diethylnitrosamine. miR-124 delivery by cationic liposomes prevented tumor development. Thus, these microRNA feedback-inflammatory loops are important and can be a therapeutic target for liver cancer (Fig. 3) [41]. A recent paper reported a similar but distinct observation (Fig. 4). The authors found that when using DEN-induced foci of altered hepatocytes (FAH), LIN28-expressing cells are present in FAH, in which let-7 is down-regulated, resulting in the enhanced expression of IL-6, mediating the progression of malignancies from progenitors. An important difference between the cells in FAH and those in early hepatocarcinogenesis is that IL-6 signaling is autocrine, being mediated by reduced let-7 due to upregulation of LIN28B in FAH cells. This mechanism may contribute to malignant progression from HCC progenitor cells (Fig. 4) [45]. These three reports are from related research groups, and rely on the hypothesis that the IL-6-STAT3 pathway is crucial for hepatocarcinogenesis. Although IL-6 has been implicated as a growth factor in various epithelial cancers [46, 47], its relevance in hepatocarcinogenesis needs to be confirmed to determine the applicability and reproducibility of these findings to the clinical setting. Fig. 4 A model bridging the malignant transformation of precursor cells and autocrinemediated inflammation by microRNA. LIN28-expressing cells exist in the foci of altered
hepatocytes, in which let-7 is downregulated, resulting in enhanced IL-6 expression, which mediates the progression of malignancies from progenitor cells #### miRNAs as therapeutic targets in the liver Recently, miravirsen, a LNA-modified DNA phosphorothioate antisense oligonucleotide against miR-122, became the first miRNA-targeting drug for clinical use [48]. It was developed to target HCV, as the stability and propagation of this virus is dependent on a functional interaction between the HCV genome and miR-122 [49, 50]. No harmful events were observed in Phase I studies in healthy volunteers, and Phase II studies proceeded to evaluate the safety and efficacy of miravirsen in 36 patients with chronic HCV genotype 1 infection. The patients were randomly assigned to receive 5 weeks of subcutaneous miravirsen injections at 3, 5 or 7 mg per kg body weight or a placebo over a 29-day period. Miravirsen resulted in a dose-dependent reduction in HCV levels, without major adverse events and with no escape mutations in the miR-122 binding sites of the HCV genome [48]. The success of miravirsen is promising, not only as a novel anti-HCV drug, but also as the first trial of miRNA-targeting therapy. In addition to miravirsen, a clinical trial of MRX34 as a mimic of miR-34 is underway. MRX34 is a liposome-formulated mimic of the tumor suppressor miR-34 (Mirna Therapeutics, Austin, TX, USA). Further study of MRX34 is being conducted by Mirna Therapeutics, which initiated a Phase I study in May 2013 to examine the effects of MRX34 on unresectable primary liver cancer or advanced or metastatic cancer with liver involvement (ClinicalTrials.gov Identifier: NCT01829971). If these oligonucleotide therapies are successful, therapeutic options based on the numerous miRNAs deregulated during hepatocarcinogenesis appear promising [51]. ## Issues to be resolved in miRNA involvement in hepatocarcinogenesis As described above, along with recent discoveries of the diverse effects of miRNAs in hepatocarcinogenesis, miRNA-mediated intervention is promising for the development of new diagnostic, preventive and therapeutic tools. However, the data obtained to date are far from complete. The following are some of the critical issues that we believe need to be resolved. - 1. The reason for the non-reproducible results among studies should be determined to utilize the available data more reasonably and efficiently. - Identification of crucial driver miRNAs among the diverse deregulated miRNAs is critical to develop useful therapeutics in clinics, although even passive miRNAs may be utilized as markers for diagnosis or prediction of prognosis. - 3. Comprehensive target gene analyses using in silico systems biology models should be applied. - 4. For effective interventions using miRNA, the delivery method, improved oligonucleotide modification and safety must be further considered. Since miRNAs generally have diverse effects due to targeting multiple mRNAs, undesired outcomes, so called off-target effects, may be encountered, even when a specific miRNA is targeted. Finding solutions to these issues should be considered as critically important for the near future in order to understand more fully the physiological function of miRNAs in hepatocarcinogenesis and utilize this knowledge in translational research. #### Conclusions The discovery of miRNA has, without doubt, opened up new possibilities for understanding the molecular mechanisms of gene regulation. As numerous findings regarding miRNA, from diverse perspectives, have been reported, the speed of discovery in this field is astonishing. In fact, novel therapeutics targeting miRNAs have already been successfully applied in clinical trials. Some miRNAs may be useful as novel biomarkers. Additionally, the discovery of novel concepts in the pathogenesis of hepatocarcinogenesis frequently involves miRNA. On the other hand, several important issues remain to be resolved in this field. Thus, continuous research in this field is still necessary to develop truly innovative concepts in our understanding of pathogenesis related to miRNA and to transform the obtained knowledge into real clinical applications. **Conflict of interest** The authors declare that they have no conflict of interest. #### References - Carrington J, Ambros V. Role of microRNAs in plant and animal development. Science. 2003;301:336–8. - Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54. - 3. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in *C. elegans*. Cell. 1993;75:855–62. - Kozomara A, Griffiths-Jones S. miRBase: integrating micro-RNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152-7. - John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol. 2004;2:e363. - Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500. - Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. - 8. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5. - Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. - Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–66. - Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60. - Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–101. - 13. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–81. - Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415-9. - Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–27. - Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004;432:231–5. - Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–6. - 18. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95–8. - Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 2005;19:2979–90. - Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002;16:720–8. - Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123:631–40. - Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. - 23. Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell. 2010;38:789–802. - Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. - Lall S, Grün D, Krek A, Chen K, Wang YL, Dewey CN, et al. A genome-wide map of conserved microRNA targets in *C. ele-gans*. Curr Biol. 2006;16:460–71. - 26. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-74. - 27. Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood. 2009;114:1374–82. - 28. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467:86–90. - 29. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and - its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17:28–40. - 30. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 2011;19:232–43. - 31. Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122:2871–83. - 32. Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122:2884–97. - 33. Kojima K, Takata A, Vadnais C, Otsuka M, Yoshikawa T, Akanuma M, et al. MicroRNA122 is a key regulator of α-feto-protein expression and influences the aggressiveness of hepatocellular carcinoma. Nat Commun. 2011;2:338. - 34. Castro RE, Ferreira DM, Zhang X, Borralho PM, Sarver AL, Zeng Y, et al. Identification of microRNAs during rat liver regeneration after partial hepatectomy and modulation by ursodeoxycholic acid. Am J Physiol Gastrointest Liver Physiol. 2010;299:G887–97. - Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–58. - 36. Chiu LY, Kishnani PS, Chuang TP, Tang CY, Liu CY, Bali D, et al. Identification of differentially expressed microRNAs in human hepatocellular adenoma associated with type I glycogen storage disease: a potential utility as biomarkers. J Gastroenter-ol. 2013 (in press). -
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–8. - 38. Clevers H. At the crossroads of inflammation and cancer. Cell. 2004;118:671–4. - 39. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99. - Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139:693–706. - Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, et al. An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell. 2011;147:1233–47. - 42. Horiguchi N, Takayama H, Toyoda M, Otsuka T, Fukusato T, Merlino G, et al. Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene. 2002;21:1791–9. - 43. Ning BF, Ding J, Yin C, Zhong W, Wu K, Zeng X, et al. Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res. 2010;70:7640–51. - 44. Walesky C, Edwards G, Borude P, Gunewardena S, O'Neil M, Yoo B, et al. Hepatocyte nuclear factor 4 alpha deletion promotes diethylnitrosamine-induced hepatocellular carcinoma in rodents. Hepatology. 2013;57:2480–90. - He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155:384 –96. - 46. Akira S, Kishimoto T. The evidence for interleukin-6 as an autocrine growth factor in malignancy. Semin Cancer Biol. 1992;3:17–26. - 47. He G, Karin M. NF-κB and STAT3—key players in liver inflammation and cancer. Cell Res. 2011;21:159–68. - Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–94. - Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liverspecific MicroRNA. Science. 2005;309:1577–81. - Fukuhara T, Matsuura Y. Role of miR-122 and lipid metabolism in HCV infection. J Gastroenterol. 2013;48:169–76. - Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol. 2013;31:577. - 52. Yang F, Yin Y, Wang F, Wang Y, Zhang L, Tang Y, et al. miR-17-5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology. 2010;51:1614–23. - Liu WH, Yeh SH, Lu CC, Yu SL, Chen HY, Lin CY, et al. MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology. 2009;136:683–93. - 54. Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, et al. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology. 2009;50:1152–61. - Jiang R, Deng L, Zhao L, Li X, Zhang F, Xia Y, et al. miR-22 promotes HBV-related hepatocellular carcinoma development in males. Clin Cancer Res. 2011;17:5593–603. - 56. Wang B, Hsu SH, Frankel W, Ghoshal K, Jacob ST. Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha. Hepatology. 2012;56: 186–97. - 57. Fu X, Meng Z, Liang W, Tian Y, Wang X, Han W, et al. miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene. 2013 (in press). - 58. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361:1437–47. - Yao J, Liang L, Huang S, Ding J, Tan N, Zhao Y, et al. MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology. 2010;51: 846–56. - Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223–32. - 61. Shen G, Jia H, Tai Q, Li Y, Chen D. miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis. 2013;34:211-9. - 62. Ma S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A, et al. miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707. - Liu S, Guo W, Shi J, Li N, Yu X, Xue J, et al. MicroRNA-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma. J Hepatol. 2012;56:389–96. - 64. Zhang X, Liu S, Hu T, He Y, Sun S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology. 2009;50:490–9. - Zhu K, Pan Q, Zhang X, Kong LQ, Fan J, Dai Z, et al. MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression. Carcinogenesis. 2013;34:2071–9. - 66. Luedde T. MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma. Hepatology. 2010;52:1164–6. - 67. Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M, et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol. 2010;12:390–9. - 68. Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4miR155-SOCS1-MMP9 axis. Hepatology. 2013;57:2274–86. - 69. Zhang S, Shan C, Kong G, Du Y, Ye L, Zhang X. MicroRNA-520e suppresses growth of hepatoma cells by targeting the NFκB-inducing kinase (NIK). Oncogene. 2012;31:3607–20. - 70. Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene. 2010;29:1787–97. - 71. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50:472–80. - 72. Goeppert B, Schmezer P, Dutruel C, Oakes C, Renner M, Breinig M, et al. Down-regulation of tumor suppressor A kinase anchor protein 12 in human hepatocarcinogenesis by epigenetic mechanisms. Hepatology. 2010;52:2023–33. - 73. Petrelli A, Perra A, Cora D, Sulas P, Menegon S, Manca C, et al. MiRNA/gene profiling unveils early molecular changes and NRF2 activation in a rat model recapitulating human HCC. Hepatology. 2013 (in press). - 74. Ying Q, Liang L, Guo W, Zha R, Tian Q, Huang S, et al. Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma. Hepatology. 2011;54:2064–75. - 75. Chen PJ, Yeh SH, Liu WH, Lin CC, Huang HC, Chen CL, et al. Androgen pathway stimulates microRNA-216a transcription to suppress the tumor suppressor in lung cancer-1 gene in early hepatocarcinogenesis. Hepatology. 2012;56:632–43. - Xia H, Ooi LL, Hui KM. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology. 2013;58:629–41. - 77. Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fornari F, et al. Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology. 2012;56:1025–33. - 78. Yuan Q, Loya K, Rani B, Möbus S, Balakrishnan A, Lamle J, et al. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology. 2013;57:299–310. - Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009;15:5073–81. - Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/ p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27:5651–61. - Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, et al. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA. 2010;107:264–9. - 82. Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008;47:1955–63. - 83. Lan SH, Wu SY, Zuchini R, Lin XZ, Su IJ, Tsai TF, et al. Autophagy suppresses tumorigenesis of hepatitis B virus- - associated hepatocellular carcinoma through degradation of miR-224. Hepatology. 2013 (in press). - 84. Scisciani C, Vossio S, Guerrieri F, Schinzari V, De Iaco R, D'Onorio de Meo P, et al. Transcriptional regulation of miR-224 upregulated in human HCCs by NFκB inflammatory pathways. J Hepatol. 2012;56:855–61. - 85. Gao P, Wong CC, Tung EK, Lee JM, Wong CM, Ng IO. Deregulation of microRNA expression occurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis. J Hepatol. 2011;54:1177–84. - 86. Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y, et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem. 2008;283: 13205–15. - 87. Lin J, Huang S, Wu S, Ding J, Zhao Y, Liang L, et al. Micro-RNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis. 2011;32:1641–7. - 88. Yang H, Cho ME, Li TW, Peng H, Ko KS, Mato
JM, et al. MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J Clin Invest. 2013;123:285–98. - 89. Zhang LY, Liu M, Li X, Tang H. miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J Biol Chem. 2013;288:4035–47. - Lim L, Balakrishnan A, Huskey N, Jones KD, Jodari M, Ng R, et al. MiR-494 within an oncogenic MicroRNA megacluster regulates G1/S transition in liver tumorigenesis through suppression of MCC. Hepatology. 2013 (in press). - 91. Toffanin S, Hoshida Y, Lachenmayer A, Villanueva A, Cabellos L, Minguez B, et al. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology. 2011;140(1618–1628):e1616. - 92. Zhang L, Yang L, Liu X, Chen W, Chang L, Chen L, et al. MicroRNA-657 promotes tumorigenesis in hepatocellular carcinoma by targeting transducin-like enhancer protein 1 through nuclear factor kappa B pathways. Hepatology. 2013;57:1919–30. - 93. Law PT, Qin H, Ching AK, Lai KP, Co NN, He M, et al. Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol. 2013;58:1165–73. - 94. Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, et al. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol. 2010;53:57–66. - 95. Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 2012;56:622–31. - Ji J, Zhao L, Budhu A, Forgues M, Jia HL, Qin LX, et al. Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol. 2010;52:690–7. - Fang Y, Xue JL, Shen Q, Chen J, Tian L. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012;55:1852-62. - 98. Yan Y, Luo YC, Wan HY, Wang J, Zhang PP, Liu M, et al. MicroRNA-10a is involved in the metastatic process by regulating Eph tyrosine kinase receptor A4-mediated epithelial-mesenchymal transition and adhesion in hepatoma cells. Hepatology. 2013;57:667–77. - 99. Maurel M, Jalvy S, Ladeiro Y, Combe C, Vachet L, Sagliocco F, et al. A functional screening identifies five microRNAs - controlling glypican-3: role of miR-1271 down-regulation in hepatocellular carcinoma. Hepatology. 2013;57:195–204. - 100. Wang Y, Jiang L, Ji X, Yang B, Zhang Y, Fu XD. Hepatitis B viral RNA directly mediates down-regulation of the tumor suppressor microRNA miR-15a/miR-16-1 in hepatocytes. J Biol Chem. 2013;288:18484–93. - 101. Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC, et al. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology. 2013;58:158–70. - 102. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17. - 103. Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010;51:836–45. - 104. Fang JH, Zhou HC, Zeng C, Yang J, Liu Y, Huang X, et al. MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology. 2011;54:1729–40. - 105. Bae HJ, Noh JH, Kim JK, Eun JW, Jung KH, Kim MG, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2013 (in press). - 106. Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell. 2012;22:291–303. - 107. Petrelli A, Perra A, Schernhuber K, Cargnelutti M, Salvi A, Migliore C, et al. Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression. Oncogene. 2012;31:4517–26. - 108. Li D, Liu X, Lin L, Hou J, Li N, Wang C, et al. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem. 2011;286:36677–85. - 109. Wang L, Zhang X, Jia LT, Hu SJ, Zhao J, Yang JD, et al. c-Myc-mediated epigenetic silencing of microRNA-101 contributes to dysregulation of multiple pathways in hepatocellular carcinoma. Hepatology. 2013 (in press). - 110. Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. Micro-RNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69:1135–42. - 111. Li S, Fu H, Wang Y, Tie Y, Xing R, Zhu J, et al. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology. 2009;49:1194–202. - 112. Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, et al. Reciprocal regulation of miR-122 and c-Myc in hepatocellular cancer: role of E2F1 and TFDP2. Hepatology. 2013 (in press). - 113. Song K, Han C, Zhang J, Lu D, Dash S, Feitelson M, et al. Epigenetic regulation of MicroRNA-122 by peroxisome proliferator activated receptor-gamma and hepatitis b virus X protein in hepatocellular carcinoma cells. Hepatology. 2013 (in press). - 114. Zeng C, Wang R, Li D, Lin XJ, Wei QK, Yuan Y, et al. A novel GSK-3 beta-C/EBP alpha-miR-122-insulin-like growth factor 1 receptor regulatory circuitry in human hepatocellular carcinoma. Hepatology. 2010;52:1702–12. - 115. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 2007;67:6092–9. - 116. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut. 2012;61:278–89. - 117. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76. - 118. Kim JK, Noh JH, Jung KH, Eun JW, Bae HJ, Kim MG, et al. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology. 2013;57:1055–67. - 119. Fan DN, Tsang FH, Tam AH, Au SL, Wong CC, Wei L, et al. Histone lysine methyltransferase, suppressor of variegation 3–9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b. Hepatology. 2013;57:637–47. - 120. Gong J, Zhang JP, Li B, Zeng C, You K, Chen MX, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene. 2013;32:3071–9. - 121. Alpini G, Glaser SS, Zhang JP, Francis H, Han Y, Gong J, et al. Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. J Hepatol. 2011;55:1339–45. - 122. Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J, et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology. 2010;52:1731–40. - 123. Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rhokinase 2. Gastroenterology. 2011;140:322–31. - 124. Yang H, Fang F, Chang R, Yang L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor β receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology. 2013;58:205–17. - 125. Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Hikiba Y, Obi S, et al. MicroRNA-140 acts as a liver tumor suppressor by controlling NF-κB activity by directly targeting DNA methyltransferase 1 (Dnmt1) expression. Hepatology. 2013;57:162–70. - 126. Banaudha K, Kaliszewski M, Korolnek T, Florea L, Yeung ML, Jeang KT, et al. MicroRNA silencing of tumor suppressor DLC-1 promotes efficient hepatitis C virus replication in primary human hepatocytes. Hepatology. 2011;53:53–61. - 127. Law PT, Ching AK, Chan AW, Wong QW, Wong CK, To KF, et al. MiR-145 modulates multiple components of the insulin-like growth factor pathway in hepatocellular carcinoma. Carcinogenesis. 2012;33:1134–41. - 128. Gailhouste L, Gomez-Santos L, Hagiwara K, Hatada I, Kitagawa N, Kawaharada K, et al. miR-148a plays a pivotal role in the liver by promoting the hepatospecific phenotype and suppressing the invasiveness of transformed cells. Hepatology. 2013;58:1153–65. - 129. Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X, et al. Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. J Clin Invest. 2013;123:630-45. - 130. Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM. MicroRNA-148a suppresses the epithelial–mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene. 2013 (in press). - 131. Han H, Sun D, Li W, Shen H, Zhu Y, Li C, et al. A c-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology. 2013;57:2378–89. - 132. Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virusrelated hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52:60–70. - 133. Ding J, Huang S, Wang Y, Tian Q, Zha R, Shi H, et al. Genomewide screening reveals that miR-195 targets the TNF-α/NF-κB pathway by down-regulating IκB kinase alpha and TAB 3 in hepatocellular carcinoma. Hepatology. 2013;58:654–66. - 134. Wang R, Zhao N, Li S, Fang JH, Chen MX, Yang J, et al. MicroRNA-195
suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology. 2013;58:642–53. - 135. Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, Zhuang SM. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50:113–21. - 136. Yuan JH, Yang F, Chen BF, Lu Z, Huo XS, Zhou WP, et al. The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology. 2011;54:2025–35. - 137. Shih TC, Tien YJ, Wen CJ, Yeh TS, Yu MC, Huang CH, et al. MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol. 2012;57:584–91. - 138. Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF, et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology. 2008;135:257–69. - 139. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8. - 140. Chang Y, Yan W, He X, Zhang L, Li C, Huang H, et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology. 2012;143(177–187):e178. - 141. He XX, Chang Y, Meng FY, Wang MY, Xie QH, Tang F, et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012;31:3357–69. - 142. You X, Liu F, Zhang T, Li Y, Ye L, Zhang X. Hepatitis B virus X protein upregulates oncogene Rab18 to result in the dysregulation of lipogenesis and proliferation of hepatoma cells. Carcinogenesis. 2013;34:1644–52. - 143. Buurman R, Gürlevik E, Schäffer V, Eilers M, Sandbothe M, Kreipe H, et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology. 2012;143:811–20. e811–15. - 144. Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, et al. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med. 2013;210:789–803. - 145. Zhang JF, He ML, Fu WM, Wang H, Chen LZ, Zhu X, et al. Primate-specific microRNA-637 inhibits tumorigenesis in hepatocellular carcinoma by disrupting signal transducer and activator of transcription 3 signaling. Hepatology. 2011;54:2137–48. ## High ubiquitous mitochondrial creatine kinase expression in hepatocellular carcinoma denotes a poor prognosis with highly malignant potential Baasanjav Uranbileg¹*, Kenichiro Enooku^{1,2}*, Yoko Soroida¹, Ryunosuke Ohkawa¹, Yotaro Kudo², Hayato Nakagawa², Ryosuke Tateishi², Haruhiko Yoshida², Seiko Shinzawa², Kyoji Moriya³, Natsuko Ohtomo², Takako Nishikawa², Yukiko Inoue², Tomoaki Tomiya², Soichi Kojima⁴, Tomokazu Matsuura⁵, Kazuhiko Koike², Yutaka Yatomi¹ and Hitoshi Ikeda^{1,2} We previously reported the increased serum mitochondrial creatine kinase (MtCK) activity in patients with hepatocellular carcinoma (HCC), mostly due to the increase in ubiquitous MtCK (uMtCK), and high uMtCK mRNA expression in HCC cell lines. We explored the mechanism(s) and the relevance of high uMtCK expression in HCC. In hepatitis C virus core gene transgenic mice, known to lose mitochondrial integrity in liver and subsequently develop HCC, uMtCK mRNA and protein levels were increased in HCC tissues but not in non-tumorous liver tissues. Transient overexpression of ankyrin repeat and suppressor of cytokine signaling box protein 9 (ASB9) reduced uMtCK protein levels in HCC cells, suggesting that increased uMtCK levels in HCC cells may be caused by increased gene expression and decreased protein degradation due to reduced ASB9 expression. The reduction of uMtCK expression by siRNA led to increased cell death, and reduced proliferation, migration and invasion in HCC cell lines. Then, consecutive 105 HCC patients, who underwent radiofrequency ablation with curative intent, were enrolled to analyze their prognosis. The patients with serum MtCK activity >19.4 U/L prior to the treatment had significantly shorter survival time than those with serum MtCK activity ≤19.4 U/L, where higher serum MtCK activity was retained as an independent risk for HCC-related death on multivariate analysis. In conclusion, high uMtCK expression in HCC may be caused by hepatocarcinogenesis *per se* but not by loss of mitochondrial integrity, of which ASB9 could be a negative regulator, and associated with highly malignant potential to suggest a poor prognosis. **Key words:** ubiquitous mitochondrial creatine kinase, ankyrin repeat and suppressor of cytokine signaling box protein 9, hepatocellular carcinoma, prognostic factor Abbreviations: AFP: alpha-fetoprotein; ALT: alanine aminotransferase; ASB: ankyrin repeat and suppressor of cytokine signaling box protein; AST: aspartate aminotransferase; DCP: des-gamma-carboxy prothrombin; GGT: gamma-glutamyltransferase; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; RFA: radiofrequency ablation; ROC: receiver operating characteristic; SOCS: suppressor of cytokine signaling; uMtCK: ubiquitous mitochondrial creatine kinase *B.U. and K.E. contributed equally to this work **DOI:** 10.1002/ijc.28547 History: Received 2 July 2013; Accepted 1 Oct 2013; Online 15 Oct 2013 Correspondence to: Hitoshi Ikeda, Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Tel.: +81-3-3815-5411, Fax: +81-3-5689-0495, E-mail: ikeda-lim@h.u-tokyo.ac.jp Primary liver cancer, 95% of which is hepatocellular carcinoma (HCC), is ranked third in men and fifth in women as a cause of death from malignant neoplasms in Japan. Furthermore, the worldwide incidence of HCC has increased over several decades, and HCC has recently received considerable attention as a common cause of mortality.² HCC often arises in background of liver cirrhosis, which is formed as a result of chronic viral infections, alcoholic injury and some other disorders in the liver.^{3,4} Of note, HCC has recently been linked to non-alcoholic fatty liver disease, and this association may contribute to the rising incidence of HCC witnessed in many industrialized countries. It is also problematic that HCC may complicate non-cirrhotic, nonalcoholic fatty liver disease with mild or absent fibrosis, greatly expanding the population potentially at higher risk.⁵ Because HCC has a poor prognosis due to its aggressive nature, surgical resection and radiofrequency ablation (RFA) are effective only in early stage of HCC. 4,6 Recurrence occurs almost in 70% of patients with HCC of the first occurrence within 5 years.⁷ Regarding the treatment of HCC in United ¹ Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ² Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ³ Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ⁴ Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako, Saitama, Japan ⁵ Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan #### What's new? PERSON REPORTED TO A PROPERTY OF THE T The identification of biomolecules associated with hepatocellular carcinoma (HCC) could greatly improve screening for early disease detection. Ubiquitous mitochondrial creatine kinase (uMtCK) could be a promising marker in this context, though its relevance in HCC is unclear, as it may be associated with mitochondrial stability rather than carcinogenesis. Here, in transgenic mice susceptible to the loss of liver mitochondrial integrity, uMtCK was found to be elevated in HCC tissue but not in non-tumorous liver tissue. Increased uMtCK was further linked to reduced expression of ASB9 and elevated risk for HCC-related death. States veterans, approximately 40% of patients were reportedly diagnosed during hospitalization. Most patients were not seen by a surgeon or oncologist for treatment evaluation and only 34% received treatment.8 Although there was no effective chemotherapy for advanced HCC for a long time, a novel anti-cancer therapy such as anti-angiogenesis pathway therapy has just recently been developed to prolong survival in patients with the advanced disease. 9,10 However, its effect is rather limited, just extending median survival from 7.9 months to 10.7 months in patients with advanced HCC.¹⁰ Thus, the effective way for early detection of HCC is urgently needed. To this end, the recommended screening strategy for patients with cirrhosis includes the determination of serum alpha-fetoprotein (AFP) levels and an abdominal ultrasound every 6 months to detect HCC at an earlier stage. AFP, however, is a marker characterized by poor sensitivity and specificity. 11 Although other potential markers such as desgamma-carboxy prothrombin (DCP) and squamous cell carcinoma antigen-immunoglobulin M complex have been proposed to use for diagnosis of HCC, none of them is optimal; however, when used together, their sensitivity in detecting HCC is increased. 11-14 For cholangiocarcinoma, which is a relatively rare type of primary liver cancer that originates in the bile duct epithelium, carbohydrate antigen 19-9, carcinogenic embryonic antigen and cancer antigen 125 have shown sufficient sensitivity and specificity to detect and monitor it. In particular, the combination of these markers seems to increase their efficiency in diagnosing of cholangiocarcinoma.¹⁵ In this context, we have recently reported that serum mitochondrial creatine kinase (MtCK) activity is increased in patients with HCC, even in those with early stage, suggesting that MtCK may be useful to
detect early stage of HCC.16 Among two tissue-specific isozymes of MtCK, that is, ubiquitous MtCK (uMtCK) and sarcomeric MtCK, we have found that the increase in serum MtCK activity in HCC patients was mostly due to that in serum uMtCK activity but not in serum sarcomeric MtCK activity. 16 Then, we have further observed the higher expression of uMtCK mRNA in HCC cell lines than in normal human liver tissues. 16 Of note, the increased uMtCK expression occurred not only upon malignant changes in the liver, but also in several other malignant tumors such as gastric cancer, breast cancer and lung cancer, where the high expression of uMtCK suggests a poor prognosis. 17-19 In contrast, uMtCK was down-regulated in oral squamous cell carcinoma, 20 and sarcomeric MtCK was also down-regulated during sarcoma development in leg muscle in mice.²¹ Therefore, we aimed to elucidate the mechanism(s) and the significance of high uMtCK expression in HCC in this study. We first examined whether loss of mitochondrial integrity might be involved in high uMtCK expression in HCC, using hepatitis C virus (HCV) core gene transgenic mice. HCV core protein has been first demonstrated to play a pivotal role in HCC development within these transgenic mice, which are known to lose mitochondrial integrity and subsequently develop HCC without apparent inflammation and fibrosis in the liver. 22,23 As a regulatory factor for uMtCK expression, we have focused on the ankyrin repeat and suppressor of cytokine signaling (SOCS) box protein (ASB) family, which reportedly plays an important role in biological processes and regulations of cell proliferation and differentiation. The ASBs have two functional domains: a SOCS box and a variable number of N-terminal ankyrin repeats. Although SOCS domain uses the SH2 domain to recruit substrates, the ankyrin repeat regions serve as a specific proteinprotein interaction domain to recruit target substrates.²⁴ One of ASB family protein, ASB9, was found to interact with brain type of creatine kinase, leading to its degradation.²⁵ Recently, uMtCK was found to be another ASB9 target.²⁶ Ankyrin repeat domains of ASB9 associates with the substrate binding site of uMtCK and induce its ubiquitination. Thus, we analyzed the potential association between uMtCK and ASB9 in HCC cell lines, HepG2, PLC/PRF/5, HuH7, in which the expression of uMtCK mRNA was shown to be increased compared with normal liver tissues.¹⁶ To clarify the significance of high uMtCK expression in HCC, we used the siRNA approach to silence uMtCK expression and study its effects on HCC cell lines. Finally, we analyzed the clinical significance of high uMtCK expression in HCC patients who were treated with RFA. ### Material and Methods Human normal liver RNA was purchased from Cell Applications (San Diego, CA), and human whole liver cell pellets from DV Biologics (Costa Mesa, CA). Specific antibodies against uMtCK and ASB9 were obtained from Abcam (Cambridge, UK), an antibody against caspase 3 from Cell Signaling Technology (3G2; Boston, MA), and an antibody against beta-actin from Sigma–Aldrich (MO). #### Cells and cell culture HCC cell lines, HepG2 and PLC/PRF/5 were obtained from RIKEN BioResource Center (Tsukuba, Ibaraki, Japan) and HuH7 from Health Science Research Resources Bank, Japan Health Science Foundation. HepG2 and PLC/PRF/5 were maintained in RPMI-1640 containing 10% of fetal bovine serum, and HuH7, in Dulbecco's Modified Eagle Medium containing 10% of fetal bovine serum. #### Transgenic mice HCV core gene transgenic mice were produced as previously described.²² Nontransgenic littermates of the transgenic mice were used as controls. All mice were fed a standard pelleted diet and water *ad libitum* under normal laboratory conditions of 12 hr-light/dark cycles, and received humane care. The experimental protocol was approved by Animal Research Committee of the University of Tokyo. #### **Ouantitative real-time PCR** Total RNA of HCC cell lines (HepG2, PLC/PRF/5 and HuH7), human normal liver and livers from non-transgenic and HCV core gene transgenic mice were extracted using TRI-ZOL reagent (Invitrogen, CA). One microgram of purified total RNA was transcribed using a SuperScriptTM First-Strand Synthesis System for RT-PCR (Invitrogen). Quantitative real-time PCR was performed with a LightCycler FastStart DNA Master SYBR Green I kit (Roche Molecular Diagnostics, CA) or Taq-Man Universal Master Mix. The primer pairs used were as follows: human ASB9: 5'-CCTGGCATCAGGCTTCTTTC-3' and 5'-ACCCCTGGCTGATGAGGTTC-3'27; human beta-actin: 5'-GGGTCAGAAGGATTCCTATG-3' and 5'-CCTTAATGTC ACGCACGATTT-3'.26 Mouse uMtCK primers and probe were obtained from Applied Biosystems, TaqMan Gene Expression Assays (Mm00438221_m1). The samples were incubated for 10 min at 95°C, followed by 40 cycles at 95°C for 10 sec, 60°C for 10 sec and 72°C for 10 sec. The target gene mRNA expression level was relatively quantified to beta-actin using $2^{-\Delta\Delta Ct}$ method (Applied Biosystems, User Bulletin No 2). #### **ASB9** transfection Cells, transiently expressing human ASB9 protein, were constructed using mammalian cell expression vector p3FLAG CMV-10 containing the corresponding cDNA which derived from human normal liver RNA. The primers used for cloning were 5'-GCGGATCCGTCATGGATGGCAAACAAGGG-3' and 5'-GAGCGGCCGCTTAAGATGTAGGAGAAACTGTT T-3' which were designed based on human ASB9 reference sequence (NM_001031739.2). The ASB9 cDNA was created by PCR and verified by DNA sequencing. #### Immunoblot analysis Cell and tissue extracts were prepared using M-PER Mammalian Protein Extraction Reagent (Thermo Fisher Scientific, IL) plus HaltTM Protease Inhibitor Cocktail (Thermo Fisher Scientific). Immunoblot analysis was performed as previously described,²⁸ using NuPAGE SDS-PAGE Gel (Invitrogen) and iBlot Dry Blotting System (Invitrogen) with specific antibodies against uMtCK (dilution 1:1,000), ASB9 (dilution 1:500), caspase 3 (dilution 1:1,000) and beta-actin (dilution 1:2,000). Immunoreactive proteins were visualized using a chemiluminescence kit (GE Healthcare, Buckinghamshire, UK), and recorded using a LAS-4000 image analyzer (Fuji Film, Tokyo, Japan). The intensities of immunodetected bands were quantified with NIH Image J software. #### uMtCK siRNA transfection Cells were transfected with the human uMtCK-specific 23/27mer RNA duplex or a universal negative control duplex at 20 nM, respectively, according to the vender instructions (Integrated DNA Technologies, IA). The human uMtCK-specific RNA duplex used was 5'-UGAAGCACACCACGGAUCU-3' and 3'-ACUUCGUGUGGUGCCUAGA-5',²⁹ negative control RNA duplex, 5'-CGUUAAUCGCGUAUAAUACGCGUAT-3' and 3'-CAGCAAUUAGCGCAUAUUAUGCGCAUA-5' (Integrated DNA Technologies). The transfection was performed using Lipofectamine PlusTM (Invitrogen) as described.²⁹ #### Cell membrane integrity and proliferation assays Cell membrane integrity was determined using the In Vitro Toxicology Assay Kit, Lactic Dehydrogenase based (Sigma–Aldrich). HCC cell lines were inoculated in six-well plates at 2.5×10^5 cells/well and cultured for 24 hr before uMtCK siRNA or universal negative control transfection. Dead cells were assessed at 48 hr after transfection. Cell proliferation in HCC cell lines was measured at 48 hr after transfection with uMtCK siRNA or universal negative control by determination of BrdU incorporation using the Cell Proliferation ELISA, BrdU colorimetric assay (Roche Applied Science, Upper Bavaria, Germany). In the above two assays, absorbance was measured by plate reader (SPECTRA Thermo, TECAN, Männedorf, Switzerland). #### Cell migration and invasion assays Cell migration and invasion assays were performed according to the vender's instruction (BD, NJ). Cells transfected with uMtCK siRNA or universal negative control were cultured for 24 hr, then 2×10^4 cells were plated into the upper chamber of 24-well plates with 8 µm of pore size in serum-starved condition to examine cell migration and polycarbonate transwell filter chamber coated with Matrigel (BD BioCoat Matrigel Invasion Chamber) to check cell invasion. In both assays, 750 µL medium supplemented with 10% serum was added into the lower chambers. Cells were incubated at 37°C for 22 hr, and the inside chambers were removed with cotton swabs and cells that had transferred to the lower membrane surface were fixed and stained with Diff-Quik stain. Cell counts (four random 100× fields per well) are expressed as the mean number of cells per field of view. #### Patients and measurement of MtCK activity Consecutive 147 HCC patients with cirrhosis caused by hepatitis B virus or HCV, who were admitted into the Department of Gastroenterology, the University of Tokyo Hospital, Tokyo, Japan, between January and April 2010, were previously enrolled to analyze serum MtCK activity. 16 Diagnosis of cirrhosis was based on the presence of clinical and laboratory features indicating portal hypertension, and diagnosis of HCC was made by dynamic CT or MRI. 30,31 Prior to the treatment of HCC, serum MtCK activity was measured16 with an immuno-inhibition method using the two types of anti-MtCK monoclonal antibodies.³² Among these patients, 105 patients, who had been successfully treated by RFA without residual HCC after the treatment, were enrolled in the current prognosis analysis. The detailed procedure of RFA has been meticulously described elsewhere.³³ Overall survival of these 105 patients was analyzed from the time of measurement of serum MtCK activity to death related to HCC, excluding the death not associated with HCC expansion or liver insufficiency, such as cardiovascular events or other organ malignancy, or to March 2013. This study was performed in accordance with the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the Institutional Research Ethics Committees of the authors' institutions. A written informed consent was obtained for the use of the samples in this
study. #### Statistical analysis The results of in vitro experiments are expressed as the means and standard error of the mean. Student's t test (two tailed) was used for comparison unless indicated otherwise. The results were considered significant when p-values were 0.05. In the analysis of risk factors for HCC-related death, we tested the following variables obtained at the time of entry on the univariate and multivariate Cox proportional hazard regression analysis: age, sex, hepatitis B infection, serum MtCK activity, serum albumin concentration, aspartate aminotransferase (AST) levels, alanine aminotransferase (ALT) levels, gamma-glutamyltransferase (GGT) levels, total bilirubin concentration, AFP concentration, DCP concentration, platelet count, prothrombin activity and liver stiffness values. Survival and recurrence curves were created using Kaplan-Meier method and compared via log-rank test. Data processing and analysis were performed using S-PLUS 2000 (Math-Soft, Seattle, WA) and SAS Software version 9.1 (SAS Institute, Cary, NC). #### Results ## Loss of mitochondrial integrity may not contribute to high expression of uMtCK in HCC Mutations of mitochondrial DNA have been reported to be involved in hepatocarcinogenesis in humans.^{34,35} Furthermore, in a mouse model for hepatocarcinogenesis, oxidative stress was shown to lead to loss of mitochondrial integrity in the liver and ultimately hepatocarcinogenesis.²³ Thus, we wondered whether loss of mitochondrial integrity in the liver might be associated with increased expression of uMtCK in HCC. To examine this idea, we used a transgenic mouse model of HCC in HCV infection (transgenic line S-N/863), with which the direct association between HCV and HCC was first described.²² In these HCV core gene transgenic mice, loss of mitochondrial integrity has been reported to be observed as early as 2 months of age and increased in an age-dependent manner,²³ and ultimately HCC develops at 19 months of age without apparent inflammation or fibrosis in the liver.²² We examined uMtCK mRNA levels in the liver of these HCV core protein transgenic mice at 6 months and 19 months of age. These mice at 6 months of age reportedly develop hepatic steatosis²² as well as loss of mitochondrial integrity.²³ In these mice at 19 months of age, tumor tissues of HCC and non-tumorous tissues of the liver were analyzed. Non-transgenic mice at 6 months of age were used as control. uMtCK mRNA levels were increased in tumor tissues of HCC in HCV core gene transgenic mice at 19 months of age by 7.7-fold compared to the liver tissues of control mice (p = 0.02; Fig. 1a). In these HCV core transgenic mice at 19 months of age, uMtCK protein expression was detected in HCC tissues but not in non-tumorous tissues by immunoblot analysis (Fig. 1b). These results suggest that hepatocarcinogenesis per se but not loss of mitochondrial integrity may contribute to the increase in uMtCK levels in HCC. ## Transient expression of ASB9 negatively regulates uMtCK protein levels in HCC cells It has been reported that ASB protein family is importantly involved in ubiquitination-mediated proteolysis pathway and each member of this large protein family has a different target to be degraded. In ASB protein family, we paid attention to ASB9, which reportedly plays a crucial role in the regulation of the brain type of creatine kinase and uMtCK. HCC cell lines, HepG2, PLC/PRF/5 and HuH7, were selected for in vitro experiments, because they had been reported to express high levels of uMtCK mRNA compared to human normal liver tissue. 16 To study whether ASB9 could regulate uMtCK protein levels in these HCC cells, we first measured ASB9 mRNA expression in those cells. Figure 2a demonstrates the low ASB9 mRNA expression in HCC cell lines, contrasting with high uMtCK mRNA expression levels in those cells.16 In line with our mRNA expression data, ASB9 protein levels were almost undetectable in HepG2, PLC/PRF/5 and HuH7 cells comparing to normal whole liver cell pellets (Fig. 2b). Further, we investigated the effect of transient overexpression of ASB9 on uMtCK protein levels in HepG2, PLC/PRF/5 and HuH7 cells. Cells were transiently transfected with mammalian cell expression vector p3FLAG-CMV10 containing human ASB9 DNA and harvested at 36 hr after transfection to analyze protein levels. Down-regulation of uMtCK protein levels by transient Int. J. Cancer: 134, 2189–2198 (2014) © 2013 UICC Figure 1. uMtCK mRNA and protein levels in liver tissues of the control non-transgenic, HCV core gene transgenic mice. (a) uMtCK mRNA levels were examined by real-time PCR in liver tissues of the control non-transgenic mice (Non-TG) at 6 months of age (n=4), and HCV core gene transgenic mice (TG) at 6 (n=4) and 19 months of age (n=4). For HCV core gene transgenic mice at 19 months of age, HCC tissues and non-tumorous tissues were separately evaluated. Results represent a fold increase level of liver tissues of control non-transgenic mice. An asterisk indicates a significant difference (p=0.02) from liver tissues of non-transgenic mice. (b) uMtCK protein levels were analyzed by immunoblotting in HCC tissues and non-tumorous tissues in the livers of HCV core gene transgenic mice at 19 months of age. overexpression of ASB9 was observed significantly in HuH7 cells (p=0.007), and a trend of decreased uMtCK protein levels was found in HepG2 and PLC/PRF/5 cells, although not statistically significant (Fig. 2c). These results suggest a functional interaction of ASB9 with uMtCK may lead to degradation of uMtCK protein in HCC cell lines, as previously described.²⁶ ## Reduction in uMtCK expression led to increased cell death, and reduced proliferation, migration and invasion of HCC cells To inhibit high uMtCK expression in HepG2, PLC/PRF/5 and HuH7 cells, ¹⁶ isoform-specific siRNA was chosen as described²⁹ and successfully silenced target protein expression; the results from immunoblot analysis of untransfected and transfected cell lysates with universal negative control and uMtCK siRNA are shown in Figure 3a. As expected, in Figure 2. ASB9 expression and the effect of ASB9 transfection on uMtCK protein levels in HCC cells. ASB9 mRNA (a) and protein (b) levels in HepG2, PLC/PRF/5 and HuH7 cells were examined by real-time PCR and immunoblot analysis, respectively. As a positive control for ASB9 mRNA and protein expressions, human normal liver RNA and human whole liver cell pellets were used. An asterisk indicates a significant difference from normal liver tissue; p=0.006 for HepG2, p=0.005 for PLC/PRF/5 and p=0.01 for HuH7. Increased expression of ASB9 by transfection caused reduced protein levels of uMtCK in HepG2, PLC/PRF/5 and HuH7 cells (c). An asterisk indicates a significant difference (p=0.007) from control without ASB9 transfection. all HCC cell lines transfected with uMtCK siRNA, the expression levels of uMtCK were clearly reduced at 36 hr after transfection (Fig. 3a). Then, the effects of a reduction in uMtCK expression on cell membrane integrity and proliferation were determined in HepG2, PLC/PRF/5 and HuH7 cells. In the first step, we have checked cell membrane integrity by measuring lactate Figure 3. Increase in cell death and reduction in proliferation, migration and invasion by reduced uMtCK expression with siRNA in HCC cell lines. Human HCC cell lines, HepG2, PLC/PRF/5 and HuH7 cells, were transfected with 20 nM uMtCK siRNA or universal negative control, and uMtCK levels were examined by immunoblot analysis. None, no transfection; NC, negative control (a). Cell death (b), proliferation (c), migration (a) and invasion (a) were assessed in these HCC cell lines treated with or without uMtCK siRNA. An asterisk indicates a significant difference; p < 0.001 for cell death and proliferation, p < 0.02 for cell migration and invasion from NC. dehydrogenase released into the culture medium in universal negative control- and uMtCK siRNA-transfected cells (Fig. 3b). In all three cells, transfection with uMtCK siRNA led to an increase in the rate of cell lysis by 20.3% in HepG2, by 15.9% in PLC/PRF/5 and by 49.2% in HuH7, compared to respective control cells transfected with universal negative control (p < 0.001). However, caspase 3 activity was not altered in uMtCK siRNA-transfected cells compared to universal negative control-transfected cells (Fig. 3b), suggesting that lactate dehydrogenase release may be explained by some non-specific cell lysis but not by programmed cell death. Next, to examine a potential association of the reduction in uMtCK expression with cell proliferation rate, BrdU incorporation assay was performed (Fig. 3c). A reduction in cell proliferation was detected in all three HCC cell lines by 19.8% in HepG2, by 15.5% in PLC/PRF/5 and by 31.7% in HuH7, compared to respective control cells transfected with universal negative control (p < 0.001). These results suggest that high expression of uMtCK may play a role in sustaining active proliferation of HCC cells. The ability of a cancer cell to undergo migration and invasion allows the cell to change position within the tissues. To spread within the tissues, tumor cells use migration and invasion mechanisms. Thus, we investigated the effects of uMtCK inhibition on HCC cell migration and invasion by conducting assays for Matrigel-coated chamber migration and invasion. As shown in Figure 3*d*, silencing of uMtCK decreased migration rate by 44.1% in HepG2, by 40.0% in Table 1. Baseline characteristics | Parameter | N = 105 | |--------------------------------------|--------------------| | Age (year) ¹ | 70.7 ± 6.7 (49-84) | | Male ² | 63 (60.0) | | Hepatitis B/C | 8 / 97 | | MtCK (U/L) ³ | 9.71 (5.99–19.44) | | Albumin (g/dL) ³ | 3.4 (3.1–3.9) | | AST (U/L) ³ | 55 (35–76) | | ALT (U/L) ³ | 45 (26–60) | | GGT (U/L) ³ | 37 (28–62) | | Total bilirubin (mg/dL) ³ | 0.9 (0.7-1.3) | | AFP (ng/dL) ³ | 18 (8–66) | | DCP (mAU/mL) ³ | 26 (17–58) | | Platelet $(\times 10^4/\mu L)^3$ | 9.3
(6.3–11.7) | | Prothrombin time (sec) ³ | 12.1 (11.5–13.1) | | Liver stiffness (kPa) ³ | 26.3 (18.8–42.2) | ¹Data were expressed as mean \pm SD (range). PLC/PRF/5 and by 84.1% in HuH7 cells in comparison with the universal negative control-transfected cells (p < 0.02). Furthermore, the results from Matrigel invasion assay indicate that the reduction of uMtCK expression by siRNA transfection inhibited the invasion of HepG2, PLC/PRF/5 and HuH7 cells by 51.7, 62.6 and 92.4%, compared to the universal negative control-transfected cells (p < 0.02) (Fig. 3e). Collectively, high expression of uMtCK may contribute to active migration and invasion of HCC cells. ## HCC patients with higher serum MtCK activity had a poorer prognosis after RFA Because above in vitro results using HCC cell lines suggest that HCC cells with higher expression of uMtCK may have more malignant potential, we next examined a potential association between serum MtCK activity and prognosis in patients with HCC. As described earlier, among two tissuespecific isozymes of MtCK, that is, uMtCK and sarcomeric MtCK, the increase in serum MtCK activity in HCC patients was mostly due to that in serum uMtCK activity but not in serum sarcomeric MtCK activity. 16 To this end, a prognosis of HCC patients, who had been previously enrolled to examine their serum MtCK activity and successfully treated by RFA without residual HCC after the treatment, was analyzed. Characteristics of these 105 HCC patients are shown in Table 1. During the mean follow-up period of 848 days, HCCrelated death was observed in 17 patients. First, to evaluate the potential ability of MtCK values to predict survivals or death, a receiver operating characteristic (ROC) curve was generated. The ROC curve showed that a MtCK cutoff of 19.4 U/L had a sensitivity of 76.9% and a specificity of 83.8% for discriminating survivors and deceased patients (Fig. 4a). Then, Figure 4b shows the actuarial survival curves of these patients subdivided according to their serum MtCK activity prior to RFA for HCC, that is, <19.4 U/L and >19.4 U/L; overall survival was shorter in patients with serum MtCK activity >19.4 U/L than in those with \leq 19.4 U/L (p = 0.0002; log-rank test; Fig. 4b). Then, risk factors for HCCrelated death were analyzed. On the univariate analysis, high serum MtCK activity (>19.4 U/L) was a significant risk factor for HCC-related death (Table 2). Other significant risk factors for HCC-related death included serum albumin concentration, serum AST levels, serum total bilirubin concentration, platelet count and prothrombin time (Table 2). Then, multivariate Cox proportional hazard regression analysis revealed that serum MtCK activity >19.4 U/L was an independent risk for HCC-related death, with a hazard ratio of 2.32 (95% confidence interval: 1.03–5.25; p = 0.042; Table 2). Serum albumin concentration and serum AST levels were also independently associated with HCC-related death (Table 2). Regarding recurrence, HCC in patients with serum MtCK activity >19.4 U/L recurred earlier than HCC in those with serum MtCK activity ≤ 19.4 U/L, as depicted in Figure 4c (p = 0.004; log-rank test); median (interquartile range) time to recurrence was 189 (107-292) days in patients with serum MtCK activity >19.4 U/L, whereas 278 (160-445) days in those with serum MtCK activity <19.4 U/L. Collectively, these findings suggest that HCC patients with higher serum MtCK activity may have shorter survival time possibly due to more malignant potential. #### Discussion Little is known about whether there might be an association between the status of mitochondria and uMtCK expression. Kwon et al. have reported that ASB9 negatively regulated uMtCK expression with the inhibition of mitochondrial function,²⁶ suggesting that low uMtCK expression could be associated with loss of mitochondrial integrity. There could be several possibilities regarding the status of mitochondria and uMtCK expression in the liver or HCC; one is that loss of mitochondrial integrity might be associated with reduced uMtCK expression as previously reported.²⁶ As another possibility, uMtCK expression might be increased as a compensatory mechanism with loss of mitochondrial integrity. In fact, this is exactly the case with sarcomeric MtCK in mitochondrial myopathies.³⁶ It is also possible that there might be no association in general between loss of mitochondrial integrity and uMtCK expression. In this context, we wondered whether loss of mitochondrial integrity in the liver might be involved in the mechanism of increased uMtCK expression in HCC. To examine this, HCV core gene transgenic mice were used, because these mice develop HCC with loss of mitochondrial integrity in the liver in the absence of inflammation and fibrosis. ^{22,23} As a result, uMtCK expression was essentially not altered in non-tumorous liver tissues with loss of mitochondrial integrity but clearly enhanced in HCC tissues, suggesting that hepatocarcinogenesis per se but not ²Data were expressed as number (%). ³Data were expressed as median (first to third quartile). Figure 4. (a) ROC curve showing the overall accuracy of serum MtCK activity for discriminating between survivors and deceased patients. The arrow identifies the best cutoff value (i.e., 19.4 U/L) of serum MtCK activity. Kaplan–Meier survival (b) and recurrence (c) curve of the studied patients subdivided according to their serum MtCK activity prior to RFA for HCC. Solid line, \leq 19.4 U/L; dashed line, >19.4 U/L. loss of mitochondrial integrity may contribute to increased uMtCK expression in HCC. Regarding the regulatory mechanism(s) of increased uMtCK expression in HCC, we have found that ASB9 interacted with uMtCK to reduce its protein levels in HCC cells, similarly to HEK293 cells as previously described.²⁶ In normal liver, uMtCK levels are generally at a very low level, while sarcomeric MtCK as a muscle-specific isoform is not expressed at all,³⁷ whereas ASB9 mRNA expression is reportedly abundant.²⁶ Thus, ASB9 may play a physiological role to keep uMtCK protein levels low in the liver. Regarding HCC, ASB9 mRNA expression in HCC cells were much lower than that in normal liver tissue in the current study. This finding raises the possibility that low expression of ASB9 may explain, at least in part, high protein levels of uMtCK in HCC. Collectively, we may suggest that the two possible mechanisms of increased uMtCK protein levels in HCC cells should be increased gene expression and decreased protein degradation due to reduced ASB9 expression. It has been reported that colorectal cancer with low ASB9 expression may have a higher malignant potential and a poorer prognosis than that with high ASB9 expression,²⁷ suggesting a negative association of ASB9 with uMtCK protein levels also in colorectal cancer cells. Nonetheless, a potential role of ASB9 in the regulation of uMtCK expression in HCC *in vivo* should be further elucidated. Table 2. Risk factors for HCC-related death evaluated by univariate/multivariate Cox proportional hazard regression | | Univariate | | Multivariate | | |------------------|------------------|---------|---|---------| | Parameter | HR (95% CI) | p value | HR (95% CI) | p value | | Age (year) | 1.02 (0.95–1.10) | 0.60 | | | | Female | 1.45 (0.56–3.77) | 0.44 | | | | Hepatitis B | 1.37 (0.18–10.3) | 0.76 | | | | MtCK >19.4 (U/L) | 5.03 (1.93–13.1) | < 0.001 | 2.32 (1.03–5.25) | 0.042 | | Albumin | 0.15 (0.05-0.44) | <0.001 | 0.26 (0.09-0.71) | 0.009 | | AST | 1.02 (1.01–1.03) | < 0.001 | 1.01 (1.00–1.02) | 0.028 | | ALT | 1.01 (0.99–1.02) | 0.13 | | | | GGT | 1.00 (0.98–1.01) | 0.45 | | | | Total bilirubin | 3.23 (1.98–5.29) | < 0.001 | 1.72 (0.97-3.04) | 0.064 | | AFP >100 (ng/dL) | 2.28 (0.84-6.18) | 0.11 | | | | DCP >80 (mAU/mL) | 2.74 (0.99–7.45) | 0.59 | | | | Platelet | 0.83 (0.71–0.97) | 0.017 | 0.89 (0.76-1.04) | 0.14 | | Prothrombin time | 1.32 (1.11–1.57) | 0.002 | 0.91 (0.70-1.17) | 0.45 | | Liver stiffness | 1.02 (0.98–1.04) | 0.25 | The State of the Landblad Landblad Life And As
Landblad Landblad Life Committee (1997) | | Reduction of uMtCK expression in HCC cells led to the inhibition in their proliferation, migration and invasion. The similar effects of inhibition of uMtCK expression were reported in Hela cells²⁹ and breast cancer cells.¹⁷ This finding may be in agreement with the notion that the creatine kinase system is generally essential for the control of cellular energetics in tissues or cells with high and fluctuating energy requirements.³⁷ Indeed, overexpression has been reported for different creatine kinase isoforms in different types of cancer and has provided a more general growth advantage to solid tumors. 37,38 Overexpression of uMtCK in different Hodgkinderived cell lines has been described as a marker for poor prognosis.³⁹ Increased uMtCK levels in cancer cells might be a part of metabolic adaptation of those cells to perform high growth rate under oxygen and glucose restriction as typical for many cancers; it could help to sustain energy turnover, but would be also protective against stress situations such as hypoxia and possibly protect cells from death. 40 Nonetheless, these in vitro findings raise the possibility that high expression of uMtCK in HCC may be associated with its active growth and metastasis. Then, we performed a follow-up study of the HCC patients, with whom we showed the increased serum MtCK activity. Among the entire HCC patients in the previous study, we enrolled the patients who underwent RFA with curative intent to examine the potential association between serum MtCK activity and prognosis in this study. In the previous report, serum MtCK activity was also enhanced in the patients with liver cirrhosis compared to healthy control, although less prominent than in those with HCC and liver cirrhosis, 16 suggesting that background liver
status of HCC may also affect serum MtCK activity. In this context, because RFA with curative intent was performed on patients without advanced liver damages such as high serum total bilirubin concentration, low platelet counts or massive ascites,³³ the potential association between serum MtCK activity and prognosis of HCC patients could be assessed with less bias from background liver status. Furthermore, of note, HCC patients treated with RFA had no extended tumor lesions, that is, three or fewer lesions, each 3.0 cm in diameter.³³ As a result, the HCC patients with higher serum MtCK activity had a significantly poorer prognosis than those with lower serum MtCK activity on a survival analysis, and higher serum MtCK activity was retained as a significant risk for HCCrelated death on multivariate analysis. Thus, in line with the current in vitro findings, it is suggested that HCC with increased uMtCK expression may have highly malignant potential. In conclusion, high uMtCK expression in HCC may be caused by hepatocarcinogenesis *per se* but not by loss of mitochondrial integrity, and associated with highly malignant potential, where ASB9 could be one of the regulators of uMtCK expression. In the clinical setting, higher serum MtCK activity was associated with a poorer prognosis of HCC, suggesting that HCC with high serum MtCK activity should be thoroughly treated when considered to be curative. #### References - Umemura T, Ichijo T, Yoshizawa K, et al. Epidemiology of hepatocellular carcinoma in Japan. J Gastroenterol 2009;44 Suppl 19:102–7. - Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBO-CAN 2008. Int J Cancer 2010;127:2893–917. - Bosch FX, Ribes J, Cleries R, et al. Epidemiology of hepatocellular carcinoma. Clin Liver Dis 2005; 9:191–211. - El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132:2557–76. - Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol 2012;56:1384–91. - El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Enel I Med 1999;340:745–50. - Nakakura EK, Choti MA. Management of hepatocellular carcinoma. Oncology (Williston Park) 2000;14:1085–98; discussion 98–102. - Davila JA, Kramer JR, Duan Z, et al. Referral and receipt of treatment for hepatocellular carcinoma in United States veterans: effect of patient and nonpatient factors. *Hepatology* 2013;57:1858–68. - El-Serag HB, Marrero JA, Rudolph L, et al. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 2008;134:1752–63. - Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378–90. - Bertino G, Ardiri A, Malaguarnera M, et al. Hepatocellualar carcinoma serum markers. Semin Oncol 2012;39:410–33. - Bertino G, Ardiri AM, Boemi PM, et al. A study about mechanisms of des-gamma-carboxy prothrombin's production in hepatocellular carcinoma. *Panninerva Med* 2008;50:221–6. - Bertino G, Neri S, Bruno CM, et al. Diagnostic and prognostic value of alpha-fetoprotein, desgamma-carboxy prothrombin and squamous cell carcinoma antigen immunoglobulin M complexes in hepatocellular carcinoma. *Minerva Med* 2011; 102:363-71. - Bertino G, Ardiri AM, Calvagno GS, et al. Prognostic and diagnostic value of des-gammacarboxy prothrombin in liver cancer. *Drug News Perspect* 2010;23:498–508. - Malaguarnera G, Paladina I, Giordano M, et al. Serum markers of intrahepatic cholangiocarcinoma. *Dis Markers* 2013;34:219–28. - Soroida Y, Ohkawa R, Nakagawa H, et al. Increased activity of serum mitochondrial isoenzyme of creatine kinase in hepatocellular carcinoma patients predominantly with recurrence. J Hepatol 2012;57:330–6. - Qian XL, Li YQ, Gu F, et al. Overexpression of ubiquitous mitochondrial creatine kinase (uMtCK) accelerates tumor growth by inhibiting - apoptosis of breast cancer cells and is associated with a poor prognosis in breast cancer patients. *Biochem Biophys Res Commun* 2012;427:60–6. - Kanemitsu F, Kawanishi I, Mizushima J, et al. Mitochondrial creatine kinase as a tumorassociated marker. Clin Chim Acta 1984;138:175-83 - Pratt R, Vallis LM, Lim CW, et al. Mitochondrial creatine kinase in cancer patients. *Pathology* 1987;19:162–5. - Onda T, Uzawa K, Endo Y, et al. Ubiquitous mitochondrial creatine kinase downregulated in oral squamous cell carcinoma. Br J Cancer 2006; 94:698–709. - Patra S, Bera S, SinhaRoy S, et al. Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. FEBS J 2008;275:3236–47. - Moriya K, Fujie H, Shintani Y, et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. *Nat Med* 1998;4: 1065–7. - Moriya K, Nakagawa K, Santa T, et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 2001;61:4365–70. - Kile BT, Schulman BA, Alexander WS, et al. The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 2002;27:235–41. - Debrincat MA, Zhang JG, Willson TA, et al. Ankyrin repeat and suppressors of cytokine signaling box protein asb-9 targets creatine kinase B for degradation. J Biol Chem 2007;282: 4728–37. - Kwon S, Kim D, Rhee JW, et al. ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function. BMC Biol 2010:8-23 - Tokuoka M, Miyoshi N, Hitora T, et al. Clinical significance of ASB9 in human colorectal cancer. *Int J Oncol* 2010;37:1105–11. - Ikeda H, Nagashima K, Yanase M, et al. Involvement of Rho/Rho kinase pathway in regulation of apoptosis in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2003;285:G880–6. - Lenz H, Schmidt M, Welge V, et al. Inhibition of cytosolic and mitochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell viability and mitochondrial morphology. Mol Cell Biochem 2007;306:153-62. - Makuuchi M, Kokudo N, Arii S, et al. Development of evidence-based clinical guidelines for the diagnosis and treatment of hepatocellular carcinoma in Japan. Hepatol Res 2008;38:37–51 - Torzilli G, Minagawa M, Takayama T, et al. Accurate preoperative evaluation of liver mass lesions without fine-needle biopsy. *Hepatology* 1999;30:889–93. - Hoshino T, Sakai Y, Yamashita K, et al. Development and performance of an enzyme immunoassay to detect creatine kinase isoenzyme MB activity using anti-mitochondrial creatine kinase monoclonal antibodies. Scand J Clin Lab Invest 2005;69:687–95. - Omata M, Tateishi R, Yoshida H, et al. Treatment of hepatocellular carcinoma by percutaneous tumor ablation methods: ethanol injection therapy and radiofrequency ablation. Gastroenterology 2004;127:S159–66. - Nishikawa M, Nishiguchi S, Shiomi S, et al. Somatic mutation of mitochondrial DNA in cancerous and noncancerous liver tissue in individuals with hepatocellular carcinoma. Cancer Res 2001;61:1843–5. - Tamori A, Nishiguchi S, Nishikawa M, et al. Correlation between clinical characteristics and mitochondrial D-loop DNA mutations in hepatocellular carcinoma. J Gastroenterol 2004;39: 1063–8. - Stadhouders AM, Jap PH, Winkler HP, et al. Mitochondrial creatine kinase: a major constituent of pathological inclusions seen in mitochondrial myopathies. *Proc Natl Acad Sci USA* 1994; 91:5089–93. - Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. *Biochim Biophys Acta* 2006;1762: 164–80. - Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. *Physiol Rev* 2000;80: 1107–213. - Kornacker M, Schlattner U, Wallimann T, et al. Hodgkin disease-derived cell lines expressing ubiquitous mitochondrial creatine kinase show growth inhibition by cyclocreatine treatment independent of apoptosis. *Int J Cancer* 2001;94: - Dang CV, Semenza GL. Oncogenic alterations of metabolism. *Trends Biochem Sci* 1999;24:68–72. # Loss of liver E-cadherin induces sclerosing cholangitis and promotes carcinogenesis Hayato Nakagawa^{a,b,1,2}, Yohko Hikiba^{c,1}, Yoshihiro Hirata^a, Joan Font-Burgada^b, Kei Sakamoto^c, Yoku Hayakawa^a, Koji Taniguchi^b, Atsushi Umemura^b, Hiroto Kinoshita^a, Kosuke Sakitani^{a,c}, Yuji Nishikawa^d, Kenji Hirano^a, Tsuneo Ikenoue^e, Hideaki Ijichi^a, Debanjan Dhar^b, Wataru Shibata^f, Masao Akanuma^c, Kazuhiko Koike^a, Michael Karin^{b,2}, and Shin Maeda^{f,2} ^aDepartment of Gastroenterology, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; ^bLaboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093; ^cDivision of Gastroenterology, Institute for Adult Diseases, Asahi Life Foundation, Chuo-ku, Tokyo 103-0002, Japan; ^dDivision of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Higashi Asahikawa, Hokkaido 078-8510, Japan; ^eDivision of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; and ^fDepartment of Gastroenterology, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan Contributed by Michael Karin, December 6, 2013 (sent for review November 4, 2013) E-cadherin is an important adhesion molecule whose loss is associated with progression and poor prognosis of liver cancer. However, it is unclear whether the loss of E-cadherin is a real culprit or a bystander in liver cancer progression. In addition, the precise role of E-cadherin in maintaining liver homeostasis is also still unknown, especially in vivo. Here we demonstrate that liver-specific E-cadherin knockout mice develop spontaneous periportal inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis, which resembles primary sclerosing cholangitis. Inducible gene knockout studies identified E-cadherin loss in biliary epithelial cells as a
causal factor of cholangitis induction. Furthermore, a few of the E-cadherin knockout mice developed spontaneous liver cancer. When knockout of E-cadherin is combined with Ras activation or chemical carcinogen administration, E-cadherin knockout mice display markedly accelerated carcinogenesis and an invasive phenotype associated with epithelial-mesenchymal transition, up-regulation of stem cell markers, and elevated ERK activation. Also in human hepatocellular carcinoma, E-cadherin loss correlates with increased expression of mesenchymal and stem cell markers, and silencing of E-cadherin in hepatocellular carcinoma cell lines causes epithelial-mesenchymal transition and increased invasiveness, suggesting that E-cadherin loss can be a causal factor of these phenotypes. Thus, E-cadherin plays critical roles in maintaining homeostasis and suppressing carcinogenesis in the liver. liver progenitor cell | cholangiocellular carcinoma | mixed type tumor establishes the core of the epithelial adherens junction with neighboring cells but also participates in intracellular signaling (1, 2). E-cadherin knockout mice die early during embryogenesis due to failed blastocyst and trophectoderm formation (3). Conditional knockout of E-cadherin in skin impairs an epidermal water-barrier function that leads to perinatal lethality (4). In addition, E-cadherin deletion in the differentiating alveolar epithelial cells of mammary gland results in an impaired differentiation program during lactation (5). Thus, although E-cadherin is a key regulator of embryonic development and tissue homeostasis, its role varies depending on the organ. Adult liver parenchyma consists of two types of hepatic epithelial cells, hepatocytes and biliary epithelial cells (BECs), and both cell types express E-cadherin localizing at the junctional complex (6). However, the precise functional role of E-cadherin in the liver is still unknown, especially in vivo. Dysregulation of E-cadherin also contributes to cancer progression. In fact, mutation or decreased expression of E-cadherin is associated with malignant progression in various cancers, such as gastric, breast, and skin cancer (7). Also in human liver cancers, such as hepatocellular carcinoma (HCC) and cholangiocellular carcinoma (CCC), E-cadherin expression is decreased by 20–60% and is associated with higher histological grade, invasiveness, and poor prognosis (8–10). These findings suggest that E-cadherin may be a turnor suppressor in liver tumorigenesis. However, down-regulation of E-cadherin in liver cancer is caused by several mechanisms, including loss of heterozygosity, methylation of the E-cadherin promoter region, transcriptional repressors, and gene-silencing microRNAs (miRs) (8, 11-13). Transcriptional repressors such as Snail, Slug, and Twist, as well as miR-9, play an important role in induction of the epithelial-mesenchymal transition (EMT), which is a major cancer progression-mediating process. E-cadherin is a major target of these factors; however, they also control other EMT-inducing molecules involved in junctional complexes, intermediate filament networks, and the actin cytoskeleton (14). Therefore, it is unclear whether the loss of E-cadherin is a real culprit or a bystander in EMT induction and liver cancer progression. In addition, expression of E-cadherin can be increased during the early stages of HCC (11), and it has been suggested that preservation of E-cadherin expression may be beneficial for tumor growth, invasion, and metastasis (11, 15). Thus, here we characterize the role of E-cadherin in liver homeostasis and carcinogenesis in vivo using liver-specific E-cadherin knockout mice. #### Results Spontaneous Portal Inflammation and Periductal Fibrosis in $CDH1^{\Delta L}$ Mice. Liver-specific E-cadherin knockout mice $(CDH1^{\Delta L})$ were generated by crossing CDH1 flox/flox $(CDH1^{F/F})$ mice with #### Significance The precise roles of E-cadherin in the liver and liver carcinogenesis are still unknown. Here we show that mice lacking E-cadherin in the liver develop spontaneous periportal inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis, which resembles primary sclerosing cholangitis. Inducible gene knockout studies identified E-cadherin loss in biliary epithelial cells as a causal factor of cholangitis induction, and dysregulated E-cadherin expression was also seen in patients with primary sclerosing cholangitis. E-cadherin loss also significantly accelerates genetically and chemically engineered liver cancer through epithelial—mesenchymal transition, up-regulation of stem cell markers, and ERK activation. Thus, E-cadherin plays critical roles in maintaining homeostasis and suppressing carcinogenesis in the liver. Author contributions: H.N., J.F.-B., and S.M. designed research; H.N., Y. Hikiba, Y. Hirata, J.F.-B., K. Sakamoto, Y. Hayakawa, K.T., A.U., H.K., K. Sakitani, K.H., T.I., H.I., D.D., W.S., M.A., and S.M. performed research; H.N., Y.N., K.K., and S.M. analyzed data; and H.N., J.F.-B., M.K., and S.M. wrote the paper. The authors declare no conflict of interest. ¹H.N. and Y. Hikiba contributed equally to this work. ²To whom correspondence may be addressed. E-mail: hayaton0120@gmail.com, karinoffice@ucsd.edu, or smaeda@med.yokohama-cu.ac.jp. This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1322731111/-/DCSupplemental. albumin-Cre transgenic (*Alb-Cre*) mice. Immunohistochemistry (IHC) and immunofluorescence (IF) revealed that E-cadherin was expressed in the membrane of hepatocytes, especially in zone 1, and in the interlobular BECs in 1-mo-old *CDHI^{F/F}* mice, whereas it was completely absent from both hepatocytes and interlobular BECs in *CDHI^{ΔL}* mice of the same age (Fig. 1*A* and Fig. S1*A*). On the other hand, E-cadherin expression was preserved in the large bile duct that is near the common bile duct (Fig. S1*B*). These results are consistent with recent reports of Cre expression in hepatocytes and interlobular BECs of *Alb-Cre* mice (16). The histology of the liver appeared almost normal in 1-mo-old $CDH1^{\Delta L}$ mice (Fig. 1B). However, at 2 mo of age, $CDH1^{\Delta L}$ mice spontaneously developed periportal inflammation, followed by **Fig. 1.** Spontaneous development of portal inflammation and periductal fibrosis in $CDH1^{\Delta L}$ mice. (A) Analysis of E-cadherin expression by IHC of liver sections (x200) obtained from 1-mo-old $CDH1^{E/F}$ and $CDH1^{\Delta L}$ mice. (B) H&E staining of 1-, 2-, 5-, and 8-mo-old mice (representative images, x200). (C) Sirius red staining in 5- and 8-mo-old mice (x200). (D) IHC of α-smooth muscle actin in 8-mo-old mice (x200). (E) Serum levels of total bile acid, ALP, and ALT in 2- and 8-mo-old mice. Results are means ± SEM (n = 5-7 per group; *P < 0.05). (F) Functional analysis of the bile transport system in 2-mo-old mice injected with fluorescent-labeled bile acid in the tail vein for 15 min followed by analysis of staining in the bile canaliculi (x200). Arrowheads indicate interlobular bile duct lumen (n = 3 per group). periductal fibrosis resembling primary sclerosing cholangitis (PSC) at 8 mo of age (Fig. 1 B and C). IHC for α -smooth muscle actin confirmed activation of fibroblasts in the periductal area (Fig. 1D). These histological changes were not seen in $CDH1^{F/F}$ mice. As is the case in cholestasis, serum levels of total bile acid and alkaline phosphatase (ALP) were significantly elevated in $CDH1^{\Delta L}$ mice compared with $CDH1^{F/F}$ mice (Fig. 1E). Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining revealed that TUNEL-positive nonhepatocyte cells were noticeable in the periportal area in $CDH1^{\Delta L}$ mice (Fig. S1C). Although these cells were mostly $CD45^+$ leukocytes, they also contained K19-positive BECs, which were completely absent in $CDH1^{F/F}$ mice (Fig. S1C). In comparison, there were no significant differences in serum alanine aminotransferase (ALT) and the number of TUNEL-positive hepatocytes between $CDH1^{F/F}$ mice and $CDH1^{\Delta L}$ mice other than a small increase of TUNEL-positive hepatocytes in 2-mo-old $CDH1^{\Delta L}$ mice (Fig. 1E and Fig. S1G). Hence, BEC injury could be one of the main factors contributing to development of periductal fibrosis. Next, we postulated that cholestatic liver injury and periportal inflammation might be caused by disruption of the junction complex due to loss of E-cadherin. However, electron microscopy revealed no obvious morphological abnormalities in the adherens junctions, tight junctions, desmosomes, or bile canaliculi in 2-mo-old $CDHI^{\Delta L}$ mice (Fig. S1H). To functionally analyze the bile transport system, we injected fluorescent-labeled bile acid into the tail vein of 2-mo-old mice. Fifteen minutes after the injection, we could see clear canalicular staining in $CDHI^{F/F}$ mouse liver and smooth transport of bile acid into the bile duct lumen. In contrast, the canalicular staining pattern in $CDHI^{\Delta L}$ mice was very fuzzy, particularly in zone 1, and bile acid had not yet reached the bile duct lumen (Fig. 1E). These results suggest that the intrahepatic biliary network may be functionally impaired in $CDHI^{\Delta L}$ mice, which could lead to cholestatic liver injury and subsequent inflammation. Loss of E-Cadherin in BECs Rather than Hepatocytes Is a Causal Factor of Cholangitis Induction. To distinguish the function of E-cadherin in hepatocytes and BECs maintaining liver homeostasis, we generated two different models of E-cadherin deletion in the liver (Fig. 24). First, to delete E-cadherin only in hepatocytes, we i.v. injected 5-wk-old *CDH1*^{F/F} mice with adenovirus expressing Cre-recombinase (Ad-Cre) or control adenovirus (Ad-Cont) (17). We confirmed that this method induced Cre-loxP recombination in $73.0 \pm 4.2\%$ (mean \pm SD) of hepatocytes but no recombination
in BECs at 1 wk after injection using Rosa26-lox-stop-lox-YFP mice (Fig. S24). Although E-cadherin expression was still reduced significantly in Ad-Cre-injected *CDH1^{F/F}* mice at 8 wk after injection (Fig. S2 B and C), there was no apparent periportal inflammation (Fig. 2B). Next, to delete E-cadherin only in BECs, we crossed $CDHI^{F/F}$ mice with $K19^{CreERT}$ mice in which tamoxifen (TAM)-inducible Cre ERT was knocked into the endogenous K19 locus (*CDH1*^{F/F}/*K19*^{CreERT}) (18). According to the previous study, which showed relatively low efficacy of after birth. One week after the first TAM injection into *CDH1*^{F/F}/*K19*^{CreERT} mice. F-cadherin expression recombination in BECs, we injected TAM twice, at 5 and 9 wk mice, E-cadherin expression was deleted in $31.2 \pm 7.2\%$ of K19-positive BECs, whereas E-cadherin in the hepatocytes was well-preserved (Fig. S2D). Eight weeks after the first TAM injection, four of eight $CDH1^{F/F}/K19^{CreERT}$ mice revealed significant periportal inflammation as seen in $CDH1^{AL}$ mice (Fig. 2C). Although the rate of E-cadherin loss in BECs varied widely in Υ AM-injected $CDH1^{F/F}/K19^{CreERT}$ mice at this point (25.5 \pm 17.1%), bile ducts with strong inflammation tended to show high rates of E-cadherin deletion (Fig. 2D and Fig. S2E). Thus, loss of E-cadherin in BECs rather than hepatocytes is a causal factor of periportal inflammation. Furthermore, in human liver samples, a clear membranous pattern of E-cadherin expression in the epithelial cells of medium-size bile ducts was seen in normal liver, whereas it mostly disappeared, with only fragmented cytoplasmic expression, in four of seven PSC samples (Fig. 2E). In contrast, E-cadherin