Reporter plasmids, transient transfection, and
dual Iuciferase assays

The firefly luciferase reporter plasmid was used to
examine let7g and miRNA93 function. pGL4-TK, a renilla
luciferase reporter, was used as an internal control [44].
Transfection and dual luciferase assays were performed as
described previously [45].

Flow cytometry

The expression levels of MICA on the cell surface
were determined using flow cytometry, as described
previously [23]. Briefly, cells were hybridized with
anti-MICA (1:500; R&D Systems, Minneapolis, MN,
USA) and isotype control IgG (1:500; R&D Systems)
in 5% BSA/1% sodium azide/PBS for 1 h at 4°C. After
washing, cells were incubated with goat anti-mouse Alexa
488 (1:1,000; Molecular Probes, Eugene, OR, USA) for
30 min. Flow cytometry was performed and the data
analyzed using Guava Easy Cyte Plus (GE Healthcare,
Little Chalfont, UK).

ELISA for MICA

The concentration of MICA in the cell culture
supernatant was measured using a sandwich ELISA,
according to the manufacturer’s instructions (R&D
Systems, Minneapolis, MN, USA).

Statistical analysis

Significant differences between groups were
determined using the Student’s z-test when variances
were equal and using Welch’s #test when variances
were unequal. P-values less than 0.05 were considered
statistically significant.
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SUMMARY

Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of viral hepatitis, insulin re-
sistance, hepatosteatosis, and nonalcoholic steatohepatitis (NASH), disorders that increase risk of hepato-
cellular carcinoma (HCC). To determine whether and how ER stress contributes to obesity-driven hepatic
tumorigenesis we fed wild-type (WT) and MUP-uPA mice, in which hepatocyte ER stress is induced by plas-
minogen activator expression, with high-fat diet. Aithough both strains were equally insulin resistant, the
MUP-uPA mice exhibited more liver damage, more immune infiltration, and increased lipogenesis and, as
a result, displayed classical NASH signs and developed typical steatohepatitic HCC. Both NASH and HCC
development were dependent on TNF produced by inflammatory macrophages that accumulate in the
MUP-uPA liver in response to hepatocyte ER stress.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common
cancer worldwide and a leading cause of cancer deaths.
More than 90% of HCC develops in the context of chronic liver
disease, with hepatitis B virus (HBV) or hepatitis C virus (HCV)
infections being the main causes. However, 30%-40% of
Western HCC patients do not exhibit viral infections (El-Serag,
2011). Most of these patients are obese with manifestations of
the metabolic syndrome and suffer from nonalcoholic steato-
hepatitis (NASH), a severe form of nonalcoholic fatty-liver dis-
ease (NAFLD) (Cohen et al., 2011). Indeed, obesity increases
male HCC risk by up to 4.5-fold (Calle et al., 2005) and also in-
creases HCC risk in viral hepatitis (Chen et al., 2008). Because

the prevalence of obesity has been increasing worldwide, its
association with hepatocarcinogenesis has attracted much
attention. In previous studies, we have shown that feeding
mice exposed to the hepatic carcinogen diethylnitrosamine
(DEN) with high-fat diet (HFD) strongly enhanced HCC devel-
opment (Park et al., 2010). Although low-grade liver inflam-
mation associated with tumor necrosis factor (TNF) and inter-
leukin-6 (IL-6) expression contributes to obesity-promoted
HCC development in this model, it should be noted that
wild-type (WT) mice do not develop NASH, even after DEN
administration and prolonged HFD feeding. It is therefore not
clear whether the mechanism identified in DEN-treated mice
has much bearing on NASH-driven human HCC (Toffanin
et al., 2010).

Significance

ER siress is often observed in cancer, but its role in tumorigenesis has not been explored. ER stress also occurs in
premalignant liver diseases, including NASH, which progress to HCC, a highly aggressive and common cancer. Our work
demonsirates that, when combined with hypernutrition, ER stress of liver parenchymal celis results in NASH-like disease
that spontaneously progresses to HCC through an inflammatory mechanism dependent on TNF and IkB kinase signaling.
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In considering possible mechanisms through which obesity
may promote HCC development, we decided to study the poten-
tial contribution of ER stress because obesity (Hotamisligil, 2010;
Ozcan et al., 2006) and HBV/HCV infections (Malhi and Kaufman,
2011) result in liver ER stress, which promotes hepatosteatosis
(Rutkowski et al., 2008). Furthermore, several ER stress markers
are elevated in NASH-affected livers (Puri et al., 2008), and it was
suggested that ER stress causes ballooning degeneration of the
hepatocytes, a classical sign of NASH (Caldwell et al., 2010). To
this end, we placed MUP-uPA mice, which express high amounts
of urokinase plasminogen activator (UPA) specifically in the hepa-
tocytes and therefore undergo transient ER stress (Sandgren
et al., 1991; Weglarz et al., 2000), and WT mice on a HFD.
Whereas the WT mice developed simple steatosis and no HCC,
the MUP-uPA mice developed NASH-like disease that spontane-
ously progressed to HCC, whose development was dependent
on TNF production by inflammatory liver macrophages and TNF
receptor 1 (TNFR1)-IkB kinase f (IKKB) signaling in hepatocytes.
Our results suggest that NASH and progression to steatohepatitic
HCC may be prevented or ameliorated by anti-TNF drugs.

RESULTS

HFD Induces NASH Signs and Spontaneous HCC in
MUP-uPA Mice

WT and MUP-uPA mice were placed on a HFD (60% of calories
were fat derived), starting at 6 weeks of age. Body weight and
glucose intolerance did not differ between the two strains (Fig-
ures S1A and S1B available online). As reported (Weglarz
et al., 2000), the serum alanine aminotransferase (ALT) level in
MUP-uPA mice on a normal-chow diet (low-fat diet [LFD]) was
markedly elevated at 5 weeks of age but rapidly declined, prob-
ably due to the replacement of dying hepatocytes with new cells
in which uPA expression was extinguished (Sandgren et al.,
1991; Weglarz et al., 2000) (Figure S1C). However, HFD feeding
maintained high serum ALT throughout the observation period
(Figure 1A}, even though it did not restore uPA expression (Fig-
ure S1C). By contrast, in WT mice the HFD substantially elevated
the ALT after only 32 weeks, and it reached a level similar to
MUP-uPA mice at 40 weeks. Examination of the liver histology
revealed hepatocyte damage, evidenced by tissue clearing, in
5-week-old MUP-uPA mice, but this had almost disappeared
at 24 weeks on the LFD, except for mild inflammation and spotty
necrosis (Figure 1B). As reported (Park et al., 2010), HFD-fed WT
mice showed pronounced steatosis but little inflammation by
24 weeks (Figure 1B). At that time, HFD-fed MUP-uPA mice ex-
hibited extensive immune infiltration into the liver and numerous
ballooning hepatocytes, both of which are important diagnostic
features of human NASH (Brunt, 2001). Furthermore, HFD-fed
MUP-uPA mice showed pericellular and bridging fibrosis,
resembling the pattern in human NASH (Figure 1C; Figure S1D).
This was accompanied by the increased expression of type 1
collagen o1 mRNA (Figure S1E).

Terminal deoxynucleotidyl transferase-mediated deoxyuri-
dine triphosphate nick-end labeling (TUNEL) staining showed
that both apoptotic (nuclear fragmentation) and necrotic (diffuse
cytoplasmic staining) cell death were significantly increased in
HFD-fed AMUP-uPA livers and that, as a result, the numbers of
Ki67-positive proliferating hepatocytes and K19-positive cells

Cancer Cell
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were also elevated (Figure 1D). The expression of cyclin D1
was also increased (Figure S1F). Thus, HFD-fed MUP-uPA
mice exhibit continuous hepatocyte death and compensatory
proliferation, a critical process in hepatocarcinogenesis (Maeda
et al.,, 2005).

HFD-fed MUP-uPA mice developed small tumors on the liver
surface by 32 weeks of age and large tumors at 40 weeks (Fig-
ure 2A; Figures S2A and S$2B), when 78.6% (11/14 mice) of
HFD-fed MUP-uPA mice had tumors larger than 2 mm and
35.7% (5/14 mice) had tumors larger than 10 mm. Histologically,
30% of tumors larger than 2 mm were HCCs, similar to human
steatohepatitic HCC, a histotype describing NASH-related
HCC with ballooning cancer cells and inflammatory cell infiltra-
tion (Salomao et al., 2012), although some displayed a classical
thick trabecular pattern, whereas the remaining 70% were either
typical or steatohepatic adenomas (Figure 2B; Figures S2C and
S2D). Cancer cells were highly proliferative and frequently posi-
tive for a fetoprotein (AFP) with marked p62 aggregation (Fig-
ure S2E), a sign of impaired autophagy frequently observed in
human HCC (Inami et al., 2011). Several oncogenic mediators,
such as extracellular signal regulated-kinase (ERK), signal trans-
ducer and activator of transcription 3 (STAT3), and c-Jun N-ter-
minal kinase (JNK), as well as cyclin D1, the liver oncogenes
Yes-associated protein 1 (YAP) and Myc, and the cancer stem
cell markers epithelial cellular adhesion molecule (EpCAM) and
CD44, were activated or upregulated (Figures S2F-S2H). By
contrast, 30% of LFD-fed MUP-uPA mice displayed a few tiny
nodules in the liver even at 40 weeks of age, corresponding to
simple hyperplasia (Figure S2C). Although 1 of 11 LFD-fed
MUP-uPA mice developed a small 3 mm tumor, the tumor was
also classified as hyperplasia, which is not proliferative and is
AFP negative (Figures S2C and S2I). In WT mice, neither the
LFD nor HFD induced any liver tumors by 40 weeks. Of note,
HFD-fed MUP-uPA mice showed microscopically visible foci of
p62- and YAP-positive cells already at 24 weeks (Figure S2J).
These foci may contain progenitors to the tumors detected at
32-40 weeks. Thus, HFD feeding of MUP-uPA mice induced
complete NASH-like pathological features with continuous he-
patocyte death and compensatory proliferation, and eventually
led to spontaneous HCC and adenoma development, which
were not seen in the LFD-maintained mice.

ER Stress Enhances Lipogenesis and Aggravates
Steatohepatitis

Although the mechanism responsible for hepatocyte death in
young MUP-uPA mice is not entirely clear, their hepatocytes
are ER stressed (Sandgren et al., 1991). Indeed, several ER
stress markers, including C/EBP homologous protein (CHOP),
glucose-regulated protein 78 (GRP78), spliced X-box binding
protein 1 (sXBP1), phosphorylated elF2¢a. (p-elF2a), phosphory-
lated inositol-requiring enzyme 1o, (p-IRE1e), and phosphory-
lated JNK (p-JNK), were elevated in 5-week-old MUP-uPA
mice compared to WT (Figure 3A; Figure S3A). Whereas in
16-week-old MUP-uPA mice most markers declined, paral-
leling the decline in uPA expression, HFD-fed MUP-uPA
mice maintained strong elF2¢ and JNK phosphorylation and
CHOP expression (Figure 3B; Figure S3A). In WT mice, HFD
feeding induced only a slight elevation in p-elF2a and
CHOP mRNA, with no effect on CHOP protein (Figure 3B). Using
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Figure 1. HFD-Fed MUP-uPA Mice Display
Classical NASH Signs

(A) Serum ALT in LFD- or HFD-fed WT and MUP-
uPA mice was measured at indicated ages. HFD
feeding was initiated at 6 weeks. Data are means =
8D (n = 3-5 per group). “p < 0.05.

(B) H&E staining of liver sections from 5-week-old
mice on the LFD and 24-week-old mice kept on the
LFD or HFD (scale bar, 100 pm). The bottom two
panels show the infiltration of immune cells in HFD-
fed MUP-uPA mouse livers (left, portal area; right,
liver parenchyma).

(C) Sirius Red staining of liver sections described in
(B) (scale bar, 100 pm).

(D) TUNEL and IHC analyses of Ki67 and K19 in
24-week-old mice that were kept on the LFD or
HFD (scale bar, 100 pm). Yellow and white arrows
indicate apoptotic and necrotic cells, respectively.
Bar graphs show the numbers of apoptotic and
necrotic cells and Ki67-positive cells per 200X
field. Data are means = SD (n = 5 per group). *p <
0.05.

See also Figure S1.

MUP-uPA

ligand TNF-related apoptosis-inducing
ligand (TRAIL) was also elevated in the
MUP-uPA liver. Electron microscopy
(EM) revealed distended and dilated ERs
in HFD-fed MUP-uPA mice (Figure S3C).
Thus, whereas ER stress appears to be
induced by uPA expression in 5-week-
old MUP-uPA mice, it declines due to
transgene extinction. However, feeding
these mice with HFD rekindles the stress
response and induces several cell-death
mediators that are not expressed in
HFD-fed WT mice. To determine whether
ER stress can cause ballooning degener-
ation and hepatocyte death, we injected
HFD-fed WT mice with the protein-glyco-
sylation inhibitor and ER-stress elicitor
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immunohistochemistry (IHC), we confirmed the level of nuclear
CHOP in the hepatocytes of 5-week-old MUP-uPA mice, which
was sustained at 16 weeks of age only in the HFD-fed MUP-uPA
mice (Figure 3C). Tribble3 (TRB3) and death receptor 5 (DR5),
two molecules capable of inducing cell death, were highly upre-
gulated in MUP-uPA mice, especially after HFD feeding (Fig-
ure S3B). After 24 weeks of the HFD, expression of the DR5

tunicamycin. This treatment led to rapid
(36 hr) induction of ballooning degenera-
tion, hepatocyte apoptosis, and ALT
release only in the HFD-fed mice (Figures
S3D-S3F). The white appearance of the
liver from HFD-fed mice treated with tuni-
camycin suggested that the liver had
become more steatotic.

These results are consistent with the
ability of ER stress to cause liver steatosis
(Rutkowski et al., 2008). Indeed, Oil Red O
(ORO) staining showed mild spontaneous
lipid accumulation in 5-week-old MUP-uPA mice, which dimin-
ished by 16 weeks of age under the LFD (Figure 3D). However,
HFD feeding induced more extensive lipid accumulation in the
MUP-uPA than in the WT mice. Liver triglycerides (TGs) and
cholesterol were also elevated (Figure 3E). Decreased liver lipid
export due to the suppression of apolipoprotein B (apoB)
expression/secretion and increased lipogenesis were suggested

wT MUP-uPA
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to be involved in ER stress-induced steatosis (Ota et al., 2008;
Qiu et al., 2011; Rutkowski et al., 2008). Because apoB carries
TGs and cholesterol from the liver elsewhere, we examined
serum TGs and cholesterol and liver apoB mRNA. There were
no differences in apoB mRNA among the four groups (Fig-
ure $3G), and the serum TGs and total cholesterol were similarly
elevated in HFD-fed WT and MUP-uPA mice (Figure S3H), sug-
gesting that liver lipid export was not fully impaired in MUP-uPA
mice. Next, we examined the mRNAs of lipogenic regulators.
Although sterol regulatory element-binding protein 2 (SREBP2)
mRNA was slightly increased and peroxisome proliferator-acti-
vated receptor o (PPARa) and CCAAT/enhancer-binding protein
o, (c/EBPa) mRNAs were slightly decreased in the 5-week-old
MUP-uPA mice compared to the WT mice, these trends were
not seen in the 16-week-old mice (Figure S3l). Expression of
PPARy was decreased in the 16-week-old MUP-uPA mice but
not in the 5-week-old mice. Therefore, the enhanced lipogenesis
in MUP-uPA mice could not be explained by the differential
expression of these molecules. However, among lipogenic reg-
ulators, SRREBP1 is controlled not only by synthesis but also by
cleavage and subsequent nuclear translocation (Goldstein
et al.,, 2006), which are stimulated by ER stress (Kammoun
et al., 2009). Indeed, the SREBP1 precursor abundance was
decreased in the 5-week-old MUP-uPA livers, and mature nu-
clear SREBP1 was elevated (Figure 3F). HFD feeding further
accelerated SREBP1 processing in the MUP-uPA mice but
also indueced some SREBP1 processing in the WT mice. The
mRNA expression of the SREBP1 target fatty-acid synthase

40-week-old mice that were kept on the LFD or
HFD.

(B) Representative H&E staining of tumor sections
from 40-week-old HFD-fed MUP-uPA mice. The
left two panels show trabecular HCC, and the right
two panels show steatohepatitic HCC (scale bar,
100 pm).

See also Figure S2.

(FAS), was increased in the 5-week-old
and HFD-fed MUP-uPA mice (Figure 3G).
Consistent with elevated lipogenesis, gas
chromatography determination of the he-
patic fatty-acid (FA) composition revealed
a significant increase in C16:0 palmitic
acid (PA) and longer-chain FA in MUP-
UPA mice compared to WT mice, which
was further enhanced by HFD feeding
(Figure 3H). Excess lipid accumulation
leads to oxidative stress due to mitochon-
drial H,O, production, which can induce
cell death (Anderson et al., 2009). Accord-
ingly, the HFD-fed MUP-uPA mice dis-
played strong dihydroethidium (DHE)
staining of hepatocytes and a decrease
in liver reduced glutathione (GSH):
oxidized glutathione (GSSG) ratio (Figures
3l and 3J). Oxidative stress in HFD-fed MUP-uPA mice may
contribute to CHOP expression, JNK activation, lipotoxic hepa-
tocyte death, and oncogenic mutations.

The IRE1a-XBP1 pathway has been reported to regulate the
hepatic lipid metabolism via the XBP1-mediated induction of
lipogenic enzymes and regulated IRE1-dependent mRNA decay
(RIDD) (Lee et al., 2008; So et al., 2012). Although expression of
the XBP1 target gene ERdj4 was upregulated in the 5-week-old
and HFD-fed MUP-uPA mice, there were no differences in
expression of diacylglycerol O-acyltransferase 2, a lipogenic
enzyme regulated by XBP1 but not by SREBP1 (Figure S3J).
RIDD-mediated downregulation of angiopoietein-like protein 3
(Angpti3) and carboxylesterase 1 (Ces1) mRNAs can induce hy-
polipidemia and hepatosteatosis due to decreased lipid secre-
tion from the liver. Although expression of Angptl3 mRNA was
decreased in 5-week-old MUP-uPA mice (Figure S3J), there
were no differences in serum TGs and total cholesterol levels be-
tween the 5-week-old WT and MUP-uPA mice and in Angpti3
mRNA expression recovered in 16-week-old MUP-uPA mice
(Figures S3H and S3J). These results suggest that the IRE1-
«-XBP1 pathway does not play a major role in NASH develop-
ment in MUP-uPA mice.

Chemical Chaperons and GRP78 Attenuate Lipotoxicity
and Lipogenesis in MUP-uPA Niice

To examine whether ER stress enhances lipotoxicity in MUP-
uPA hepatocytes, we incubated WT and MUP-uPA hepatocytes
with PA. After 24 hr, lipotoxic cell death was seen in both WT and
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MUP-uPA hepatocytes but was more extensive in the latter (Fig-
ure 4A). PA increased CHOP expression and SREBP1 matura-
tionin WT hepatocytes, but these effects were more pronounced
in MUP-uPA hepatocytes, which expressed both proteins prior
to PA addition (Figure 4B). To examine the contribution of ER
stress to these phenomena, we treated hepatocytes with the
chemical chaperons 4-phenylbutyrate (4-PBA) and tauro-urso-
deoxycholic acid (TUDCA), which reduce ER stress (Ozcan
et al., 2006). Both compounds attenuated PA-induced cell
death, but their prosurvival effect was more pronounced in
MUP-uPA hepatocytes (Figure 4A). CHOP induction and
SREBP1 maturation upon PA treatment were also reduced by
4-PBA (Figure 4B). Overexpression of the ER protein chaperon
GRP78 in MUP-uPA hepatocytes also inhibited SREBP1 matura-
tion and PA-induced cell death (Figures 4C and 4D), further sup-
porting the role of ER stress in both phenomena. PA treatment
activated JNK, but consistent with previous results that ER
stress has only a partial role in JNK activation by PA (Holzer
et al., 2011), the effect was restricted to WT hepatocytes and
4-PBA treatment only partially reduced JNK phosphorylation
(Figure 4B). Nonetheless, the JNK inhibitor D-JNKi protected
both cell types from PA-induced death (Figure 4E).

We examined the effect of TUDCA on NASH development.
We initiated daily intraperitoneal (i.p.) injections of TUDCA
(250 mg/kg) or phosphate-buffered saline (PBS; vehicle control)
to the HFD-fed MUP-uPA mice at 16 weeks of age. After 4 weeks,
hepatosteatosis and hepatocyte ballooning were attenuated
(Figure 4F) and serum ALT and hepatic TGs and cholesterol
were significantly reduced (Figures 4G-4l). Hepatocyte death
and reactive oxygen species (ROS) accumulation were also
suppressed (Figures S4A and S4B). TUDCA treatment also in-
hibited CHOP expression and SREBP1 maturation in livers of
the HFD-fed MUP-uPA mice (Figure S4C). We also found that
in vivo overexpression of GRP78 using an adenovirus vector
attenuated hepatic steatosis in the HFD-fed MUP-uPA mice (Fig-
ures 84D and S4E). However, due to enhanced adenovirus
toxicity in MUP-uPA mice, we could not assess the effect on
NASH and HCC development. Nonetheless, the results suggest
that increased lipotoxicity caused by a positively reinforced cy-
cle of ER stress, oxidative stress, and lipogenesis aggravates
fatty liver disease in HFD-fed MUP-uPA mice.

Given the pronounced expression of CHOP in MUP-uPA mice
and its postulated role in apoptosis (Malhi and Kaufman, 2011),
we crossed MUP-uPA mice to Chop?™ mice, in which CHOP
was deleted in hepatocytes. Despite efficient CHOP ablation,
there was no reduction in liver damage, JNK and elF2o phos-
phorylation, or GRP78 expression in young Chop“"™®P/MUP-
uPA mice (Figures S4F and S4G). Correspondingly, CHOP
ablation did not inhibit HCC development (Figure S4H). In fact,
CHOP ablation increased tumor multiplicity without affecting
tumor size, ER stress markers, or NASH severity (Figures S4l-
S4K), results that stand in marked contrast to the protective
effect of whole-body Chop ablation in DEN-induced hepatocar-
cinogenesis (DeZwaan-McCabe et al., 2013). CHOP was
strongly expressed in some tumors and preneoplastic lesions
of HFD-fed MUP-uPA mice but not in Chop“™P/MUP-uPA
mice, and the number of TUNEL-positive cells tended to be
reduced in the tumor tissues of Chop? ™P/MUP-uPA mice (Fig-
ures S4L and S4M), suggesting that hepatocyte CHOP is not

positively involved in NASH progression and HCC development,
similar to what was observed in whole-body Chop™" mice ona
methionine-choline-deficient (MCD) diet (Soon et al, 2010).
Nonetheless, CHOP may play a tumor-suppressive role by
inducing apoptosis of initiated hepatocytes.

THNF from Liver Macrophages Promotes Lipogenesis and
NASH and HCC Development

Next, we examined the involvement of inflammatory cytokines in
hepatosteatosis and steatohepatitis. In 24-week-old mice, TNF
and IL-1B, but not IL-6, mRNAs were elevated in HFD-fed
MUP-uPA livers (Figure 5A). TNF production was confirmed by
ELISA (Figure 5B) and immunofluorescence (IF) analysis local-
ized it to F4/80-positive macrophages, whose number was
elevated in HFD-fed MUP-uPA mouse livers (Figure 5C). The in-
crease in macrophage infiltration and TNF expression was in-
hibited by TUDCA treatment (Figures S5A and S5B), suggesting
that it is stimulated, in part, by hepatocyte ER and oxidative
stress.

To investigate the role of TNF in NASH progression and HCC
development, we generated TNF receptor 1 (TNFR1)-deficient
MUP-uPA (Tnfr1~'~/MUP-uPA) mice. At 5 and 40 weeks of
age, there were no differences in liver injury and body weights
between the MUP-uPA and Tnfr1~/~/MUP-uPA mice (Figures
S5C-S5F). We placed these mice on the HFD from 6 to 40 weeks
of age, and assessed the liver histology and tumorigenesis.
Body-weight gain at 40 weeks of age was similar between
MUP-uPA and Tnfr1 ™'~ /MUP-uPA mice (Figure S5F), but tumor
development was substantially reduced upon TNFR1 ablation
(Figures 5D and 5E). Importantly, hepatocyte ballooning, ALT
release, liver TGs, and cholesterol, as well as SREBP1 and
JNK activation, were reduced in the Tnfr1™'~/MUP-uPA mice
(Figures 5F-8l). Therefore, TNFR1 signaling perpetuates NASH
pathogenesis and HCC progression.

TNFR1 Signaling Directly Promotes Tumor Growth

To determine whether TNFR1 signaling promotes HCC develop-
ment by acting in HCC progenitor cells (HcPCs), whose isolation
we recently described (He et al., 2013), we transplanted HcPCs
from DEN-treated WT or Tnfr1~/~ mice into MUP-uPA mice,
which were placed on the LFD or HFD (Figure 6A). The expression
of the HcPC marker CD44 was comparable between WT and
Tnfr1~~ HcPCs (Figure S6A). After 5 months, nontransplanted
MUP-uPA mice did not have any tumors larger than 2 mm,
even after HFD feeding, whereas HcPC-transplanted mice devel-
oped multiple HCC nodules (Figure 6B). The HFD feeding did not
affect the number of tumors (which was determined by the num-
ber of transplanted HcPCs); however, it significantly increased
the tumor size in mice transplanted with WT HcPCs but not in
mice receiving Tnfr1~'~ HcPCs (Figures 6B and 6C). Thus,
although TNFR1 signaling is dispensable for HcPC induction by
DEN, it strongly stimulates tumor growth in a cell-autonomous
manner. Control experiments confirmed that TNFR1 was deleted
in HCC cells but not in nontumor liver tissues (Figure S6B). In
addition, there were no differences in NASH-like pathology and
TNF expression in the background liver harboring either WT or
Tnfr1~'~ HcPCs (Figures S6C-S6G). To further investigate the
role of TNF signaling in these effects, we treated WT HcPC-trans-
planted MUP-uPA mice with the TNF antagonist etanercept
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under HFD feeding. Etanercept treatment significantly sup-
pressed HCC growth (Figure S6H). We also transplanted WT
HcPCs into Tnfr1 ™"~ /MUP-uPA hosts and found that the HFD
still led to increased tumor size, albeit to a lesser extent than
the 2-fold effect seen in MUP-uPA hosts (Figure S6l).

We assessed cell proliferation and apoptosis in HcPC-derived
tumors. No significant effects on apoptosis were observed, but
the HFD enhanced cell proliferation in tumors formed by WT
HcPCs, and this effect was diminished upon TNFR1 ablation
(Figure 6D). Cyclin D1 expression and phosphorylation of ERK,
STATS, JNK, and ribosomal protein S6 (S6) were enhanced by
HFD feeding in WT HcPC-derived tumors (Figure 6E; Figure S6J).
Apart from S6 phosphorylation, these responses were abolished
upon TNFR1 ablation. TNFR1 in HcPCs was also required for
nuclear factor k B (NF-kB) activation in tumors that developed
in HFD-fed MUP-uPA mice (Figure 6F) and IKKf ablation in
HcPC prevented, HFD-enhanced tumor growth (Figure 6G).
Thus the TNF-TNFR1-IKKB-NF-kB pathway is an important
mediator of HCC growth in HFD-fed mice.

TNFR1 Signaling Promotes Tumor-Associated
Inflammation

Some of the signaling effectors that are activated in HFD-fed
mice are not directly regulated by TNFR1. We postulated that au-
tocrine or paracrine signaling may mediate some of the observed
responses and analyzed tumors generated by WT and Tnfr1 ™/~
HcPCs more closely. In HFD-fed mice, both WT and Tnfr1™'~
HCCs were composed of steatotic cells, but immune infiltration
was less extensive in Tnfr1 '~ HCCs (Figure 7A). Real-time PCR
and IHC analysis indicated that macrophage and B cell markers
were significantly increased by the HFD in WT but not in Tnfr1 =/~
HCCs (Figures 7B and 7C). In addition, mRNAs for numerous in-
flammatory cytokines, chemokines, and growth factors were up-
regulated by the HFD in WT but not in Tnfr1 ™/~ HCCs (Figure S7).
IF analysis confirmed that expression of chemokine (C-C motif)
ligand 7 (CCL7), which attracts macrophages and monocytes,
was increased by the HFD in WT but not in Tnfr1~/~ HCCs (Fig-
ure 7D). Thus, TNFR1 signaling in HCC cells promotes tumor-
associated inflammation, which can account for ERK and
STATS activation in malignant cells.

DISCUSSION

ER stress and the unfolded protein response (UPR) are upregu-
lated in many cancers and may be associated with drug resis-

tance and adaptation to the transformed state (Wang et al,,
2010). Elevated ER stress was also detected in precancerous
conditions that precede HCC development, including HBV and
HCV infections (Malhi and Kaufman, 2011) and NASH (Farrell
etal., 2012; Tilg and Moschen, 2010). However, until recently, re-
searchers have not examined whether the ER stress response,
which contributes to insulin resistance and hepatic steatosis
(Hotamisligil, 2010), stimulates HCC development. Our results
indicate that transient ER stress does not trigger hepatocarcino-
genesis in MUP-uPA mice that are kept on a LFD but that it elicits
a more sustained stress response that also includes extensive
oxidative stress when combined with hypernutrition. This
response leads to spontaneous NASH development and pro-
gression to HCC, whose features closely resemble steatohepa-
titic HCC in NASH patients. Our studies suggest several potential
mechanisms related to ER stress and HFD feeding that coop-
erate to induce HCC development. First, by stimulating hepatos-
teatosis (lipid droplet accumulation), HFD sustains a modest
degree of ER stress in MUP-uPA mice, which otherwise would
be switched off upon extinction of uPA expression. Second,
ER stress promotes SREBP1 activation, enhancing lipogenesis
and increasing the degree of hepatic steatosis beyond what is
achieved by HFD alone. Third, ER stress and steatosis increase
ROS production in hepatocytes to cause oxidative stress and its
sequelae, which include genomic instability, oncogenic muta-
tions, and/or gene-copy-number changes. Fourth, ER and
oxidative stress increase the sensitivity of hepatocytes to lipo-
toxic death, thereby releasing inflammatory mediators that
attract and activate monocytes/macrophages. Fifth, TNF and
other mediators produced by activated inflammatory macro-
phages stimulate compensatory hepatocyte proliferation and
expand HCC progenitors. TNF further reinforces the inflamma-
tory microenvironment and induces expression of chemokines
(CCL2, CCL7, and chemokine [C-X-C motif] ligand 13
[CXCL13]) and growth factors/cytokines (IL-1, IL-6, TNF itself,
lymphotoxin, and hepatocyte growth factor [HGF]) both by
HePCs and surrounding cells. The concerted action of these fac-
tors contributes to the development of NASH-like pathology, and
NASH contributes to HCC progression. Mutually reinforcing ER
stress and hepatosteatosis (Malhi and Kaufman, 2011) are
needed to set this pathogenic cascade in motion.

The requirement for two hits (hepatosteatosis and ER stress)
for the induction of HCC development in MUP-uPA mice resem-
bles that which has been proposed to drive NASH development,
a pre-HCC condition, in humans (Day and James, 1998; Tilg and

Figure 3. ER Stress Enhances Lipogenesis and Promotes Steatohepatitis
(A and B) Immunoblot (IB) analysis of ER stress markers in livers of 5-week-old WT and MUP-uPA mice (A) and 16-week-old WT and MUP-uPA mice kept on the

LFD or HFD (B).

(C) IHC analysis of CHOP in livers of 5-week-old mice on the LFD and 16-week-old mice kept on the LFD or HFD (scale bar, 100 pm).

(D) Oil Red O staining of mouse livers described in (C) (scale bar, 100 pm).
(E) TG and cholestero! content of mouse livers described in (C).

(F) IB analysis of unprocessed precursor SREBP1 (P-SREBP1) in whole liver extract and mature SREBP1 (M-SREBP1) in liver nuclei of mice described in (4)

(upper panels) and (B) (lower panels).
(G) Real-time PCR analysis of liver FAS mRNA.

(H) Hepatic FA composition in 16-week-old mice kept on the LFD or HFD, analyzed using gas chromatography. *p < 0.05, compared with LFD-fed WT mice.

#p < 0.05, compared with HFD-fed WT mice.

(I and J) ROS accumulation in 16-week-old mice that were kept on the LFD or HFD. images of DHE staining (scale bar, 100 pm) (I) and GSH:GSSG ratio (J) are

shown. All bar graphs represent means + SD (n = 3 per group). *p < 0.05.
See also Figure S3.
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Figure 4. Chemical Chaperons Attenuate Lipotoxicity and Liver Damage in MUP-uPA Mice

(A) Primary hepatocytes from WT and MUP-uPA mice were incubated with 300 uM PA for 24 hr with or without 500 1M TUDCA or 1 mM 4-PBA. Cell viability was
assessed using Cell Counting Kit-8 assay. Data are means + SD of triplicate wells. *p < 0.05.

(B) Primary hepatocytes from WT and MUP-uPA mice were incubated with 200 uM PA with or without 4-PBA as in (A). CHOP expression, SREBP1 maturation,
and JNK phosphorylation were assessed using [B.

(C and D) Effect of GRP78 overexpression. MUP-uPA hepatocytes were infected with adenoviruses encoding LacZ or GRP78 and then incubated with PA.
SREBP1 maturation (C) and cell viability (D) were assessed as in (B).

(E) Hepatocytes from WT and MUP-uPA mice were incubated with 300 pM PA for 24 hr with or without 10 pM D-JNKIi, and cell viability was assessed. Data are
means = SD of triplicate wells. *p < 0.05.

(F-1) Effect of TUDCA on NASH in HFD-fed MUP-uPA mice. The 16-week-old HFD-fed MUP-uPA mice were i.p. injected with TUDCA (250 mg/kg) or the vehicle,
and after 4 weeks of daily treatment, liver histology (scale bar, 100 um) (F), serum ALT (G), liver TGs (H), and liver cholesterol (I) were evaluated. Bar graphs are

means = SD (n = 5 per group). *p < 0.05.
See also Figure 4.

Moschen, 2010). Although simple steatosis (not NASH) is an
extremely common disorder affecting nearly 30% of the US pop-
ulation, only 10%-20% of these patients develop NASH. In the
absence of known genetic factors, it was proposed that NASH
development depends on multiple secondary hits, which may
include microbiota-related factors, food additives, dysbiosis,
IL-6 and TNF from adipose tissue, mitochondrial dysfunction,
and oxidative or ER stress (Farrell et al., 2012; Tilg and Moschen,
2010). Although these are considered secondary hits, they may
act as pre-existing risk factors prior to hepatosteatosis caused
by a HFD. Nonetheless, in humans, unlike MUP-uPA mice, it
has been extremely difficult to detect the presence of such risk
factors because they do not lead to overt liver damage (elevated

ALT) prior to development of a steatotic liver due to hypernutri-
tion. Given its presence in other pre-HCC conditions (Malhi
and Kaufman, 2011), we focused our study on the role of ER
stress. Remarkably, feeding a HFD to MUP-uPA mice resulted
in steatohepatitis that closely resembled human NASH, and
two of the main pathological features, ballooning degeneration
and hepatocyte death, were also rapidly induced by the admin-
istration of tunicamycin to HFD-fed mice. By itself, short-term
administration of tunicamycin did not damage the liver, but due
to toxicity that may be associated with long-term use, we did
not examine whether tunicamycin induces NASH and HCC in
HFD-fed WT mice. Notably, NASH-like disease in MUP-uPA
mice is associated with the same metabolic alterations linked
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Figure 5. TNFR1 Signaling Promotes Tumor Growth

(A) Relative inflammatory cytokine mRNA in livers of 24-week-old mice kept on the LFD or HFD determined by real-time gPCR. Data are means + SD (LFD-fed WT,

n = 3; others, n = 5 per group). *p < 0.05.

(B) TNF protein in livers from (A) was measured using ELISA. Data are means = SD. *p < 0.05.

(C) Double IF analysis of F4/80 (green) and TNF (red) of liver sections from (A) (scale bar, 100 um). Nuclei were labeled with DAPI (blue).

(D-G) Effect of TNFR1 ablation on NASH and tumorigenesis in HFD-fed MUP-uPA mice. MUP-uPA and Tnfr1 ™/~ /MUP-uPA mice were fed the HFD from 6 to
40 weeks of age. Representative images of livers (D), tumor numbers and maximal sizes (E), H&E staining of nontumor areas (scale bar, 100 pum) (F), and serum
ALT (G) are shown. Bar graphs represent means = SEM (MUP-uPA, n = 14; Tnfr1 ™~ /MUP-uPA, n = 11). *p < 0.05.

(H) TG and cholesterol content in nontumor tissue of HFD-fed MUP-uPA and Tnfr1~/~/MUP-uPA mouse livers. Bar graphs represent means = SD (n = 7 per

group). *p < 0.05.

() IB analyses showing effects of TNFR1 ablation on SREBP1 maturation and JNK phosphorylation in nontumor tissue of HFD-fed MUP-uPA mice.

See also Figure S5.

to NASH in humans and is not accompanied by weight loss, as
seen in other NASH models that are based on feeding mice toxic
diets that induce liver damage (Farrell et al., 2012). Furthermore,
the HFD-fed MUP-uPA mouse is currently the only model for
studying obesity-induced HCC development that does not rely
on the administration of liver toxins or carcinogens. The major
NASH-promoting effects of ER stress in this system are
increased lipogenesis, oxidative stress, and susceptibility to lip-
otoxic cell death. ER stress contributes to SREBP activation,
thereby stimulating lipogenesis (Kammoun et al., 2009). ER
and oxidative stress also upregulate several cell-death media-
tors, including TRB3 and DR5, but the exact mechanisms
through which ER stress promotes cell death remain controver-
sial (Xu et al., 2005) and our results indicate that in normal
hepatocytes it is CHOP independent. Although ER stress causes

insulin resistance (Hotamisligil, 2010; Ozcan et al., 2006) and in-
sulin resistance was proposed to contribute to HCC develop-
ment, our results suggest that insulin resistance has no obvious
role in HCC development because it is not higher in MUP-uPA
mice than in HFD-fed WT mice.

A consequence of ER stress and lipotoxic hepatocyte death
that contributes to HCC development is induction of TNF-depen-
dent steatohepatitis. In addition to amplifying liver inflammation
and shaping the inflammatory microenvironment near HcPC
clusters, TNF contributes to hepatosteatosis and liver damage.
Although TNFR1 engagement can trigger apoptosis, it is not
responsible for ER-stress-induced death in lean MUP-uPA
mice, and its contribution to liver damage in HFD-fed mice is
proportional to its effect on lipogenesis and may be indirect.
TNF, however, directly stimulates HCC growth through NF-«xB
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Figure 6. TNFR1 Signaling Promotes Tumor Growth

(A) HePC isolation from DEN-treated WT and Tnfr1~/~ mice and transplantation into MUP-uPA mice. HcPC-transplanted MUP-uPA mice were divided into two
groups that were fed with either the LFD or HFD, and 5 months later tumorigenesis was assessed.

(B) Representative images of nontransplanted and HcPC-transplanted MUP-uPA mouse livers.

(C) Tumor numbers and maximal sizes. Results are means + SEM (n = 10-11 per group). *p < 0.05.

(D) Ki67 [HC and TUNEL staining of tumor areas in livers in (C) (scale bar, 100 um). Bars represent numbers of apoptotic and necrotic cells and Ki67-positive cells

per field. Results are means + SD (n = 6 per group). *p < 0.05.
(E) Tumor tissues from WT or Tnfr1 =/~ HePC-transplanted MUP-uPA mice kept on the LFD or HFD were IB analyzed for phosphorylation of ERK, STAT3, JNK, and

S6, and expression of cyclin D1. Data were quantified using Image J software and are presented as means + SD (n = 5-6 per group). *p < 0.05.
(legend continued on next page)
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Figure 7. TNFR1 Signaling in Cancer Cells Promotes Tumor-Elicited Inflammation

(A) H&E analysis of tumors from WT or Tnfr1~/~ HcPCs in MUP-uPA mice that were kept on the LFD or HFD (scale bar, 100 um).
(B) Real-time PCR determination of immune cell marker mBNAs in tumor tissues. Data are means + SD (n = 5 per group). *p < 0.05.
(C) IHC analysis of F4/80- and B220-positive cells in tumor tissues in (A) (scale bar, 100 um).

(D) IF analysis of CCL7 expression in tumor tissues (scale bar, 25 pm).
See also Figure S7.

activation, but additional downstream TNFR1 effectors, such as
JNK (Sakurai et al., 2008), may also contribute to HCC growth as
well as hepatocyte death. TNF expression is also elevated in hu-
man NASH and anti-TNF therapy may reduce NASH activity
(Schramm et al., 2008).

Although HFD feeding to MUP-uPA mice results in the upregu-
lation of multiple cytokines and growth factors including several
that stimulate HCC development, namely HGF and lymphotoxin
(Haybaeck et al., 2009), anti-TNF therapy inhibited the obesity-
enhanced progression of HcPCs to HCC and TNFR1 ablation
almost completely blocked HCC development. We therefore
suggest that anti-TNF drugs, perhaps in combination with
improved intrahepatic delivery of chemical chaperons, such as
TUDCA, should be evaluated for the inhibition of NASH-to-
HCC progression and the treatment of steatohepatitic HCC
along with more conventional chemotherapy.

EXPERIMENTAL PROCEDURES

Animals
MUP-uPA mice were kindly provided by E.P. Sandgren, University of Wiscon-
sin-Madison (Weglarz et al., 2000). Liver-specific Ikk3" mice were described

(Maeda et al., 2005). Chop"P mice were generated by crossing Alb-Cre mice
with Chop™ mice, which were developed by R.J.K together with Ira Tabas with
the support of NIH grants DKD88227, DKD42394, and HLD52173. Tnfr1™/~
mice were purchased from Jackson Laboratory (Bar Harbor). All animal studies
were performed in accordance with NIH guidelines for the use and care of live
animals and approved by University of California, San Diego (UCSD) Institu-
tional Animal Care and Use Committee, S00218. All mouse lines were either
on a pure C57BL/6 genetic background or crossed into it for at least ten gener-
ations. Studies were conducted on male mice maintained in filter-topped cages
on autoclaved water and a regular chow diet (LFD, composed of 12% fat, 23%
protein, and 65% carbohydrates based on caloric content) or a HFD (composed
of 59% fat, 15% protein, and 26% carbohydrates based on caloric content;
BioServ) according to UCSD and NIH guidelines.

HcPC lsolation and Transplantation
DEN (Sigma) was i.p. injected into male mice (25 mg/kg) on postnatal day 14.
After 5 months, HcPCs were isolated as described and transplanted into
4-week-old MUP-uPA (He et al., 2013).

Primary Hepatocytes Cultures

Primary hepatocytes were isolated (He et al., 2013) and cultured in William’'s E
medium with 10% fetal bovine serum (FBS) on collagen-coated plates. PA
(Sigma) was dissolved in ethanol at 50°C and then diluted in BSA-containing
RPMI-1640 medium that was applied to primary hepatocytes at a final concen-
tration of 200 uM (to analyze signal transduction) or 300 uM (to analyze cell death).

(F) Activation of NF-kB analyzed by p65/RelA IHC in tumor tissues from MUP-uPA transplanted with WT or Tnfr1~'~ HcPCs and kept on the LFD or HFD (scale bar,
25 pm). Bars show numbers of nuclear p65 positive cancer cells per 200x field. Data are means = SD (n = 6 per group). *p < 0.05.

(G) Effect of IKKB ablation on HFD-stimulated HcPC progression. HcPCs isolated from DEN-injected liver-specific ikk3“"* were transplanted into MUP-uPA mice
as in (A), and the HcPC-transplanted mice were kept on the LFD or HFD. After 5 months, tumor muitiplicity and maximal sizes were determined. Data are means =

SEM (n = 10 per group).
See also Figure S6.
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Hepatic Lipid Profile

Hepatic lipids were extracted using chloroform/methanol (2:1 v/v), and TG and
total cholesterol contents were measured using Triglyceride Reagent Set
(Pointe Scientific) and Cholesterol E (Wako), respectively. FA composition
was analyzed using gas chromatography at SRL, Tokyo.

Biochemical Analyses and Reagents

Immunoblotting and real-time quantitative PCR (gPCR) were described
(Maeda et al., 2005). Antibodies used were against phosphorylated ERK,
ERK1/2, phosphorylated STAT3, STAT3, p-JNK, JNK1/2, phosphorylated
S6, S6, p65, cyclinD1, and YAP (all from Cell Signaling); K19, GRP78, SREBP1,
CHOP, CCL7, p62, and TNFR1 (all from Santa Cruz Biotechnology); p-elF2a
(Upstate); tubulin (Sigma); F4/80 (Molecular Probes); Ki67 (Gene Tex); AFP
(Biocare Medical); TNF (R&D Systems); EpCAM (Abcam); and B220 (BD
PharMingen). TUDCA and 4-PBA were from Calbiochem and Sigma, respec-
tively. The GSH:GSSG ratio was analyzed using the GSSG/GSH Quantification
Kit (Dojindo).

Histology

Livers were fixed in 10% neutral-buffered formalin or 4% paraformaldehyde,
embedded in paraffin, sectioned, stained with hematoxylin and eosin (H&E})
and Sirius Red, and processed for [HC. For frozen-block preparation, tissue
was embedded in Tissue-Tek OCT compound (Sakura Finetek). IHC and IF an-
alyses were described (He et al., 2013). Stained areas were quantitated using
Image J software. Slides were incubated with primary antibodies, followed by
secondary antibodies labeled with Alexa488 or Alexa594 (Molecular Probes).
TUNEL staining was performed using an Apoalert DNA Fragmentation Assay
kit (Clontech). Accumulation of superoxide anions was examined by DHE
staining (Sakurai et al., 2008). Tissue sample preparation and EM analysis
were described (Lee et al., 2012).

Infection of Recombinant Adenovirus

Primary hepatocytes were infected with recombinant adenovirus encoding
B-galactosidase (LacZ) and GRP78 at a titer of 50 plaque-forming units/cell
4 hr after isolation.

Statistical Analyses

Statistical analyses were performed using student’s t test or one-way ANOVA
followed by the Tukey-Kramer test for multiple comparisons. The number of
tumors larger than 2 mm was counted for comparative analyses of tumor
development. A p value < 0.05 indicated statistical significance.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and can be found with this
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Despite recent progress in the development of direct-acting antivirals against hepatitis C virus (HCV),
chronic HCV infection remains an important health burden worldwide. MicroRNA122 (miR122), a liver-
specific microRNA (miRNA), positively regulates HCV replication, and systemic application of antisense
oligonucleotides against miR122 led to the long-lasting suppression of HCV viremia in human clinical

Keywords: trials. Here, we report that apigenin, a flavonoid and an inhibitor of maturation of a subset of miRNAs,
HCV inhibits HCV replication in vitro. Apigenin decreased the expression levels of mature miR122 without
MiCF_ORNA significantly affecting cell growth. Because supplementation of synthesized miR122 oligonucleotides or
Replicon overexpression of constitutively active TRBP blocked these effects, the inhibitory effects of apigenin on
Polyphenol HCV replication seemed to be dependent on the reduction of mature miR122 expression levels through
inhibition of TRBP phosphorylation. Thus, apigenin intake, either through regular diet or supplements,

may decrease HCV replication in chronically infected patients.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction 2005). It binds to two closely spaced target sites in the highly

Hepatitis C virus (HCV) constitutes a significant health problem
worldwide, with an estimated 130-170 million people chronically
infected (Scheel and Rice, 2013). Chronic HCV infection leads to
severe liver diseases, including advanced liver fibrosis, cirrhosis, and
hepatocellular carcinoma (HCC). A recent HCV therapy consisting of
a triple combination of pegylated interferon « (peg IFN-«), ribavirin,
and protease inhibitors increased cure rates (Jacobson et al.,, 2011;
Poordad et al., 2011; Bacon et al, 2011; Sherman et al, 2011).
However, substantial side effects, resistance, and drug-drug inter-
actions are concerns with this therapy. Although an IFN-free regi-
men with direct-acting antivirals (DAAs) is beginning to reach
patients and increase cure rates (Manns and von Hahn, 2013;
Deuffic-Burban et al., 2014), several issues remain, including treat-
ment failure, resistant clones, and economic burden.

MicroRNA122 (miR122) is a highly abundant microRNA (miRNA)
expressed in the liver and essential for the stability and propagation
of HCV RNA (Jopling, 2012; Pfeffer and Baumert, 2010; Jopling et al.,
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Medicine, The University of Tokyo, 5-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655,
Japan. Tel.: +81 3 3815 5411x37966; fax: +81 3 3814 0021.
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conserved 5'-untranslated region (5'-UTR) of the HCV genome. These
sites are conserved across all HCV genotypes and subtypes (Li et al,,
2011). This positive regulation through 5-UTR sites is a unique
process, as compared to the usual function of miRNAs in the
repression of gene expression via 3’-UTRs in target mRNAs. Although
the precise mechanisms by which miR122 positively regulates HCV
replication through its binding to the 5-UTR of the HCV genome
are not yet fully elucidated (Jopling, 2012), it was demonstrated that
LNA-based anti-miR122 oligonucleotides led to the long-lasting
suppression of HCV viremia and improvement of HCV-induced liver
pathology in chimpanzees (Lanford et al., 2010). Based on experi-
mental results, human clinical trials using miravirsen, an LNA-
modified DNA phosphorothioate antisense oligonucleotide against
miR122, have been conducted, and in Phase 2a studies miravirsen
resulted in a dose-dependent reduction in HCV levels, without major
adverse events and with no escape mutations in the miR122 binding
sites of the HCV genome (Janssen et al,, 2013). The miR122 binding
sites are conserved across all HCV genotypes and subtypes, and
miR122 could represent a host target for antiviral therapy.

We previously demonstrated that the flavonoid apigenin (4,5,7-
trihydroxyflavone) has inhibitory effects on the maturation of a
subset of miRNAs and on subsequent miRNA function (Ohno et al.,
2013). These effects were mediated by the inhibition of TRBP

0042-6822/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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phosphorylation through inhibition of ERK activation (Ohno et al,,
2013). We reported that the administration of apigenin to mice
improved glucose intolerance induced by overexpression of miR103
in the liver, likely through suppression of mature miR103 expres-
sion. Moreover, we found that miR122 was also affected by apigenin
(Ohno et al., 2013).

We hypothesized that apigenin may exert inhibitory effects on
HCV replication by decreasing mature miR122 expression levels. In
this study, we assessed the effects of apigenin on HCV replication
and the possible molecular mechanisms by using an in vitro HCV
replicon reporter system. Based on our findings, we propose
potential novel management methods for chronic HCV infection
and possibly other pathological states mediated by miR122.

Results
Apigenin inhibits the biogenesis of miR122

We recently showed that apigenin inhibits the biogenesis of a
subset of miRNAs (Ohno et al., 2013). Because previous screening
of the comprehensive miRNA expression changes revealed that
miR122 was one of the miRNAs affected by apigenin (NCBI Gene
Expression Omnibus (GEO) accession number: GSE46526) (Ohno
et al, 2013), we here measured mature miR122 levels in Huh7
cells by quantitative RT-PCR, after apigenin treatment for 5 days.
While the expression levels of let-7g, an unrelated miRNA, were
not affected, apigenin significantly reduced mature miR122
expression levels in a dose-dependent manner (Fig. 1a). Northern
blotting confirmed the reduced expression levels of miR122 after
apigenin treatment (Fig. 1b). By contrast, expression of miR122
precursor, but not let-7g precursor, was increased after apigenin
treatment (Fig. 1c), as we described previously (Ohnio et al., 2013).
Consistent with the reduced levels, miR122 function was inhibited
by apigenin, as determined by the increased reporter values from a
transiently transfected reporter construct with two miR122 target
sites in tandem in its 3’-UTR (Fig. 1d). The effect was miR122
function-specific because no effects were observed with use of a
reporter construct with mutations in the miR122 target sites
(Fig. 1d). Apigenin had no significant effects on Huh7 cell growth
at a final concentration of up to 5uM (50 uM apigenin slightly
reduced the cell number) (Fig. 1e). These results suggest that up to
5 uM of apigenin inhibits the expression levels of mature miR122
in Huh7 cells without affecting cell viability.

Apigenin inhibits HCV replication

Because miR122 positively regulates HCV replication (Jopling
et al,, 2005), we hypothesized that apigenin might inhibit HCV
replication by decreasing the expression levels of mature
miR122. To test this hypothesis, we used Huh7 cells harboring
an HCV replicon reporter construct (HCV-Feo), referred to as
Huh7-Feo cells (Yokota et al.,, 2003). These cells continuously carry
a replicon expressing a chimeric protein consisting of firefly
luciferase and neomycin phosphotransferase under the HCV 5
IRES and can be used to monitor intracellular HCV replication by
measuring luciferase activity (Fig. 2a) (Yokota et al., 2003). Treat-
ment of Huh7-Feo cells with apigenin (final concentration 5 or
50 uM) for 5 days significantly reduced HCV-Feo replication
(Fig. 2b). The pattern of luciferase values closely matched the
pattern of luciferase protein expression levels (Fig. 2c). The
decrease in replication observed with 5 M apigenin treatment
was only slightly less than that obtained following the transfection
of anti-miR122 oligonucleotides at 10 pM. Although 50pM
apigenin may have adverse effects on cell viability, as described
above, these results suggest that 5 uM apigenin can significantly

inhibit HCV replication without affecting cell viability, possibly
through downregulation of mature miR122 expression levels.

Apigenin inhibits HCV replication through downregulation of miR122
levels

To further investigate the mechanisms of the observed negative
effects of apigenin on HCV replication, we applied synthesized
mature miRNAs to Huh7-Feo cells to determine whether miRNA
supplementation could antagonize the effects of apigenin. Over-
expression of miR122 after the transfection of synthesized miR122,
compared with the expression levels of miR122 in cells with no
treatment or with let-7g transfection, was confirmed by Northern
blotting (Fig. 2d). As expected, overexpression of miR122 effi-
ciently antagonized the negative effects of apigenin on HCV
replication, while supplementation of an unrelated miRNA, let-
7g, had no effect on HCV replication (Fig. 2e). These results suggest
that apigenin inhibits HCV replication by downregulating mature
miR122 expression.

Phosphorylation mimic TRBP blocks the effects of apigenin

Because we previously demonstrated that apigenin inhibits the
maturation of a subset of miRNAs by inhibiting the phosphoryla-
tion of TRBP, which contributes to the maturation of a subset of
miRNAs by binding to Dicer (Paroo et al., 2009). We constructed a
flag-tagged TRBP-expressing construct and a phosphorylation
mimics in which serine was substituted with aspartic acid (TRBP
(SD)) (Paroo et al., 2009), The expression levels of the wild-type
TRBP and TRBP(SD) constructs were comparable (Fig. 3a). After
stably expressing these constructs in Huh7-Feo cells by lentiviral
transduction, we determined the expression levels of miR122.
While overexpression of wild-type TRBP slightly enhanced the
expression levels of miR122, apigenin significantly reduced its
expression levels (Fig. 3b). However, in TRBP(SD)-expressing cells,
miR122 expression levels were significantly increased and were
not affected by apigenin treatment (Fig. 3b), probably due to the
phosphorylation mimic TRBP(SD) being constitutively active.
Consistent with the changes in miR122 expression levels, replica-
tion of the HCV replicon, as determined by luciferase values, was
inhibited by apigenin in cells expressing wild-type TRBP but not in
cells expressing TRBP(SD), which showed a slight increase in
replication (Fig. 3c). These results suggest that apigenin inhibits
HCV replication through the inhibition of mature miR122 expres-
sion levels, probably by modulating TRBP phosphorylation,
consistent with our previous report (Chno et al., 2013).

Discussion

In this study, we demonstrate that apigenin inhibits HCV
replication by decreasing the expression levels of mature
miR122, possibly through inhibition of the phosphorylation of
TRBP, an important factor for the maturation of a subset of miRNAs
(Paroo et al., 2009).

Our study revealed that apigenin inhibits HCV replication. A liver-
specific miRNA, miR122, has been reported to be linked with
pleiotropic physiological functions (Jopling, 2012; Otsuka et al,
2014), such as liver development, cholesterol metabolism, iron
metabolism, and fatty acid metabolism (Takata et al, 2013a). A
particularly intriguing function of miR122 is its role in promoting
HCV replication (Jopling et al.,, 2005). The success of miravirsen, an
LNA-modified DNA phosphorothioate antisense oligonucleotide
against miR122, against HCV in a Phase 2a study (Janssen et al,
2013) shows its promise as a novel anti-HCV drug and as the first
miRNA-targeting therapy to be trialed. While miravirsen hybridizes
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Fig. 1. Apigenin decreases mature miR122 expression levels. (a) The expression levels of mature miRNAs in Huh7 cells were determined by quantitative RT-PCR. Cells were
treated with apigenin at the indicated doses for 5 days. Expression levels of mature miR122 and let-7g were determined. Relative expression levels are indicated as the
means + s.d. of three independent experiments. * p < 0.05. (b) The expression levels of mature miR122 were determined by Northern blotting. Huh7 cells were treated with
5 uM apigenin for 5 days. Expression levels of mature miR122 were determined by Northern blotting. U6 levels were determined as a loading control by reprobing the same
membrane. Representative results from three independent experiments are shown. (c) The expression levels of miRNA precursors in Huh7 cells were determined by
quantitative RT-PCR. Cells were treated with apigenin at the indicated doses for 5 days. Expression levels of miR122 and let-7g precursors were determined. Relative
expression levels are indicated as the means + s.d. of three independent experiments. * p < 0.05. (d) Endogenous miR122 function was determined by reporter assay. Huh7
cells were transiently transfected with reporter constructs containing miR122 binding sites or mutants. Cells were treated with apigenin at the indicated doses for 36 h. Data
represent the mean + s.d. of three independent experiments. * p < 0.05. (e) The number of cells was counted after treatment with apigenin at the indicated doses for 5 days.
Experiments were performed in duplicate in a single test and the data represent the means =+ s.d. of three independent tests. * p < 0.05.

to the 5 region of mature miR122, resulting in sequestration and
inhibition of miR122 (Janssen et al.,, 2013), it also binds to the stem-
loop structure of pri- and pre-miR-122 and inhibits both Dicer- and
Drosha-mediated processing of miR122 precursors (Gebert et al.,
2014). Therefore, the importance of miR122 in HCV replication
appears to depend on its expression level as well as its binding
capacity. Because apigenin reduced the expression levels of mature
miR122, and supplementation of synthesized mature miR122
blocked the effects of apigenin on HCV replication, the inhibitory
effects of apigenin on HCV replication seem to be dependent on
reduced levels of mature miR122. However, other potential molecu-
lar mechanisms for the effects of apigenin on HCV replication
may exist.

Apigenin decreased the expression levels of a subset of mature
miRNAs, including miR122, similar to the case of miR103, as we
observed previously using microarray analyses (GEO accession
number: GSE46526) (Ohno et al, 2013). We reported that the
decreased maturation of miR103 was due to decreased phosphor-
ylation of TRBP resulting from inhibition of ERK activities (Paroo et
al., 2009). Because overexpression of the TRBP(SD) increased the
levels of mature miR122, it appears that the reduced maturation of
miR122 was also dependent on the activity of TRBP, which was

inhibited by apigenin (Ohno et al., 2013). However, mature miRNA
levels might be regulated not only by their synthesis but also,
potentially, by their degradation, although this has not yet been
established definitively (Jopling, 2012), and the effects of apigenin
on the levels of mature miRNAs may be more diverse than
expected. These effects should be explored in future studies
involving the identification of the specific molecular target with
which apigenin directly interacts and the development of an
apigenin synthesis method, as has been achieved for resveratrol,
another pleiotropic polyphenol (Snyder et al., 2011).

miR122 levels are frequently reduced in HCC compared with
background liver tissues (Hou et al, 2011; Kutay et al, 2006;
Gramantieri et al, 2007; Tsai et al, 2009), and lower miR122
expression levels in HCC tissues are correlated with a poor prog-
nosis (Kojima et al., 2011). Because mice lacking miR122 in the liver
showed spontaneous inflammation and liver tumors (Hsu et al,
2012; Tsai et al., 2012), miR122 may function as a tumor suppressor.
However, to date no detectable liver toxicity has been reported with
antisense oligonucleotide inhibition of miR122 in mice, primates, or
humans (Lanford et al, 2010; Janssen et al, 2013; Elmén et al,
2008; Kriitzfeldt et al,, 2005). We reported previously that trans-
genic mice expressing an antisense oligonucleotide specific for
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Fig. 2. Apigenin inhibits HCV replication in vitro by modulating miR122 levels. (a) Structure of the HCV replicon reporter. IRES, internal ribosomal entry site; firefly-luc,
firefly luciferase gene; neo, neomycin resistance gene. NS3, NS4, NS5A, NS5B, and HCV are nonstructural proteins. Fusion genes consisting of the firefly luciferase gene and
neomycin resistance gene are referred to as Feo. Huh7-Feo cells harbor an HCV replicon reporter construct (HCV-Feo) and expresses a chimeric protein consisting of firefly
luciferase and neomycin phosphotransferase under the HCV 5 IRES. (b) Apigenin inhibited replication of the HCV replicon reporter construct. Huh7-Feo cells were treated
with apigenin for 5 days and the luciferase values were determined. Synthesized anti-miR122 oligonucleotides were transfected as a reference. Data represent the means +s.
d. of three independent experiments. * p < 0.05. (¢) Apigenin inhibits the expression of luciferase protein under the HCV 5" IRES of the reporter construct. Huh7-Feo cells
were treated as described in (b) and luciferase protein was quantified by Western blotting. 293T cell lysates obtained after transient transfection with luciferase-expressing
plasmid or control plasmid were used as controls. Representative results from three independent experiments are shown. (d) and (e) Synthesized miR122 blocks the
inhibitory effects of apigenin on HCV replication. Synthesized mature miR122 and let-7g were transfected into Huh7-Feo cells. (d) Cells were harvested 48 h after
transfection and mature miR122 levels were determined by Northern blotting. U6 levels were used as a loading control. Representative results from three independent
experiments are shown. Synthesized miR122 overexpression blocked the inhibitory effects of apigenin on HCV replication (e) Huh7-Feo cells were treated or not treated with
5 uM apigenin for 5 days. Synthesized miRNAs were transfected 48 h before measurement. Luciferase values for HCV-Feo were determined by reporter assay. Data represent
the means =+ s.d. of the absolute luciferase values of three independent experiments. * p < 0.05.

miR122 showed no spontaneous pathological features (Kojima et concentration of apigenin theoretically reaches 1.7 uM, assuming
al, 2011). In addition, mice treated with apigenin for 2 weeks one eats 10 g of dried parsley per day. Thus, although it is not
suffered no detectable harmful events in our previous studies impossible to reach a plasma apigenin concentration of 5 uM
(Ohno et al.,, 2013). Therefore, while several miRNAs other than through normal dietary intake, apigenin supplementation may

miR103 and miR122 are affected by apigenin (Ohno et al., 2013), be required to obtain an appropriate dose. However, the apigenin
apigenin treatment in vivo seems to be a safe and convenient concentration in the liver may be higher than the plasma due to
method of reducing the expression levels of a subset of miRNAs. direct blood flow from the intestine, which absorbs nutrients, and

One of the reasons for this is that the effects of apigenin are eating foods rich in apigenin may be sufficient to reach the

relatively mild; it reduces but does not completely abolish target appropriate liver concentration. The concentration of apigenin in

miRNA expression levels. The effects of apigenin as well as its long- liver tissues should thus be determined in future studies.

term safety need to be determined in a small animal model. In HCV therapy, treatment has become more effective with the
The appropriate dose of apigenin in this in vitro study was advent of DAAs (Scheel and Rice, 2013; Manns and von Hahn,

5 uM. The fasting plasma concentration of flavonoids, including 2013). Thus, it is uncertain the extent to which our finding, that

apigenin, is proportional to their intake. Intake of 100 mg flavo- apigenin may inhibit HCV replication, contributes to patient care
noids results in a plasma concentration of ~410 nM (Cao et al,, in the DAA era. However, worldwide access to drugs and the
2010). Apigenin is abundant in parsley, celery, and other herbs, implementation of economical therapy are major challenges

according to the USDA Database for the Flavonoid Content of (Scheel and Rice, 2013; Manns and von Hahn, 2013), in addition
Selected Foods (Release 3.1). For example, fresh parsley contains to cases of non-responders and patients with clones resistant to
215.46 mg apigenin per 100 g edible portion, dried parsley con- DAAs. Our findings may provide novel insights into HCV manage-
tains 4303.50 mg, and celery seeds contain 78.65 mg. The plasma ment. The combination of apigenin with other agents, including
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