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translocation of redox response elements such as
nuclear factor-kB and Nrf2. They suggested that the
prosurvival pathways that are activated in MSC in wvitro
could be a part of an adaptive response employed by
stromal cells under injury conditions.®

A direct and specific effect of ROS in viability was
ruled out using H,0, and NAC in cultures. As expected,
these molecules increased (H,0,) and decreased (NAC)
intracellular ROS, but no direct relationship between
viability and ROS levels was seen at the time points
tested (data not shown). Additionally, to assess whether
cMSC could potentially prevent oxidative stress in liver
cells, we utilized a co-culture model with murine hepa-
tocytes and cMSC. In this experiment, we found a lower
ROS level in co-cultured murine hepatocytes treated
with TAA (Fig. 3), suggesting a hepatoprotective effect of
¢MSC via antioxidant activity. Using a mouse primer for
Nrf2 with no cross-reactivity against canine samples in
silico, we verified the higher amount of mRNA in
co-cultured hepatocytes (Fig. S1). However, unexpect-
edly, monocultured hepatocytes showed higher ROS
levels when TAA was absent from the culture medium,
suggesting that hepatocytes have a mechanism similar
to cMSC in the presence of TAA. The underlying mecha-
nisms are now under investigation.

Our above in vitro results motivated us to test cell
therapy using cMSC in TAA-induced liver injury in
NOD/SCID mice. In chronic TAA-induced injury, the
animals that received c¢MSC infusions by tail vein
showed better results for the biochemical parameters.
The serum injury markers (ALT, AST and LDH) were
reduced with successive cell infusions, suggesting pro-
tection of hepatocytes from necrosis and apoptosis
(Fig. 4). Because ALT and AST are enzymes that reveal
hepatocyte damage, these results strongly support our in
vitro findings showing that cMSC have hepatoprotective
effects against TAA-induced injury. We cannot rule out
the possibility that infused cMSC may act systemically to
aid the liver in its recovery. Consistent with our results
and considering the possibility that Nrf2 may be
involved in this process, Xu et al.®® demonstrated a
delayed ALT decrease in sera from Nrf2-knockout mice
after treatment with hepatotoxin. Because Nrf2 is crucial
for induction of expression of a wide range of antioxi-
dant genes, antioxidant activity may be essential for
promoting liver regeneration.

As already discussed, oxidative stress plays an impor-
tant role in liver injury, and some authors have recently
demonstrated that cell-based therapy can be an effective
treatment. Recently, Cho et al. have shown that MSC
have an antioxidant potential to ameliorate acute liver
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injury induced by carbon tetrachloride.* In a murine
model of carbon tetrachloride-induced acute liver
injury, they found increased Nrf2 activity and lower
ROS, ALT and AST levels in animals treated with synge-
neic MSC.

Okuyama et al. reported that transgenic mice with
high expression of thioredoxin, a small redox-active
protein with antioxidant effects, showed not only ame-
liorated liver injury but also decreased liver fibrosis.®”¢
Consistent with this result, we showed that the possible
antioxidant activity of ¢MSC reduced necrotic and
inflammatory areas (Fig. 4d,e) and fibrosis levels by
measuring of different parameters (Fig. 5). We also
found higher concentration of matrix metalloproteinase
9 in liver tissues harvested from cell-treated group what
can in part explain the results found in fibrosis analyses
(Fig. $2).

In this present study, we confirmed that animals in
the cell-treated group had better redox homeostasis by
showing higher total serum antioxidant activity and
lower lipid peroxidation in liver tissues (Fig. 6). The
cMSC infusions seemed to sustain normal overall total
antioxidant activity in these animals, which may explain
the decreased lipid peroxidation (Fig. 6b), serum injury
markers (Fig. 4a-c) and histological findings in vivo
(Figs 4,5). At this juncture, we can clearly see that cMSC
can act efficiently in combating oxidative stress in liver.

As far as we know, this study is the first to use a
complete approach (in vitro+in vivo) to evaluate the
role of antioxidant activity in ameliorating liver injury
using cells from a medium-sized animal. These results
reveal potent antioxidant activity and hepatoprotective
effects of cMSC in vitro and in vivo and support more
studies examining the antioxidant activity of stem cells
to combat liver diseases.

In conclusion, we showed that ¢cMSC can protect
hepatocytes by reducing ROS damage induced by TAA
both in vivo and in vitro. These results suggest a potential
for MSC treatment in several hepatic diseases.
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SUPPORTING INFORMATION

DDITIONAL SUPPORTING INFORMATION may
be found in the online version of this article at the
publisher’s website:

Figure S1 Relative quantification of NF-E2-related
factor 2 (Nrf2) mRNA in hepatocytes in co-culture
showed higher values when compared to samples from
monoculture under thioacetamide (TAA) condition
(*P<0.05).

Figure S2 Enzyme-linked immunoassay revealed that
liver tissues harvested from cell-treated group presented
higher concentration of matrix metalloproteinase 9
(*P<0.05).
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G-CSF, granulocyte colony-stimulating factor; HGF; hepatocytes growth factor; PT, prothrombin time;
MSC, mesenchymal stem cell; MELD, Model for End Stage Liver Disease (Takami T, et al. Curr Opin
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Abstract

Bone marrow cells are capable of differentiation into
liver cells. Therefore, transplantation of bone marrow
cells has considerable potential as a future therapy for
regeneration of damaged liver tissue. Autologous bone
marrow infusion therapy has been applied to patients
with liver cirrhosis, and improvement of liver function
parameters has been demonstrated. In this review, we
summarize clinical trials of regenerative therapy using
bone marrow cells for advanced liver diseases including
cirrhosis, as well as topics pertaining to basic /i vitro or
/n vivo approaches in order to outline the essentials of
this novel treatment modality.

© 2013 Baishideng Publishing Group Co., Limited. All rights
reserved.
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Core np Bone marrow cells, which include multipotent
progemtor cells, are capable of differentlatlon into liver
cells Autologous bone marrow infusion tt
“applied to cirrhotic patients aand improvement
of Ilver functlon; parameters has been demonstrated.
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Although the efﬁcacy of this treatment modahty needs
to be evaluated in more detail in a large number of
patients, regenerative therapy. using bone marrow cells
for advanced liver diseases has cons&derable potential.

Saito T, Tomita K, Haga H, Okumoto K, Ueno Y. Bone mar-
row cell-based regenerative therapy for liver cirrhosis. World J
Methodol 2013; 3(4): 65-69 Available from: URL: http://www.
wjgnet.com/2222-0682/full/v3/i4/65.htm DOI: http://dx.doi.
org/10.4329/wjm.v3.i4.65

INTRODUCTION

Bone marrow cells (BMCs) are capable of differentiating
into liver cells'™ because they include stem cells known
as multipotent adult progenitor cells™. These cells have
been shown to produce albumin when cultured with he-
patocyte growth factor (HGE)™ and various liver-specific
proteins, includincr albumin, when cultured with mature
hepatocytes™. Using cells obtained with a negatively se-
lective magnetic cell separation system for efficient sort-
ing of rat BMCs enriched with stem cells, we have shown
that BMCs differentiate into cells expressing liver-specific
genes when cultured with mature hepatocytes or HGFY.
As there is now much evidence indicating that BMCs can
differentiate into cells resembling liver cells zz vitrd®"" the
characteristics of such BMCs are of great interest in the
context of liver-regenerative medicine!* ™.

Liver cirrhosis is the end stage of chronic liver dis-
ease, and is associated with many setious systemic com-
plications resulting from both liver failure and portal
hypertension. This condition has a poor prognosis and
is difficult to treat. Therefore, development of an ef-
fective liver-regenerative therapy for liver cirrhosis is an
urgent priority. Liver transplantation is the only curative
remedy for cirthotic patients, but is associated with many
problems such as donor shortage, surgical complications,
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rejection and high cost. As an alternative approach, re-
generative cell therapy using stem cells is now attracting
attention. Multipotent stem cells present in bone marrow
are a particularly promising candidate for this purpose.
In this teview, we summatize clinical trials of liver-regen-
erative therapy using BMCs for advanced liver diseases
including cirrhosis, as well as topics pertaining to basic 7z
vitro ot in vive approaches in order to outline the essentials
of this novel treatment modality.

MIGRATION AND ENGRAFTMENT OF
TRANSPLANTED BMCs TO THE INJURED
LIVER IN STUDIES USING ANIMAL
MODELS

Although BMCs can show liver cell lineage differentiation
in vitro, an understanding of the dynamics of transplanted
BMCs #n wivo is essential for the development of BMC-
based regenerative therapy. In this context, two impor-
tant issues need to be clarified: (1) How do transplanted
BMCs migrate to and engraft in the liver? and (2) Is there
a relationship between the degree of liver damage and
the extent of migration of transplanted cells? A previous
study using model rats with carbon tetrachloride (CCls)-
induced liver injury has demonstrated that transplanted
BMC:s derived from transgenic rats expressing green fluo-
rescent protein“sl in the spleen migrated to and remained
in the periportal area of the recipient’s damaged liver.
These transplanted cells expressed liver cell markers such
as alpha-fetoprotein as well as Notch signaling markers
for stem cells, suggesting that the BMCs retained in the
recipient liver possess the potential to differentate into
liver cells.

Migration of transplanted BMCs to the liver after in-
jection into the spleen has been compared in two models
of liver injury induced by administration of CCls and
2-acetylaminofluorene (2-AAF)"", respectively, focusing
particulatly on differences in levels of liver mRNA for
growth factors such as HGF and fibroblast growth fac-
tor (FGF), which have been shown to be responsible for
efficient liver cell lineage differentiation of BMCs™'™".
Interestingly, transplanted BMCs wete found to engraft
into CCls-induced injured liver charactetized by submas-
sive hepatic necrosis and induction of high levels of
HGF and FGF, but not into liver damaged by 2-AAF™,
A higher degree of HGF induction is characteristic of
more severe liver damage™ ™. These findings suggest
that transplanted BMCs migrate more effectively to a
liver with greater damage, and that this transplantation
approach would be clinically promising for treatment
of advanced liver diseases. However, further studies are
needed to clarify the factors produced by both BMCs and
hepatocytes that contribute to better differentiation of
BMCs into liver cells iz vivo, thus improving the effective-
ness of BMC transplantation.
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HUMORAL FACTORS BENEFICIAL FOR
LIVER REGENERATION AFTER BMC
TRANSPLANTATION

The degree of liver function and fibrosis, as well as sur-
vival rate, have been shown to improve significantly after
BMC transplantation in animal models of severe liver
injury”™¥, With regard to the mechanisms of liver re-
generation resulting from BMC transplantation, many of
the physiological and regenerative roles of transplanted
BMCs remain unclear. However, it can be said with cer-
tainty that humoral factors produced in the liver during
the regenerative process after BMC transplantation have
a crucial role in both improvement of liver fibrosis and
liver cell lineage differentiation of stem cells originating
from BMCs and hepatic epithelial stem cells.

Improvement of liver fibrosis results from fibrolysis
through the proteolytic action of BMC-induced factors.
In this context, matrix metalloproteinase (MMP) activ-
ity is particularly noteworthy™. Sakaida ez #/*” showed
that BMC transplantation ameliorated liver fibrosis in the
CClsi-induced liver-injury model, and that the fibrolytic
change was attributable to MMP-9 secreted by BMCs
that had migrated to fibrotic areas of the liver.

The liver cell lineage differentiation of BMCs occurs
through the cooperative action of a variety of growth
factors such as HGF or FGF induced in the injured
liver***, Such differentiation may be accompanied by
eatly elevation of the apolipoprotein Al level in serum
and liver”. Administration of FGF2 in combination
with BMC transplantation synergistically ameliorates liver
fibrosis in models of liver injury induced by CCL”. In
addition, in severe liver injury where hepatocyte prolifera-
tion is strongly inhibited, hepatic stem cells such as oval
cells ate induced and show differentiation toward a liver
cell lineage, thus leading to liver regeneration™ .

As BMC transplantation is successfully adaptable
to cases of severe liver injury, it has been hypothesized
that transplanted BMCs interact with hepatic epithelial
stem cells and influence the subsequent proliferation
and differentiation of stem cells. Studies of the interac-
tion between BMCs and hepatic stem cells can provide
new insight into the mechanisms of recovery from se-
vere liver damage through liver regeneration after BMC
transplantation. In this context, i witro analysis using a
system for co-culture of BMCs and an established epi-
thelial hepatic stem cell line has been conducted. Haga ez
aP’"" demonstrated that the expression of FGF2 mRNA
was upregulated in BMCs co-cultured with hepatic stem
cells, and that expression of mRNAs for both albumin
and tyrosine aminotransferase, representative of mature
hepatic cells, became detectable in hepatic stem cells after
culture with FGF2 protein. Thus, BMCs stimulate both
proliferation and differentiation of hepatic stem cells into
the hepatocyte lineage, and FGF2 is one of the factors
produced by interaction with BMCs, which stimulates
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Figure 1 Putative action of transplanted bone marrow cells that include
multipotent stem cells for regeneration of damaged liver.

such differentiation. Cross-talk between bone marrow
stem cells and hepatic epithelial stem cells may underlie
the process of liver regeneration, and this is an area of
interest for future investigation. Figure 1 shows an over-
all representation of the putative action of transplanted
BMCs in the regeneration of damaged liver.

CLINICAL TRIALS OF BMC
TRANSPLANTATION FOR ADVANCED
LIVER DISEASES

BMC transplantation has received increasing attention as
a promising therapy for advanced and severe liver diseas-
es such as cirrhosis. Clinical trials of BMC administration
to patients with advanced liver diseases have been per-
formed, and improvement of liver function parameters
such as the serum level of albumin, Child-Pugh score
or Model for Endstage Liver Disease score have been
reported™ ™. Another study has shown that intraportal
administration of autologous CD133" BMCs and subse-
quent portal venous embolization of right liver segments
resulted in a 2.5-fold increase in the mean proliferation
rate of the left lateral segment, in comparison with con-
trols not receiving BM transfusion™". These tindings
suggest that transplanted BMCs have a potential role in
liver regeneration and proliferate in the recipient liver.
Recently, autologous BMC transplantation - a technique
named autologous BMC infusion (ABMi) therapy - has
been applied to multi-center patients with liver cirrhosis
due to hepatitis C™*, hepatitis B™ and excess alcohol
intake™ using almost the same protocol, and a series of
studies have demonstrated improvement of the serum
albumin level, leading to improvement of the Child-Pugh
score.

Although BMC administration for advanced liver
diseases including cirrhosis is an attractive strategy in the
field of cell therapy for liver regeneration, many concerns
need to be addressed™ ™. As i vitro and in vivo experi-
ments have clearly shown, BMCs induce fibrolysis and
show hepatocyte differentiation, and they may interact
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with hepatic epithelial stem cells to aid their differentia-
tion into the hepatocyte lineage. However, it is still un-
clear how infused BMCs work to improve liver function
in humans. A clinical trial of ABMi for patients with
cirrhosis demonstrated that the number of AFP-positive
cells increased significantly in the liver relative to the situ-
ation before ABMi"*”. In addition, ABMi appeared to
induce hepatocyte proliferation in the liver, as expression
of proliferating cell nuclear antigen, a marker of hepato-
cyte proliferation, was significantly increased after ABMi
in comparison with the pretreatment situation. Although
these findings suggest that transplanted BMCs have a po-
tential role in liver regeneration and proliferate in the re-
cipient liver, it remains unknown whether fully functional
hepatocytes are induced by ABMi. The characteristics of
stem cells present among BMCs that show hepatocyte
differentiation require further elucidation.

The factors that determine the difference between ef-
fectiveness and non-effectiveness of ABMi are unclear.
Collateral circulation resulting from the portal vein dis-
organization that characterizes liver cirrhosis may affect
the flow and effective migration of infused BMCs to the
liver, and thus migration of infused cells to the liver may
partly depend on the portal venous pressure. In addition,
the expression levels of cellular adhesion molecules as-
sociated with the attachment of infused cells to liver tis-
sue may vary a great deal among patients. The long-term
effectiveness of this therapy in terms of survival rate has
not been demonstrated. These issues should be evaluated
by a randomized controlled trial involving a large number
of patients. Additionally, other issues that impact the effi-
cacy of this therapy, Ze., the long-term culture conditions
optimal for stocking BMCs for repeated infusion, the op-
timal cell population to employ, the optimal number of
cells to infuse, the effectiveness of repeated infusion and
the optimal route for cell delivery need to be investigated
further.

In conclusion, regenerative therapy using BMCs for
advanced liver diseases including cirrhosis has consider-
able potential. Further studies are needed to develop a
better method of BMC transplantation that can contrib-
ute to improvement of liver function and to clarify the
long-term effectiveness of this therapy.
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Abstract

It has been suggested that hepatitis C virus (HCV) is
selectively transmitted to a new host as an infectious
clone from multiple HCV variants (quasispecies) in the
donor. Most individuals with HCV infection develop
chronic hepatitis, but approximately 15%-40% of
them clear the virus spontaneously and the hepatitis
is resolved in a self-limiting manner in the acute phase
of infection. This difference in the outcome of acute
hepatitis C is attributable to both viral characteristics
and genetic regulation of infection. In particular, the
evolutionary dynamics of the infecting virus and host
genetic polymorphisms pertaining mainly to the im-
mune system, including polymorphisms in the region of
the Interleukin 28B gene encoding interferon-A-3, are
associated with susceptibility to HCV infection.

© 2013 Baishideng Publishing Group Co., Limited. All rights
reserved.

Key words: Hepatitis C; Spontaneous clearance;
Interleukin 28B; Single nucleotide polymorphism;
Interferon-a

Core tip: Most individuals with hepatitis C virus (HCV)
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infection develop chronic hepatitis, but in some the
hepatitis is resolved in a self-limiting manner in the
acute phase of infection. What factors are responsible
for this difference in the outcome of hepatitis C? The
evolutionary dynamics of the infecting virus and host
genetic polymorphisms pertaining mainly to the im-
mune system, including the Interleukin 28B gene, as
well as susceptibility to HCV infection, are important in
determining the outcome of infection.

Saito T, Ueno Y. Transmission of hepatitis C virus: Self-limiting
hepatitis or chronic hepatitis? Worid J Gastroenterol 2013;
19(41): 6957-6961 Available from: URL: http://www.wjgnet.
com/1007-9327/full/v19/i41/6957. htm DOI: http://dx.doi.
org/10.3748/wjg.v19.i41.6957

INTRODUCTION

Hepatitis C virus (HCV) infection is a major threat to
public health, and about 170 million people are estimated
to be infected worldwide with a potential risk of progres-
sion to cirrhosis and hepatocellular carcinoma?. This
review summarizes the two current topics of HCV study:
the transmission mode of HCV with multiple variants
(quasispecies) and the factors associated with susceptibil-
ity to HCV infection, with special reference to viral chat-
acteristics and host genetic variation.

MODE OF HCV TRANSMISSION: HOW
IS HCV WITH MULTIPLE VARIANTS
TRANSMITTED?

HCV shows significant genetic heterogeneity among iso-
lates, and the degree of variability is unevenly distributed
throughout the viral genome: some regions are conserved
and some are highly variable”. In particular, the hyper-
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variable region 1 (HVR1) of the HC1” E2 gene encod-
ing a putative envelope glycoprotein mutates at a high
rate, resulting in a wide spectrum of mutants referred to
as “quasispecies” during infection™. Some virions may
contain defective RNA genomes, which also affect the
infectivity and replicability of the virus'”, The mixture of
clones present determines the biological and immuno-
logical properties of the virus.

How is HCV with multiple variants (quasispecies)
transmitted to the new host? Does the status of transmit-
ted HCV consist of multiple clones or a selected single
clone? The transmission mode of HCV has been investi-
gated by sequencing of the recovered viral genome from
both donor and recipient”. HCV infection in human
communities has occurred sporadically because no ef-
fective neutralizing vaccine against HCV has been devel-
oped. In particular, HCV infection in health-care workers
through exposure to patient’s blood due to a needle stick
accident or accidental droplet transmission is a serious
problem™ . We previously reported a case of HCV in-
fection resulting from a needle stick accident, and had an
opportunity to investigate how HCV variants from the
donor are transmitted to the recipient by comparing the
HCV HVRI1 genome encoding the envelope E2 protein
recovered from the serum of both the donor and recipi-
ent”’. In this case, we had observed the recipient before
the onset of hepatitis and collected serum samples after
obtaining informed consent. Thus, we were able to com-
pare the HCV HVRI1 genome between the donor’s HCV
at inoculation and the recipient’s HCV just after onset of
viremia. Interestingly, a minor subset of the donor’s HCV
clones was selectively transmitted to the recipient, and
this selection determined the predominant clone in the
new host. Several clones that appeared to stem from the
recipient’s predominant clone had one amino acid change
within the HVR1 region during this short period. This
particular case progressed to chronic hepatitis, and the
same phenomenon has been demonstrated in the case
of acute, self-limiting hepatitjslxl. These data suggest that
a minor clone of the donor’s HCV is transmitted and
adapts to the new host. The precise mechanism of this
viral selection in the initial phase of transmission has not
been elucidated.

The simplicity of the transmitted viral strain in the
initial phase of infection may explain some of the im-
portant clinical manifestations. Anti-viral therapy using
interferon elicits a favorable response in the acute phase
of HCV infection'™"". In addition, if a single strain is
transmitted selectively in the initial phase of infection,
this specific strain may be one of the factors determining
disease activity. In fact, a study using a model of HCV
transmission has demonstrated that a specific HCV strain
recovered from a patient with fulminant hepatitis caused
unusually severe hepatitis in a chimpanzee to which it was
transmitted” . At present, the specific strain of HCV re-
sponsible for progressive liver disease cannot be discrimi-
nated from viral quasispecies in contaminated blood.
Further investigation would be useful for clarifying the
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specific viral strain responsible for the disease, and such
efforts would be important for planning future strategies
for the development of an effective therapeutic vaccine.

SELF-LIMITING HEPATITIS OR CHRONIC
HEPATITIS? HOW IS SUSCEPTIBILITY TO
HCV DETERMINED?

The spontaneous clearance rate of HCV in the acute
phase of infection

Most individuals with HCV infection fail to clear the virus
and develop chronic hepatitis with a risk of progression
to cirrhosis and hepatocellular carcinoma. However, a
small proportion of individuals are known to show reso-
lution of the infection in a self-limiting manner. The rate
of spontaneous viral clearance in acute HCV infection
is reported to be approximately 15%-40% of all HCV-
infected individuals"**". Although differences in study
populations such as race may influence the clearance rate
in each cohort, a systematic review of 31 studies has esti-
mated this rate to be 26%™". We have previously reported
a Japanese population-based cohort study of the natural
history of HCV infection in an area where community-
acquired acute hepatitis C is endemic; here, the spontane-
ous viral clearance rate was estimated to be approximately
20%""*, What is the difference between self-limiting
resolution of hepatitis and progression to chronic hepa-
titis? Comparative studies of this issue have focused on
both viral characteristics and genetic regulation.

Viral characteristics influencing the outcome of acute
hepatitis C

After the establishment of HCV infection, the viral ge-
nome mutates at a high rate, especially in the HVR1 of
the HCV E2 region. The evolutionary dynamics of the
infected virus are associated with the outcome of acute
hepatitis C; genetic stasis and a high rate of evolution of
HCV HVR1 are associated with resolution of infection
in self-limiting hepatitis and progression to chronic infec-
tion, respectively””. The case we experienced progressed
to chronic infection and 8 of 30 homogeneously pre-
dominant HCV HVRI1 clones recovered from the recipi-
ent developed one amino acid mutation within this region
during a short period of only 6 wk after infection”. As
for the relationship between the viral load at the time of
infection and the outcome of acute HCV infection, a
recent study has shown that a high viral load in the initial
phase of infection is associated with spontaneous viral
clearance, leading to self-limiting resolution of hepati-
tis®". A high viral load may trigger strong innate immuni-
ty in the acute phase. However, it has also been reported
that viral clearance may occur aftet a low infectious dose
of HCV has been transmitted””. In addition, spontane-
ous viral clearance rarely occurs in the chronic phase of
HCV infection where a low viral load is associated with
spontaneous clearance™. The spontaneous clearance of
HCV may thus depend on the immune system of indi-
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viduals rather than the viral load. Further studies using
a greater number of cohorts are needed to clarify the
relationship between spontaneous viral clearance and the
initial viral load, as well as the degree of induction of the
innate immune response.

Genetic regulation of HCV infection

HCV-specific humoral and cellular immune responses
are detectable in infected individuals, and a strong im-
mune response against HCV favors viral clearance!™®.
Genetic variation in host genes involved in immune re-
sponse is likely to account for the difference in outcome.
In particular, induction of natural killer (NK) cells in
the innate immune response during the acute phase of
infection plays a crucial role in resolving HCV infection.
We have previously reported differences in genetic varia-
tions between HCV-infected individuals with and with-
out viremia in the Japanese population™, where a single
nucleotide polymorphism (SNP) of transforming growth
factor (TGF)-B1, which suppresses the proliferation and
cytotoxicity of NK cells (the -509CC genotype or -509C
allele), was associated with high HCV clearance rates
and low transcriptional activity of TGF—Bl'zs'. The killer
cell immunoglobulin-like receptor (KIR) and its human
leukocyte antigen (HLA) have been reported to influence
the outcome of HCV infection. Combinations of geno-
types involving genes encoding the inhibitory NK cell
receptor KIR2D1.3 and HLA-C1 ligand directly influence
HCV clearance in Caucasians and African Americans
with an expected low infectious dose of HCV®. These
data suggest that a diminished inhibitory effect of NK
cells resulting from such gene regulation confers protec-
tion against HCV.

In a recent genome-wide association study, SNPs in
the region of the Interleukin 28B (IL28B) gene encoding
interferon-A-3 were shown to be closely associated with
the virologic response of HCV to antiviral therapy[zl)‘m.
Patients carrying an II.28B homozygote for the major
alleles of 1s12979860 (CC genotype)'™ or 1s8099917
(TT genotype)™ show a greater propensity to achieve a
sustained virologic response to pegylated interferon-q
and ribavirin therapy than those carrying an I1.28B het-
erozygote or homozygote for its minor allele. This SNP
(£s12979860) also influences the outcome of HCV infec-
tion in the context of natural history; the CC genotype
enhances resolution of HCV infection with spontaneous
clearance among individuals of European and African an-
cestry™. This CC genotype has also been reported to be
associated with a higher rate of spontaneous clearance in
Asian populations”™. In addition, a recent study has dem-
onstrated that SNPs in the region of IL28B (r512979860)
and HLA class I (1s4273729) are independently associ-
ated with spontaneous resolution of HCV infection in
individuals of European and African ancestry™. A pro-
spective follow-up study of patients who developed acute
hepatitis C also revealed a strong correlation between the
11.28B C allele at £s12979860 and clearance™. Taken to-
gether, the SNP of IL.28B (rs12979860) can be a marker
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Saito T et a/. Transmission of hepatitis ¢ virus

HCV donor

Selective transmission
of infectious clone

HCV recipient

Major susceptibility factors

Host: IL28B genotype
*Homozygous favorable type or
other unfavorable types

Viral genome
*Stasis or evolution

Persistent infection
60%-85%

*Spontaneous clearance
15%-40%

Self-limiting hepatitis Chronic hepatitis

Figure 1 Transmission of hepatitis C virus, and the significance of viral
and host factors for predicting the outcome of infection. HCV: Hepatitis C
virus; IL28B: Interleukin 28B.

for indicating whether immediate antiviral treatment
needs to be started in patients with acute hepatitis c™
Recently, upstream of the I1.28B gene, a dinucleotide
variant ss469415590 (TT or AG), in which ss469415590
(AG) activates the IFNL4 gene encoding interferon-i-4
protein through a genome frameshift, has been reported
to be more strongly associated with HCV clearance in
individuals of African ancestry than the SNP of [1.28B
(£512979860), but comparable to that in Furopeans and
Asians™. This variant is in high linkage disequilibrium
with 1$12979860, and further investigations are expected
to elucidate the functional role of $s469415590 (AG) that
activates the J['NL4 gene in association with the innate
immune response to HCV.

CONCLUSION

Both the viral characteristics of an infecting clone and
genetic regulation of infection by the host determine dif-
ferences in the outcome of acute HCV infection (Figure
1). The evolutionary dynamics of the virus and genetic
polymorphisms in the host pertaining mainly to the im-
mune system influence susceptibility to HCV. In particu-
lar, the discovery of SNPs in the region of the IL28B
gene has led to the characterization of a novel genetic
marker of hepatitis C that is able to predict self-limiting
viral clearance in the acute phase of infection as well as
the response to antiviral therapy.
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