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Since the introduction of antiretroviral therapy (ART) in
the mid-1990s, AIDS-related death has been dramatically
reduced, and hepatitis-C-virus (HCV)-related liver failure or
hepatocellular carcinoma has currently become the leading
cause of death in HIV/HCV co-infected patients. Liver trans-
plantation may be one of the treatments of choices in such
cases, but the indications for transplantation, perioperative
management including both HIV and HCV treatments, immu-
nosuppression and the prevention/treatment of infectious

complications are all still topics of debate. With the improved
understanding of the viral behaviors of both HIV and HCV and
the development of novel strategies, especially to avoid
drug interactions between ART and immunosuppression, liver
transplantation has become a realistic treatment for HIV/HCV
co-infected patients.

Key words: hepatitis C virus, HIV, liver transplantation

INTRODUCTION

N JAPAN, IN the late 1980s, contaminated blood

production of coagulation factor for hemophilia
caused co-infection of HIV and hepatitis C virus (HCV).
Actually, greater than 90% of HIV-infected patients have
HCV as well.!

After antiretroviral therapy (ART) was introduced in
the late 1990s, successful control of HIV was achieved
in most cases and death due to AIDS was dramatically
reduced, but HCV-related death due to liver failure or
hepatocellular carcinoma became a serious problem,
not only in Japan, but all over the world.** In such
cases, liver transplantation (LT) is the only treatment
option to achieve long-term survival, but several modi-
fications of perioperative management are required.
In this review, the outcome and the points of
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management of LT for HIV/HCV co-infected patients
were reviewed.

REPORTED OUTCOME OF LT FOR
HIV/HCV PATIENTS

HE REPORTED OUTCOMES of LT for HIV and HIV/

HCV co-infected patients from Western countries
after the introduction of ART are summarized in
Table 1.7°"" In general, most reports concluded that
the results were worse than in the cases with HCV
mono-infection, with a 3-year survival of approximately
60-70%. In Japan, the Tokyo group reported six cases of
living donor liver transplantation (LDLT) between 2001
and 2004, of whom four died.”” These unfavorable out-
comes are likely related to the difficulties of determining
the indications for LT and of perioperative management,
including HIV/HCV treatment and the prevention and
treatment of infectious complications. Terrault et al.
reported that older donor age, combined kidney-liver
transplantation, an anti-HCV positive donor and a body
mass index of less than 21 kg/m’ were independent
predictors of graft loss.'’ After transplantation, several
studies showed that acute cellular rejection was more
frequent and severer in HIV/HCV co-infected patients
than that in HCV mono-infected patients, possibly due
to the difficulties in achieving optimal immunosuppres-
sion because of interactions between antiretroviral
agents and immunosuppression.'®
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Table 1 Outcome of liver transplantation for HIV/hepatitis C virus co-infection

Authors Publication year Country n Patient survival (%)

1 year 3 years 5 years
de Vera et al.” 2006 USA 27 67 56 33
Schreibman et al ® 2007 USA 15 73 73 -
Duclos-Vallee et al.’ 2008 France 35 - 73 51
Terrault et al.”® 2012 USA 89 76 60 -
Miro et al."! 2012 Spain 84 88 62 54

SPECIAL ISSUES REGARDING LT
INDICATIONS FOR HIV/HCV CO-INFECTION

ART-related non-cirrhotic
portal hypertension

N HCV MONO-INFECTED patients, LT should be

considered when the patients develop deteriorated
liver function as indicated by a Child-Pugh classifica-
tion of B or C. In HIV/HCV co-infected patients, liver
failure due to HCV hepatitis was generally enhanced
by ART-related hepatotoxicity, especially non-cirrthotic
portal hypertension.*-'* Accordingly, not only in cases
with deteriorated liver function but also in class A cases,
the patients can easily develop severe liver dysfunction
suddenly,'*'” so that all HIV/HCV co-infected patients
should be carefully followed up so as not to miss the
chance for LT. Also, Murillas et al. reported that Model
for End-Stage Liver Disease (MELD) score is the best
prognostic factor in HIV-infected patients,'® so that
HIV/HCV co-infected patients may be considered for
LT before MELD score increase to achieve compa-
rable results with HCV mono-infected patients. Several
studies showed the aggressive fibrosis in HIV/HCV
co-infected patients compared with HCV mono-infected
patients,'*? but the mechanism of this aggressive fibro-
sis remains unclear. Recently, transient elastography or
acoustic radiation force impulse imaging to check for
liver stiffness has been introduced as an effective and
non-invasive modality to determine patients’ candidacy
for LT.»'-*

Count of CD4" T lymphocytes

Generally, the count of CD4" T lymphocytes has been
required to be more than 200/uL to perform general
elective surgeries in HIV-infected patients,” but in HIV/
HCV co-infected patients, current studies show that a
count of more than 100/uL is acceptable,>*¢ because
patients generally have portal hypertension which can
cause pancytopenia. In such patients, the ratio of CD4/

© 2013 The Japan Society of Hepatology

CD8 is reported to be a feasible marker to predict
postoperative complications including opportunistic
infections. When the ratio is less than 0.15, the
incidence of infectious complications is significantly
higher.”

Preoperative infections

In regard to latent opportunistic infections that occur
before LT, they are not absolute contraindications
when they can be expected to be controlled.? Infections
regarded as contraindications for LT included uncon-
trollable multidrug resistance HIV infection, chronic
Cryptosporidium enteritis, progressive multifocal leukoen-
cephalopathy and lymphoma.?

MANAGEMENT OF HIV/HCV IN LT

Management of HIV

HE NUMBER OF HIV RNA copies before LT is sug-

gested as an independent risk factor of postoperative
mortality, so that HIV should be controlled sufficiently
before LT.** Accordingly, in the patients who are under
consideration to receive LT, ART can be safely stopped
before LT because HIV is generally well-controlled for a
long period by ART. After LT, ART should be restarted as
soon as possible because HIV RNA appears at 3-30 days
after ART is stopped,®’ but the timing of restart of ART
depends on the patient’s condition, including liver func-
tion.*” As long as the liver function has not fully recov-
ered, or partial liver graft such as in LDLT has not
sufficiently regenerated yet, ART cannot be started. Cas-
tells et al. reported in their case-control study that ART
was started at a median of 8 days after LT (range, 4-28
days).” In principle, the ART administrated after LT
should be the same as the pretransplant regimen, but
the majority of ART drugs including protease inhibitor
(PI) and non-nucleoside reverse transcriptase inhibitor
(NNRTI) have interactions with calcineurin inhibitors
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(CNI) or mammalian target of rapamycin (mTOR),* so
that the monitoring of blood levels of immunosuppres-
sion is extremely important to avoid infectious compli-
cations or rejection. Currently, a novel HIV-1 integrase
inhibitor, raltegravir (RAL), is expected to be a feasible
drug because it has no interactions with CNI, unlike
other drugs.?>?¢

Management of HCV

The treatment strategy for HCV in HIV/HCV co-infected
patients is the same as in HCV mono-infected patients.
Combination therapy of pegylated interferon (PEG IFN)
and ribavirin is the standard treatment both before and
after LT. The timing of the induction therapy after LT is
controversial. A Tokyo group proposed early induction
as a preemptive therapy before patients develop
hepatitis,*” while several other reports showed favorable
results when the treatment was administrated only
after the development of hepatitis was confirmed by
liver biopsy.*® Theoretically, the treatment should
be started as soon as possible, because in HIV/HCV
co-infected patients, HCV recurrence may be accelerated
in an immunocompromised state.>**** The novel pro-
tease inhibitor, telaprevir, is currently introduced as an
effective drug to achieve sustained viral response of
70%, even in genotype 1b, with PEG IFN/ribavirin in a
non-transplant setting,*' but this drug is metabolized via
cytochrome P450 as a substrate, as are CNI and various
protease inhibitors of ART for HIV. Close monitoring
of the CNI trough level should be performed, and
although triple therapy with telaprevit/PEG IEN/
ribavirin is currently reported to be effective to prevent
HCV recurrence after LT in HCV mono-infected cases,
special attention should be paid when this regimen is
adapted in HIV/HCV co-infected patients.

IMMUNOSUPPRESSION

S PREVIOUSLY MENTIONED, many factors includ-

ing ART, anti-HCV treatment and an HIV-related
immunocompromised state make post-LT immunosup-
pressive treatment difficult. Many ART drugs, both PI
and NNRTI, cause instability in the blood concentration
of CNI through the cytochrome P3A4 (CYP3A4)-related
metabolism. Most PI cause the overconcentration of
CNI by inhibiting CYP3A4, while most NNRTI cause
decreased levels of CNI by stimulating CYP3A4.24* As
mentioned earlier, RAL is introduced as a key drug in
LT in HIV positive patients, because the metabolism of
this drug is not related to CYP450, so it does not affect
the blood concentration of CNI. Several reports have

128

Liver transplantation for HIV/HCV co-infection 19

demonstrated both the in vitro and in vivo effectiveness
of rapamycin in reducing HIV replication,*** and Di
Benedetto et al. found that rapamycin monotherapy
was significantly beneficial in long-term immunosup-
pression maintenance and HIV control after LT.*¢
Mycophenolate mofetil is expected to be an effective
immunosuppressive drug because of its efficacy in
reducing HIV infection by both virological and immu-
nological mechanisms.”-* Using these drugs, a more
effective regimen of immunosuppression with ART may
be established.

In regard to the steroid, several studies proposed that
a steroid-free regimen can be safely applied and effective
in LT for HCV cirrthosis. Also, in HIV/HCV co-infected
patients, steroid-free protocol may be beneficial to
prevent both HIV and HCV recurrence after LT.*%%

CONCLUSIONS

IVER TRANSPLANTATION FOR HIV/HCV co-

infected patients remains challenging, but with
recent developments in perioperative management and
novel drugs for both HIV and HCV, the results are likely
to be improved.
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F, JEREN L IRMELER O B & LT acous-
tic radiation force impulse (ARFI) elastography
DFFENRE SN TWBY, ARFI & IZIUEB
F VA THMICEM 2 EREBI L, SV A
AL A THMASTOBICRE 5 BICEEIH L TK
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(58)

HAMHLBRESHE HNE £4F5

Whitney DIEMZFIME %, HBICD W T Spear-
man D NER A %47 - 7=
nm# %

Vsl (DLFHJefl & #PF) (X HIV/HCV E#
BT 127 (098~261) m/s, HCV B MUK
BT 1.27 (085~3.00) m/s, f&FHT 108 (098~
133) m/s THhh, EHEKEITRERICHLRT
HEILEETH -7z (p=0010) &%, EHEEGLH
& HCV MR de#, B X O"HCV B YR &
BEBCHAEEEZZROLd o/ (FNFhp=
0436, p=0059, Figurel). ¥ 7z ARFI fii 17 K
DEFITOWTIE, BERBIHED 46 (31~63) ik
W3 LT HUER AT 61 (33~T6) L, EH
RGBT BRI R THEBICEETH o 72
(p=0.008, Figurel).

ERRERICBITS Vs i & o FigiERED
BT, ALT(p=0358) B Y VY VE(p=
0949) TIETRICHMEZRD LD o A, b
W # (r=0737, p<0001), MZAEMRE (r=0592,
p=0006), 7y (r=0637, p=0003),
IV a5 -7 Y (r=0569, p=0009) (Vs
EEELRMEERD L (Figure2). ¥7/2CT T
TEHFEZRLADDE 30T 6HDOAT, #0
e NERIESEIEIE 160, 1BMIT A3 B, A3
BITH o7z, CTICEDBEFME VsEOMY
owTi, EERF6HTIL24 (111~212) m/
s, FOMo 176 T3 187 (1.14~304) m/s T
HY, MEBICAFEEZRDOL o7/ (p=0058).
FFF s REIIE B & o BaRES ¢, ICG15 5%
W (p=0054) LIIHELBO L Lo 0D,
77 HaYyFLHLIS (r=0503, p=0024) &
WEHEE LB RO (Figure 3).
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Comparison of Vs and age among HIV/HCV co-infected patients, HCV mono-infected

patients, and healthy control (living donor liver transplantation (LDLT) donor).
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Figure 2, Correlation between Vs and other liver function (ALT, total bilirubin, and platelet counts), splenic volume,

hyaluronic acid, type IV collagen.
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Figure 3. Correlation between Vs and hepatic functional reserve (indocyanine green
retention rate and LHL15 in 99mTc¢-GSA scintigraphy).
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Acoustic radiation force impulse elastography for liver disease staging
in human immunodeficiency virus and hepatitis C virus co-infection

Koji NATSUDA, Akihiko SOYAMA, Mitsuhisa TAKATSUKI", Tohei YAMAGUCHI”,
Yasuhiro TORASHIMA, Amane KITASATO, Tomohiko ADACHI, Tamotsu KUROKI",
Tatsuki ICHIKAWA, Kazuhiko NAKAO? and Susumu EGUCHI”

" Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences

? Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University

Background : Survival of human immunodeficiency virus (HIV}-infected patients has improved due to the
widespread use of anti-retroviral therapy. However, mortality has increased when HIV-infected patients are
co-infected with hepatitis C virus (HCV), and the liver disease in such patients is rapidly progressive com-
pared with that in HCV monoinfected patients. Therefore, accurate staging of the liver disease is critical
when determining appropriate treatment, Aim: To clarify the efficacy of acoustic radiation force impulse
(ARFI) elastography for the evaluation of liver fibrosis and hepatic functional reserve in HIV/HCV co-
infected patients. Methods : The correlation of shear wave velocity (Vs), measured by ARFI elastography,
with liver fibrosis or hepatic functional reserve was analyzed, Results : Vs was significantly correlated with
platelet count, splenic volume, hyaluronic acid, type IV collagen, and LHL15 (receptor index : uptake ratio of
the liver to the liver plus heart at 15min) in 99mTc-GSA (technetium-99m-diethylenetriaminepentaacetic
acid-galactosyl human serum albumin) scintigraphy. Conclusion : ARFT elastography was useful for the stag-
ing of liver disease in HIV/HCV co-infected patients and it facilitated minimally invasive and accessible
evaluation of fibrosis and functional reserve.
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DNA methylation at hepatitis B viral integrants
Is associated with methylation at flanking human

genomic sequences

Yoshiyuki Watanabe,-*? Hiroyuki Yamamoto,'® Ritsuko Oikawa,' Minoru Toyota,>
Masakazu Yamamoto,* Norihiro Kokudo,® Shinji Tanaka,® Shigeki Arii,®
Hiroshi Yotsuyanagi,” Kazuhiko Koike,® and Fumio ltoh'

"Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki
216-8511, Japan; 2Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki 210-0806, Japan; 3Department of Molecular
Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; *Department of Surgery, Institute of
Gastroenterology, Tokyo Women's Medical University, Tokyo 162-8666, Japan; °Hepato-Biliary-Pancreatic Surgery Division, Artificial
Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, University of Tokyo 113-8655, japan;
SDepartment of Hepatobiliary Pancreatic Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo 113-0034, Japan;
4 Department of Infectious Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan; 8Departrnent of
Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan

Integration of DNA viruses into the human genome plays an important role in various types of tumors, including hepatitis
B virus (HBV)-related hepatocellular carcinoma. However, the molecular details and clinical impact of HBV integration on
either human or HBV epigenomes are unknown. Here, we show that methylation of the integrated HBV DNA is related to
the methylation status of the flanking human genome. We developed a next-generation sequencing-based method for
structural methylation analysis of integrated viral genomes (denoted G-NaVI). This method is a novel approach that
enables enrichment of viral fragments for sequencing using unique baits based on the sequence of the HBV genome. We
detected integrated HBV sequences in the genome of the PLC/PRF/5 cell line and found variable levels of methylation
within the integrated HBV genomes. Allele-specific methylation analysis revealed that the HBV genome often became
significantly methylated when integrated into highly methylated host sites. After integration into unmethylated human
genome regions such as promoters, however, the HBV DNA remains unmethylated and may eventually play an important
role in tumorigenesis. The observed dynamic changes in DNA methylation of the host and viral genomes may functionally
affect the biological behavior of HBV. These findings may impact public health given that millions of people worldwide are
carriers of HBV. We also believe our assay will be a powerful tool to increase our understanding of the various types of

DNA virus-associated tumorigenesis.

[Supplemental material is available for this article.]

Hepatitis B virus (HBV) infects more than two billion people
worldwide, and 400 million chronically infected individuals are at
high risk of developing active hepatitis, cirrhosis, and hepatocel-
lular carcinoma (HCC) (Gatza et al. 2005; Lupberger and Hildt
2007). HBV carriers with chronic liver disease are at a 100-fold
greater risk of developing HCC, which is the third leading cause of
cancer-related death worldwide. The HBV genome is integrated
into the host genome in 90% of patients with HCC (HBV-HCC)
(Gatza et al. 2005; Lupberger and Hildt 2007). HBV-HCCs have
been analyzed by comprehensive genome sequencing and high-
resolution genome mapping (Kan et al. 2013; Li and Mao 2013;
Nakagawa and Shibata 2013). Moreover, the recent deep se-
quencing of HBV DNA in patients with HCC revealed increased
integration events, structural alterations, and sequence variations
(Ding et al. 2012; Fujimoto et al. 2012; Jiang et al. 2012; Sung et al.
2012; Toh et al. 2013). A recent study identified a viral-human

“These authors contributed equally to this work.
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Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.175240.114.

chimeric fusion transcript, HBx-LINE1, that functions like a long
noncoding RNA to promote HCC (Lau et al. 2014). However, the
molecular details and clinical impact of HBV integration on the
epigenomes of human cells and HBV remain to be defined.
Methylation of exogenous DNA (including viral DNA) that is
integrated into the human genome has been studied over the past
decade (Doerfler et al. 2001). Within the human genome, cytosine
methylation in CpG dinucleotides (CpG sites), which cluster into
islands associated with transcriptional promoters, is an important
mechanism for regulating gene expression. Additionally, host cells
use methylation as a defense mechanism against foreign agents
(e.g., viral DNA) (Doerfler 2008; Doerfler et al. 2001). DNA meth-
ylation suppresses the expression of viral genes and other delete-
rious elements incorporated into the host genome over time.
Establishment of de novo patterns of DNA methylation is char-

© 2015 Watanabe et al. This article is distributed exclusively by Cold Spring
Harbor Laboratory Press for the first six months after the full-issue publication
date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it
is available under a Creative Commons License (Attribution-NonCommercial
4.0 International), as described at http://creativecommons.org/licenses/by-nc/
4.0/.

25:000-000 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/15; www.genome.org

Genome Research 1
www.genome.org

137



Watanabe et al.

acterized by the gradual spread of methylation (Orend et al. 1991).
Another attractive possibility is that DNA methylation camou-
flages the virus from the immune system (Tao and Robertson 2003;
Hilleman 2004), resulting in a DNA methylation-related blockade
of viral antigen presentation that allows the virus to escape im-
mune control (Fernandez et al. 2009).

The DNA methylome of HBV in human cells may undergo
dynamic changes at different stages of disease (Fernandez et al.
2009). For example, DNA methylation at the HBVgp2 locus, which
codes for the S viral proteins, reportedly increases during the pro-
gression from asymptomatic lesions to benign lesions, to pre-
malignant disease and malignant tumors. However, because of the
significant deletions of the integrated HBV genome detected in
this previous study (Fernandez et al. 2009), the DNA methylome of
HBV needs to be further characterized. Moreover, the molecular
mechanisms involved and the clinical impact of the integration of
HBV on the human and HBV epigenomes are unknown. To address
these issues, we developed a next-generation sequencing (NGS)-
based method for methylation analysis of integrated viral genomes
(denoted G-NaVI) and applied this method to the integrative ge-
nomic and epigenomic analysis of human hepatoma cell lines and
tissues with integrated HBV genomes.

Results

DNA methylation levels in PLC/PRF/5 cells and cancerous
tissues obtained from HBV-HCC patients

Methylated CpG island (CGI) amplification (MCA) coupled with
microarray (MCAM) analysis (Toyota et al. 1999; Oishi et al. 2012)
was performed to detect methylated genes in the human PLC/PRF/
5 cell line and in six paired specimens of primary HBV-HCC and
adjacent tissues. Compared with the DNA methylation of CGIs in
the healthy peripheral blood leukocytes of volunteers or the
noncancerous tissues, levels of DNA methylation were not re-
markable in the PLC/PRE/S cells and the cancerous tissues
obtained from HBV-HCC patients (Supplemental Fig. 1). These
results were confirmed by bisulfite pyrosequencing of candidate
tumor-related genes.

DNA methylation of CGls of HBx

We then focused on epigenetic changes in the viral genome.
Based on the hidden Markov models for sequence analysis per-
formed on the CpG plugin of bioinformatics software Geneious
5.5.8 (see Methods section), a CpG island was found in only the
promoter region of the HBx gene in the HBV genome (Fig. 14;
Supplemental Fig. 2; Durbin et al. 1998; Kearse et al. 2012). Host
signal transduction pathways and gene expression are disrupted
by the expression of trans-activating factors derived from the HBV
genome, such as the HBx protein and PreS2 activators (Gatza et al.
2005; Lupberger and Hildt 2007). Moreover, transgenic mice
expressing high levels of HBx in the liver develop HCC (Kim
et al.1991; Koike et al. 1994). The DNA methylation levels of the
CGlIs of HBx were analyzed in 10 HBV-HCC samples and 10 ad-
jacent samples, as well as samples of PLC/PRF/S cells by bisulfite
pyrosequencing (Fig. 1A; Supplemental Fig. 2). We performed ad-
vanced methylation quantification in long sequence runs by
pyrosequencing on PyroMark Q24 Advanced and PyroMark Q24
instruments. Methylation levels of HBx varied across samples (Fig.
1B,C) and were generally lower in HCC tissues than in the adjacent

tissues (Fig. 1B). This finding is consistent with a previous report
that most HBV genomes, although globally methylated to
a greater extent in malignant samples than in premalignant le-
sions, retain HBx in an unmethylated state (Fernandez et al.
2009). Because the pyrosequencing results represent the genome-
wide average of DNA methylation levels at the particular CpG
site, the results could be affected by the HBV integration site.
Therefore, genome-wide methylation analysis of the integrated
HBV sequence is necessary in relation to the methylation state of
the adjacent human genome. We did not detect an association
between HBx methylation levels and those of the LINE1 and
AluYbS repeats (Fig. 1B).

Fluorescence in situ hybridization (FISH) and Alu PCR analyses
of HBV integration

We developed a FISH technique for detecting HBV DNA in the
genome of PLC/PRF/S cells (Supplemental Figs. 3, 4). Twelve spe-
cific primer pairs (FISH probes 1-12) were designed based on the
HBV sequences integrated into the genome of PLC/PRF/S cells;
amplification from all primer pairs was confirmed (Supplemental
Fig. 4A). These results suggest full-length or partial HBV sequences
that are covered by the 12 primer pairs were integrated into the
genome of the PLC/PRF/5 cells. The FISH probes were labeled with
digoxigenin, and FISH was performed using Carnoy-fixed chro-
mosomal and nuclear specimens. Multiple HBV fluorescent signals
(green) were detected in the nuclei (Supplemental Fig. 4B) using
probes for HBx and its CGI sequences (probes 5 and 6), but not with
probes 1-4 or 7-12 (Supplemental Fig. 4C-E). Alu-PCR identified
one HBx integration site in PLC/PRF/5 (Supplemental Fig. 5). The
integrated HBx sequence was 213 bp and included a promoter re-
gion. The HBx gene body was located only 13 bases (ATG GCT GCT
AGG T) from the transcription start site and was integrated into
a noncoding region of the host genome. There were 200 bases of
viral DNA sequence upstream of the HBx transcription start site.
According to the human genome reference sequence (GRCh38)
published by the Genome Reference Consortium, this integration
site was identified as a noncoding region of host Chromosome 5
1,350,106-1,350,478 that is near the telomerase reverse tran-
scriptase (TERT) gene (Supplemental Fig. 5).

NGS analysis of HBV DNA integration site sequences

We developed an NGS analysis technique for sequencing the HBV
DNA integration sites (Supplemental Fig. 6A). For efficient ge-
nome analysis, we synthesized 12,391 custom baits based on the
sequences of the HBV genotypes A to J and on those sequences
present in the HBV-transformed PLC/PRF/5 cells that were not
related to the human genome sequence (Supplemental Fig. 6B).
The average read length was 333.14 bp with a modal length of
~500 bp (Supplemental Fig. 6C). The average read quality was
31.91, corresponding to >99.9% accuracy. We did not detect
a common HBV integration site (Fig. 2). The integration sites in
the PLC/PRF/5 genome included intergenic (39%), intronic
(39%), promoter (8%), and divergent promoter (15%) regions but
not exonic (0%) sequences (Fig. 2). HepG2.2.15 cells, which sta-
bly express and replicate HBV in a culture system, are derived
from the human hepatoblastoma cell line HepG2 (Sells et al.
1987). In the HepG2.2.15 genome, the integration sites included
intergenic (29%), intronic (§7%), and other (14%) regions but not
promoter (0%), divergent promoter (0%), or exonic (0%) se-
quences (Fig. 2).
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Methylation analysis of the CGl of the HBx gene. (A) Schema of the CGl of the HBx gene. Three arrows show the pyrosequencing primers used for

the methylation analysis. (B) DNA methylation levels of the CpGs of the HBx gene, LINET, and AluYb8 in 10 paired HBV-HCC and adjacent nontumor tissue
samples and PLC/PRF/5 DNA were analyzed using bisulfite pyrosequencing. Methylation levels of HBx varied across samples and were generally lower in HCC
tissues than in the adjacent nontumor tissues. An association between HBx methylation levels and those of the LINET and AluYb8 repeats was not observed.
N/A, could not be analyzed. DNAs from four paired HBV-HCC and adjacent nontumor tissue samples (sample nos. 7-10), PLC/PRF5, and HepG2.2.15 were
further analyzed using the NGS (G-NaVI method). (C) Representative pyrograms showing DNA methylation levels of the CpGs of the HBx gene. Methylation
levels at 12 CpG sites of the HBx gene in adjacent nontumor tissue (sample no. 4AD]) and tumor tissue (sample no. 5T) are shown.

DNA methylation of the integrated HBV genome as well as the
adjacent human genome in cell lines

DNA methylation of the integrated HBV genome, as well as the
adjacent human genome, was analyzed by bisulfite pyrosequenc-
ing. We detected varying levels of methylation of the HBV se-
quences integrated into the genome of PLC/PRF/S cells (Fig. 3;
Supplemental Fig. 7). Our data suggest DNA methylation in the
integrated HBV genome is related to the methylation status of the
integration sites within the human genome. We further charac-
terized the methylation status of the HBV genome and human
genome by allele-specific DNA methylation analysis (Fig. 3A),
which revealed that the HBV genome often showed significant
methylation when integrated into highly methylated sites in the
human genome; however, the HBV genome remained largely
unmethylated when integrated into unmethylated regions such as
promoters (Fig. 3B). Integration of the HBV genome did not affect
the methylation status of the human genome, including the pro-
moter regions of the TERT and SNX15 genes. Methylation of HBV
DNA integrated into HepG2.2.15 cells transformed with HBV DNA
(using a head-to-tail dimer) was further analyzed by bisulfite pyro-
sequencing, which revealed that the HBV genome generally showed
significant methylation when integrated into highly methylated
regions of the human genome; however, the HBV genome remains
largely unmethylated when integrated into unmethylated regions
(Fig. 3A).

DNA methylation levels in orthologous loci

We examined methylation levels of orthologous loci in HepG2.2.15
cells and in peripheral blood lymphocytes (PBLs) of a healthy vol-
unteer and compared them to the methylation levels at the same
(empty) target sites of PLC/PRF/5 cells. Methylation levels of
orthologous loci in HepG2.2.15 cells and PBLs were generally
similar to those of PLC/PRE/S cells (Fig. 3B). Similarly, we exam-
ined methylation levels of orthologous loci in PLC/PRF/S cells and
in PBLs of a healthy volunteer and compared them to the methyl-
ation levels at the same (empty) target sites of HepG2.2.15 cells.
Methylation levels of orthologous loci in PLC/PRF/S cells and PBLs
were also generally similar to those of HepG2.2.15 cells (Fig. 3B).

DNA methylation of the integrated HBV genome
and the adjacent human genome in HCC tissues

To determine whether our results are relevant to human tumors,
we used bisulfite pyrosequencing to investigate the methylation
status of the HBV and human genomes in surgical specimen pairs
of HCC and adjacent nontumor tissues. We detected no common
HBV integration site (Fig. 4; Supplemental Fig. 8). Recurrent HBV
integration into the SLC6A13 gene was observed in cancerous
tissues. Integration sites were rarely detected in exonic regions of
the DNA from HBV-HCC samples (Fig. 4; Supplemental Fig. 8).
Similar to the results obtained from the PLC/PRF/5 and HepG2.2.15
cells, our analysis revealed that the HBV genome became significantly
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methylated when integrated into highly methylated human ge-
nome regions but not when integrated into unmethylated human
genome regions (Fig. 4).

Correlation between the methylation pattern of the integrated
HBV DNA and the human genome

DNA fragments, including 200 bp of the HBV DNA and 200 bp of
the human genome around the boundary, were analyzed for av-
erage methylation, GC content, and repetitive sequences. A sta-
tistically significant correlation was observed between the average
methylation of the HBV DNA and that of the human genome in
celllines and clinical samples (Fig. SA-C; Supplemental Table 2). In
contrast, average methylation did not correlate with GC content or
repetitive sequences in the human and viral genome (Fig. SD,E;
Supplemental Table 2).

Using Bander software, we analyzed the chromatin structure
at the integrated HBV site in PLC/PRF/S and HepG2.2.15. Open
chromatin and heterochromatin were observed more frequently at
the integrated HBV in PLC/PRF/5 and HepG2.2.15, respectively
(Supplemental Table 3). The difference may reflect the fact that
PLC/PRF/5 is a naturally derived HBV-positive cell line and
HepG2.2.15 is an HBV DNA-transfected cell line.

Discussion

We developed an NGS-based method for structural methylation
analysis of integrated viral genomes. This method is a novel ap-

proach that enables the enrichment of viral fragments for se-
quencing using unique baits based only on the sequence of the
HBV genome. We detected all regions of the human genome that
harbored integrated HBV genomes without conducting un-
necessary sequencing of regions where the HBV genome was not
integrated. Because this technique only requires sequencing
a small region of DNA around the integrated HBV sequences,
a sufficient number of sequence reads can be acquired.
Methylation of viral DNA in infected cells may alter the
expression patterns of viral genes related to infection and
transformation (Burgers et al. 2007; Fernandez et al. 2009) and
may clarify why certain infections are either cleared or persist
with or without progression to precancer (Mirabello et al. 2012).
To the best of our knowledge, we have, for the first time, estab-
lished that the de novo patterns of DNA methylation in the in-
tegrated HBV genome are related to the methylation status of the
integration sites within the human genome. A statistically sig-
nificant correlation between the average methylation of the HBV
DNA and that of the human genome in cell lines and clinical
samples has greatly substantiated our findings. It is possible that
the HBV genome becomes inactivated by methylation, when it is
integrated into highly methylated host sites; therefore, HBV
methylation may not contribute to tumor development. How-
ever, after integration into unmethylated human genome re-
gions such as promoters, the HBV DNA remains unmethylated
and may eventually play an important role in tumorigenesis (Fig.
6). Because multiple HBV integration sites were present in each of
the analyzed samples, there remains the possibility of an asso-
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Figure 3. Allele-specific methylation analysis of the PLC/PRF/5 genome and the HepG2.2.15 genome. (A) A schema of allele-specific methylation
analysis. (B) The methylation levels of the HBV and human genomes for the integrated and unintegrated alleles. Detailed results of the HBV integrants
(PreC, Precore; C, Core; PreS, Presurface; S, Surface; X, X) and flanking host genomes (position, chromosome, location of the genome, and gene names) are
shown. DNA methylation of the integrated HBV genome as well as the flanking human genome was examined by allele-specific DNA methylation analysis
using bisulfite pyrosequencing. The HBV genome often showed significant methylation when integrated into highly methylated sites in the human
genome; however, the HBY genome remained largely unmethylated when integrated into unmethylated regions. Methylation levels of orthologous lociin
HepG2.2.15 cells and in PBLs of a healthy volunteer were examined and compared to the methylation levels at the same (empty) target sites of PLC/PRF/5
cells. Methylation levels of orthologous loci in HepG2.2.15 cells and PBLs were generally similar to those of PLC/PRF/5 cells. Similarly, methylation levels of
orthologous loci in PLC/PRF/5 cells and in PBLs of a healthy volunteer were examined and compared to the methylation levels at the same (empty) target
sites of HepG2.2.15 cells. Methylation levels of orthologous loci in PLC/PRF/5 cells and PBLs were generally similar to those of HepG2.2.15 cells. (X) The
desired quantitative methylation levels were not obtained because of technical difficulties with the sequences that were being analyzed.

ciation between methylation and viral transcript levels. The bi-
ological impact of methylation on viral transcript levels or viral
function, induced by viral insertions, also needs to be further
addressed.

Methylation levels of orthologous loci in other samples at the
same (empty) target sites of PLC/PRE/S were generally similar to
those of PLC/PRF/S. Similar results were observed in HepG2.2.15.
These data suggest that a “before and after” relationship exists
between methylation levels at preexisting target sites and those
within viral insertions. At the same time, we cannot rule out the
possibility that the integration of the virus subsequently affects the
methylation established at the flanking target site, perhaps by
acting in trans on the empty target site-containing allele. There-
fore, this issue needs to be further addressed.

Differences in the integrated viral sequences could have a di-
rect impact on the amount of cytosine methylation observed. In
cases where the integration site is a highly active promoter, com-
parisons of methylation statuses may not be informative. Addi-

tional studies, using a large number of samples, are needed to
address this issue.

Our results are notable because other studies have detected
a statistically significant enrichment of HBV integration into reg-
ulatory regions, particularly promoters, in tumors (Sung et al.
2012; Toh et al. 2013); this observation may be explained by the
relatively open chromatin structure of promoter regions. Average
methylation did not correlate with GC content or repetitive se-
quences in the human and viral genomes. The relationship be-
tween methylation of HBV sequences and chromatin structure
remains to be clarified because of the limitation of the Bander
software used in this study. Although the mechanism needs
clarification, the significant enrichment of HBV integration into
regulatory regions would favor integrated HBV nonmethylation
and lead to tumorigenesis. Alternatively, while the integration of
HBV into the host genome may be random, HBV integration into
regulatory regions is positively selected during tumorigenesis
(Toh et al. 2013).

Genome Research 5
www.genome.org

141



Watanabe et al.

DNA methylation (Virus = Human Genome mmmm

Methylation (%) )

Sample Chromosome Allele A: integration site Allele B: non-integration site Viral side Human genome side
r\,§ = 6 — . vg o .t Gene X,P,PreC  1465-1817  Chr.6p21.2  Intron DNAHS8 gene
21{ 3 3 G i
= ene P,X,PreC 1361-1818  Chr. 3g28 Intergenic
- 128 Gene C,P 1944-2269  Chr. 2922.1 Intergenic
Gene P, X 1448-1805  Chr.18g21.2 Intergenic
5 no CG Gene P,X,PreC 1458-1816  Chr. 5q31.1  Intron AK026965 gene
og 7 L m Gene P,X,PreC 1575-1819  Chr. 7q11.22 Intron CALN1 gene
= a 7 Gene C,P 2096-2472  Chr. 7p21.1  Intergenic
< 7 Gene C,P 2096-2472  Chr. 7p21.1  Intergenic
10 Gene P.X 1567-1807  Chr.10024.32 Intergenic
14 Gene S,P 749- 911 Chr.14924.2  Intergenic
14 Gene P.X,PreC  1550-1828 Chr.14931.3  intergenic
1 Gene P,.X 1059-1481 Chr.15q13.1 Exon COLGASF gene
6 Gene PreS,S,P 1- 349 Chr.6q27  Intergenic
7 Gene PreS,S,P 51- 272 Chr.7q11.22 Intergenic
. ; Gene P 975-1341  Chr.7q11.22 Intergenic
o Gene P,PreS,S 72- 443  Chr. 9q12 Intergenic
g 9 Gene PreC 2203-2266  Chr. 9912 Intergenic
18 Gene P,PreS,S 22- 443 Chr.18p11.11 Intergenic
5 2 Gene PreC 1830-1895  Chr. 2q35 Intron FN1 gene
<DE 3 Gene PreS,P 2604-3042 Chr. 3g27.2 Intergenic
15 Gene X 1722-1790  Chr. 15g13.3 Intron KLF13 gene
7 *v’iéi’ - — no CG Gene PreC,C,P 1839-2174  Chr. 7p21.3 Intergenic
ol 12 - e P — Gene P,X 1669-1805 Chr.12p13.33 Intron SLC6A13 gene
‘g 12 4 p— Gene P.X 1466-1722 Chr.12p13.33 Intron SLC6A13 gene
z 19 m — g Gene S,P,X,PreC,C 544- 2273  Chr.19q13.42 Intergenic
_: 1 X Gene P,X 1360-1807  Chr. 1p36.32 Intergenic
9( 17 —= ] “_— Gene X,PreC 1725-1822  Chr.17g24.3  Intergenic

Figure 4. Allele-specific methylation analysis of the tumor (T) and adjacent nontumor (ADJ) sample genomes. The methylation levels of the HBV and
human genomes for the integrated and unintegrated alleles in four paired tumor and adjacent nontumor samples (sample nos. 7-10) are shown. Detailed
results of the HBV integrants (PreC, Precore; C, Core; PreS, Presurface; S, Surface; X, X) and flanking host genomes (position, chromosome, location of the
genome, and gene names) are shown. The HBV genome became significantly methylated when integrated into highly methylated human genome
regions, but not when integrated into unmethylated human genome regions. (X) The desired quantitative methylation levels were not obtained
because of technical difficulties with the sequences that were being analyzed.

The dynamic changes in DNA methylation described here
have a major functional impact on the biological behavior of HBV
and underlie the molecular mechanisms that control infection or
enable tumorigenesis. These findings may significantly impact
public health given that millions of people worldwide are carriers
of HBV. Distinct DNA methylation profiles may exist, for example,
between primary HCCs in Japanese patients and those of other
nationalities. Additional studies are needed to address this issue,
and research into the influence of other environmental factors is
required.

Increased viral DNA methylation is present in cancers asso-
ciated with DNA viruses, including human papilloma virus types
16 and 18 (HPV 16 and 18) (Fernandez et al. 2009; Mirabello et al.
2012), Epstein-Barr virus (Uozaki and Fukayama 2008; Fernandez
et al. 2009), and human T-lymphotropic virus 1 (Taniguchi et al.
2005). An analysis of the haplotype-resolved genome and epi-
genome of the aneuploid Hela cervical cancer cell line revealed
that an amplified, highly rearranged region of chromosome
8q24.21 harboring an integrated HPV18 genome likely represents
the tumor-initiating event (Adey et al. 2013). Whether the dy-
namic changes in DNA methylation observed in cells with in-
tegrated HBV genomes also occur in human cells infected by other

viruses is an interesting question for further study. We anticipate
that our assay will be a powerful tool for this purpose and have
successfully detected integrated HPV sequences in the genomes of
cervical cancer cell lines (Y Watanabe, H Yamamoto, F [toh, and
N Suzuki, unpubl.).

This study provides novel mechanistic insights into HBV-
mediated hepatocarcinogenesis, which may have preventive and
therapeutic applications for carriers of HBV and patients with HBV-
HCC, as it suggests that epigenetic alterations provide candidate
biochemical markers and therapeutic targets. This study, together
with a recent global survey of HBV integration events (Ding et al.
2012; Fujimoto et al. 2012; Jiang et al. 2012; Sung et al. 2012; Toh
etal. 2013), provides a foundation for the further experimentation
and mechanistic understanding of HBV-HCC.

Methods

Cell lines and primary tissues

The PLC/PRF/S (Alexander) human hepatoma cell line was
obtained from the Japanese Collection of Research Bioresources
(JCRB). HepG2.2.15 cells, kindly gifted by Professor Stephan Urban
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Figure 5. Correlation analysis between the methylation pattern of the integrated HBY DNA and that of the human genome. DNA fragments, including
200 bp of the HBV DNA and 200 bp of the human genome around the boundary, were analyzed for average methylation and GC content. (4) A
correlation between the average methylation of the HBY DNA and that of the human genome in combined two cell lines and eight clinical samples (n=40,
r=0.57, P=0.0001, 95%CI = 0.3091-0.7545). (B) A correlation between the average methylation of the HBV DNA and that of the human genome in two
celllines (n=14, r=068, P=0.007, 95%Cl = 0.2233-0.8946). (C) A correlation between the average methylation of the HBV DNA and that of the human
genome in eight clinical samples (n = 26, r=0.49, P = 0.01, 95%Cl = 0.1222-0.7463). (D) No correlation between the average methylation and GC
contents in the human genome in the combined two cell lines and eight clinical samples (n =45, r=0.08, P =0.59, 95%Cl = —0.2253-0.3745). (E) No
correlation between the average methylation and GC contents in the viral genome in the combined two cell lines and eight clinical samples (n=47, r=

0.22, P=10.88, 95%Cl = —0.3151-0.2751).

at University Hospital Heidelberg, was derived from HepG2 cells
transfected with a plasmid carrying four 5'-3’ tandem copies of the
HBV genome (Koike et al. 1994). Cell lines were maintained in
appropriate media containing 10% fetal bovine serum in plastic
culture plates. Primary tissues from tumor and adjacent tissues were
obtained at the time of the clinical procedures. Informed consent
was obtained from all the patients before specimen collection. This
study was approved by the institutional review board. DNA was
extracted using the standard phenol-chloroform method. The
concentration and quantity of extracted DNA were measured using
a NanoDrop spectrophotometer (NanoDrop Technologies).

MCAM analysis

MCAM analysis was conducted as previously described (Oishi et al.
2012). A detailed protocol of MCA was previously described
(Toyota et al. 1999). We used a custom human promoter array
(G4426A-02212; Agilent Technologies) comprising 36,579 probes
corresponding to 9021 unique genes. The probes on the array were
selected to recognize Smal/Xmal fragments mainly derived from
sequences near gene transcription start sites. Five micrograms of
genomic DNA was digested with 100 U of methylation-sensitive
restriction endonuclease Smal (New England Biolabs) for 24 h at
25°C, which cleaves unmethylated DNA leaving blunt ends (CCC/
GGQG). Subsequently, the DNA was digested with 20 U of methyl-
ation-insensitive restriction endonuclease Xmal for 6 h at 37°C,
creating sticky ends (C/CCGGG). Five hundred milligrams of

digested DNA was ligated using 50 pL of RMCA12 (5'-CCGGGCA
GAAAG-3')/RMCA24 (5'-CCACCGCCATCCGAGCCTTTCTGC-3")
primers and T4 DNA ligase (TaKaRa Bio) for 16 h at 16°C. After filling
in the overhanging ends of the ligated DNA fragments at 72°C, the
DNA was amplified for S min at 95°C followed by 25 cycles of 1-min
incubation at 95°C and 3-min incubation at 77°C using 100 pmol of
RMCA24 primer. MCA products were labeled with CyS5 (red) for
DNA from hepatoma samples (both tumor and adjacent normal)
and Cy3 (green) for DNA from human blood mixture of three
healthy volunteers using a randomly primed Klenow polymerase
reaction (Invitrogen) for 3 h at 37°C. Human CpG island arrays (4 X
44 K) were purchased from Agilent Technologies. Microarray pro-
tocols, including labeling, hybridization, and post-hybridization
washing procedures, are provided at http://www.agilent.com/. La-
beled samples were then hybridized to arrays in the presence of
human Cot-1 DNA for 24 h at 65°C. After washing, arrays were
scanned using an Agilent DNA microarray scanner and analyzed
using Agilent Feature Extraction software (FE version 9.5.1.1, Agilent
Technologies) at St. Marianna University School of Medicine. We
used GeneSpring software (Agilent) for choosing candidate genes
after normalization of the raw data.

DNA methylation analysis

Hidden Markov models have been successfully used to partition
genomes into segments of comparable stochastic structure (Durbin
et al. 1998). Using these models for sequence analysis performed
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