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Materials and methods
Cells

293 T cells (DuBridge et al., 1987) were maintained in Dulbecco's
Modified Eagle Medium (D-MEM; Wako, Osaka, Japan) supplemen-
ted with 10% (vol/vol) fetal bovine serum (FBS; HyClone Labora-
tories, Logan, UT) and 1 mM t-glutamine. TZM-bl cells (Platt et al.,
1998) from the NIH AIDS research and reference reagent program
were maintained in D-MEM supplemented with 10% FBS, 1 mM
t-glutamine and 1 mM sodium pyruvate. The human T-cell line,
C8166-CCR5 (Shimizu et al., 2006) was maintained in Rosewell Park
Memorial Institute 1640 medium (RPMI-1640; Invitrogen, Carlsbad,
CA) supplemented with 10% FBS. PtM PBMCs from uninfected
monkeys were isolated using the ficoll density gradient separation
method. For this procedure, a mixture of 95% lymphocyte separa-
tion medium (Wako) and 5% phosphate buffered saline (PBS) was
used as a separation solution as described previously (Agy et al.,
1992; Frumbkin et al., 1993). Residual erythrocytes were lysed in ACK
lysing buffer (015 M NH4Cl, 10 mM KHCOs, 1.0 mM EDTA- Nay).
Depletion of CD8* cells was conducted with the magnetic-activated
cell sorting (MACS) system (Miltenyi Biotec, Gladbach, Germany).
Briefly, isolated PtM PBMCs were stained with phycoerythrin (PE)-
conjugated anti-CD8 antibodies (clone SK1, BD Biosciences, San Jose,
CA) and then labeled with anti-PE MicroBeads (Miltenyi Biotec).
CD8™* cells were removed using a magnetic column according to the
manufacturer's instructions. PBMCs were cultured in RPMI-1640
supplemented with 10% FBS, 2mM sodium pyruvate, 2 mM L-
glutamine, 50 nM 2-mercaptoethanol and 40 pg/mL gentamicin.
PBMCs were stimulated with 25 pg/mL Concanavalin A (conA) for
20 h and then cultured in the presence of 160 U/mL human recom-
binant interleukin-2 (IL-2; Wako).

Viruses

A stock of NL-DT5R virus was prepared from C8166-CCR5 cells
transfected with a plasmid encoding full-length proviral DNA of
NL-DT5R (pNL-DT5R) using the DEAE-Dextranfosmotic shock
procedure (Takai and Ohmori, 1990). SIVmac239 (Kestler et al,
1988) stock virus was prepared from the culture supernatant of
293 T cells transfected with a plasmid encoding full-length
proviral DNA of SIVmac239 with Lipofectamine (Invitrogen).
CCR5-tropic subtype C HIV-1 clinical isolates including 97ZA012
were obtained from the NIH AIDS research and reference reagent
program.

Generation of recombinant virus through intracellular homologous
recombination

To generate recombinant virus by IHR, overlapping viral geno-
mic DNA fragments were prepared by PCR amplification. A region
spanning the 5 LTR to env was amplified from pNL-DT5R (Gen-
Bank accession number: AB266485) using the HIV-1-U3-NotI-F
forward primer (5-ATGCGGCCGCTGGAAGGGCTAATTTGGTCC-
CAAAG-3'; nucleotide positions 1-25 in NL-DT5R, and additional
Notl site sequences) and the env-2R reverse primer (5-CACA-
GAGTGGGGTTAATTTITACAC-3'; nucleotide positions 6761-6784 in
NL-DT5R). PCR was conducted with Expand long-range dNTPack
(Roche Diagnostic, Basel, Switzerland). PCR conditions were as
follows: 94 °C for 2 min followed by 10 cycles of 94 °C for 155,
55 °C for 30 s and 68 °C for 8 min, 25 cycles of 94 °C for 15 s, 55 °C
for 30, 68 °C for 8 min, with 20 s increments at 68 °C for each
successive cycle and a final elongation period of 68 °C for 7 min
(fragment I in Fig. 1A). Amplification of a DNA fragment spanning
the initiation of vpr to the 3’ LTR was derived from subtype C HIV-
1 clinical isolates of the HIV-1 97ZA012 strain. Viral RNA was

isolated from culture supernatant using a QlAamp viral RNA mini
kit (Qiagen, Hilden, Germany). Complementary DNA (cDNA) was
synthesized with Super Script III first-strand synthesis SuperMix
(Invitrogen) using the OFM19-R reverse primer (5'-AGGCAAGCTT-
TATTGAGGCTTA-3’; nucleotide positions 9604-9625 based on the
HXB2 numbering). PCR amplification of the viral ¢cDNA was
conducted using HIV-1vpr-F forward primer (5-AGATGGAA-
CAAGCCCCAGAAGA-3’; nucleotide positions 5558-5579 in the
HXB2 numbering) and OFM19-R reverse primer with the same
conditions (fragment Il in Fig. 1A). To prepare a fragment spanning
the initiation of 5’ LTR to the MA region of gag, proviral DNA was
extracted from proviral DNA of subtype C HIV-1 isolate-infected
(C8166-CCR5 cells using DNeasy Blood & Tissue kits (Qiagen). The
following amplification was conducted using HIV-1cladeC-U3-
Notl-F forward primer (5-ATGCGGCCGCTGGAAGGGTTAATTTACT-
CAAGAG-3’; nucleotide positions 1-24 in the HXB2 numbering
plus Notl site sequences) and the PreSCA-R reverse primer
(5'-AATCTATCCCATTCTGCAGC-3’; nucleotide positions 1433-1414
in the HXB2 numbering) (fragment IIl in Fig. 1A). The PCR products
were purified using QIAquick PCR purification kits (Qiagen).

Recombinant viruses were generated by means of IHR in the
cell. PCR-amplified linear viral DNA fragments were co-transfected
into C8166-CCR5 cells by the DEAE-dextran/osmotic shock proce-
dure (Takai and Chmori, 1990). After transfection, cells were
maintained and passaged every 3 days. The culture supernatant
was harvested upon observation of virus-induced CPE.

Virus titration

The infectious titer of the viruses was defined as the median
tissue culture infectious dose (TCIDsq) in TZM-bl cells as described
previously (Li et al., 2005). Four-fold, serially diluted viral stock
was used to inoculated TZM-bl cells (5000 cells per 200 pL of
growth medium containing DEAE-Dextran at a final concentration
of 12.5 pg/mL) in quadruplicate in flat-bottom 96-well plates. After
incubation for 48 h at 37 °C, the culture supernatant was removed
and the cells were treated with 50 puL of Cell lysis solution (Toyo-
Inki, Tokyo, Japan) for 15 min at room temperature with shaking.
Then, 30 uL of the cell lysate were transferred to F96 MicroWell
plates (Thermo Fisher Scientific, Roskilde, Denmark), and the
relative luminescence units (RLU) after adding 50 uL of luciferase
substrate (PicaGene, Toyo-Inki) to each well was determined using
a microplate reader (Mithrus LB940, Berthold Technologies, Bad
Wildbad, Germany). Viral infectivity was measured in RLUs, and
positive wells were defined as RLU > 2 x background. The TCIDsp
was calculated as described previously (Reed and Muench, 1938).

Viral growth kinetics in pig-tailed macaque PBMCs

PtM PBMCs were isolated from two uninfected animals and
CD8* cells were depleted as described above. Two days after
stimulation with Concanavarin A (25 pg/mL), 2.5 x 10° cells of
CD8™ cell-depleted PtM PBMCs were inoculated with 2.5 x 104
TCIDsq of viral stocks by spinoculation (O’'Doherty et al,, 2000) at
1200g for 1 h at room temperature. After washing with PBS, the
infected cells in 200 pL of culture medium were cultured in round-
bottom 96-well plates at 37 °C. The upper 150 pL of culture
supernatant without aspirating cells in the bottom of the well
was exchanged with fresh medium everyday. The harvested
supernatant was stored at —20 °C prior to measure the activity
of RT associated with virions.

RT assay

The virion-associated RT activity in culture supernatant was
monitored as described previously (Willey et al.,, 1988). Briefly,
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6 pL of culture supernatant were combined with 30 pl of RT
reaction cocktail [50 mM Tris-HCl, 75 mM KCl, 10 mM dithiothreitol,
495 mM MgCl,, 10 mg/mL polyA RNA, 5 mg/mL oligo-dT,q, 0.05%
NP40] and 1.66 x 10? Bq equivalent o®?P-dTTP (PerkinElmer, Wal-
tham, Massachusetts, USA) and incubated at 37 °C for 2 h with gentle
agitation. Next, 3 pL of incubated mixture were blotted onto DES]
ion exchange cellulose paper (GE healthcare, Buckinghamshire, UK).
After four washes with 2 x saline sodium citrate (SSC), the residual
radioactivity from synthesized DNA was counted using a liquid
scintillation counter.

Single genome amplification (SGA)

SGA of the region spanning the initiation region of vpr to the
end of the env gene was conducted as described previously
(Salazar-Gonzalez et al, 2008). Synthesized viral cDNA was end-
point diluted and then subjected to nested-PCR. First-round PCR
was conducted with KOD-FX (TOYOBO, Osaka, Japan) in a total of
20 pL of reaction mixture, using the SGA-16F forward primer
(5’-TGCAGCAGAGTAATCTTCCCACTACAGG-3'; nucleotide positions
5260-5283 in NL-DT5R) and the SGA-OFM19R reverse primer
(5'-AGGCAAGCTTTATTGAGGCTTAAGCAGTGG-3";  9771-9800 in
NL-DT5R). The first-round PCR conditions were as follows: 94 °C
for 2 min, followed by 35 cycles of 98 °C for 10's, 63 °C for 30 s and
68 °C for 5 min. Second-round PCR was performed using 1 gL of
the first-round PCR product using the SGA-17F forward primer
(5'-AGAAGAGACAATAGGAGAGGCCTTCGAATG-3';  5610-5639 in
NL-DT5R) and the SGA-2.5R reverse primer (5'-AAAGCAGCTGCT-
TATATGCAGCATCTGAGG-3'; 9673-9702 in NL-DT5R). The second-
round PCR conditions were the same as those in the first-round
PCR. Amplification of the target sequence was confirmed with
agarose gel electrophoresis. According to a Poisson distribution,
when a positive ratio of amplification from diluted cDNA is < 30%
in multiple replicate PCR reactions, the amplicons are predicted
to be amplified from one-copy of template with the probability
of >80%. The single genome amplicons were purified before
sequence analysis.

Genomic analysis

Sequence analysis was performed using the BigDye terminator
v. 3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA)
and the ABI PRISM 3130x! genetic analyzer (Applied Biosystems).
The 3’-terminal 2304 nucleotide sequences of env were aligned
using the Clustal X software (Thompson et al,, 1997). A neighbor-
joining phylogenetic tree (Saitou and Nei, 1987) using Kimura's
two-parameter model (Kimura, 1980) was constructed using
MEGA 5 software (Tamura et al,, 2011), and bootstrap values were
computed from 1000 bootstrap replicates (Felsenstein, 1985). Pair-
wise distances between any two nucleic acid sequences of the
3’ terminal 2361 bp of each viral env within the parental HIV-1
97ZA012, HIV-1mt ZA012-P0 and HIV-1mt ZA012-P19 were calcu-
lated with Kimura's two-parameter model (Kimura, 1980) by using
MEGA 5 software (Tamura et al.,, 2011). The statistical significance
between each viral pair-wise distance was calculated with Stu-
dent's t test using GraphPad Prism software (San Diego, CA, USA).

Co-receptor usage assay

Employing a previously reported method (Nishimura et al,
2010) with minor modifications, co-receptor usage of viruses was
determined using the small molecule antagonists, AD101 (Trkola
et al, 2002) provided by Dr. Julie Strizki (Schering-Plough
Research Institute, Kenilworth, NJ) and AMD3100 (Sigma-Aldrich,
St. Louis, MO) (Donzella et al.,, 1998). Briefly, freshly trypsinized
TZM-bl cells (5000 cells per 100 pL of growth medium containing

DEAE-Dextran at a final concentration of 12.5 pg/mL) were seeded
in flat-bottom 96-well plates. The cells were incubated with 50 pL
of co-receptor antagonists at final concentrations ranging from
0.1 nM to 1000 nM for 1 h at 37 °C and inoculated with 100 TCIDsq
of replication-competent virus in triplicate. After incubation for
48 h at 37 °C, luciferase activity was measured, and the percent
infectivity relative to that measured in mock-treated wells was
determined.

Experimental infection of pig-tailed macaques with HIV-1mt ZA012

HIV-1mt ZA012 challenge stock was prepared from culture
supernatant of PtM PBMCs infected with HIV-1mt ZA012-P19. The
virus was titrated with PtM PBMCs as described previously (Fujita
et al, 2013). Two pig-tailed macaques, PtMO1 and PtMO02 aged
7 and 6 years, respectively, were intravenously inoculated with
1.0 x 10° TCIDs, of HIV-1mt ZA012. Plasma viral RNA loads were
measured with TagMan real time RT-PCR as described previously
(Mivake et al, 2006) with minor modifications; RT-PCR was con-
ducted for HIV-1 vpr amplification using the NM3rNvpr-F forward
primer (5-CAGAAGACCAAGGGCCACAG-3’) and NM3rNvpr-R
reverse primer (5-GTCTAACAGCTTCACTCTTAAGTTCCTCT-3'). PCR
products were detected with a labeled probe, NM3rNvpr-T
(5'-Fam-AGGGAGCCATACAATGAATGGACACT-Tamra-3'; Perkin Elmer).
Animal experiments were conducted in the biosafety level 3 animal
facility, in compliance with institutional regulations approved by the
Committee for Experimental Use of Nonhuman Primates of the
Institute for Virus Research, Kyoto University, Kyoto, Japan.

Flow cytometry

To enumerate CD4* T-lymphocytes, and memory and naive
CD4™* T-lymphocytes, whole blood samples were stained with
fluorescently labeled mouse monoclonal antibodies. Anti-CD3
(clone SP34-2) conjugated with Pacific Blue, anti-CD4 (clone
L200) conjugated with PerCP-Cy5.5, anti-CD8 (clone SK1) conju-
gated with APC-Cy7, anti-CD20 (clone L27) conjugated with FITC
and anti-CD95 (clone DX2) conjugated with APC were purchased
from BD Biosciences, and anti-CD28 (clone CD28.2) conjugated
with PE was purchased from eBioscience (San Diego, CA).
CD28"e"CD95'VCD4* or CD28NEMWCDY5hishCD4* T-cell subsets
were considered as naive or memory CD4* T-lymphocytes, respec-
tively (Pitcher et al, 2002). The absolute number of lymphocytes in
the blood was determined using an automated hematology analy-
zer, KX-21 (Sysmex, Kobe, Japan).
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One of the major missions of animal virology is to understand
how viruses replicate and cause asymptomatic/symptomatic con-
ditions in individuals (Nomaguchi and Adachi, 2010). It is espe-
cially important for virologists who work on viruses pathogenic
for humans to elucidate bases underlying the in vivo viral charac-
teristics. Toward this end, animal model studies in some ways are
necessary to precisely analyze the in vivo situation, and also are
essential for developing countermeasures against virus infections.
Since a full variety of viruses with distinct biological properties
exist, we virologists should study “the target virus” in a special-
ized manner, in addition to common theoretical/experimental
approaches. The Research Topic entitled “Animal model stud-
ies on viral infections” collects articles that describe the studies
on numerous virus species for their animal models, or those at
various stages toward animal experiments.

Articles in this Research Topic were written by experts in
various research fields, and can be fairly grouped into a few
categories: (i) descriptions/evaluations/new challenges of animal
model studies for investigating the biology of viruses; (ii) exper-
imental materials/methods for upcoming animal model stud-
ies; (iil) observations important for animal model studies. (i)
Reynaud and Horvat (2013) have described the animal mod-
els for human herpesvirus 6 to better understand its pathogenic
property. Studies on filoviruses, classified as biosafety level-4
and represent a serious world-wide problem today, have been
reviewed by Nakayama and Saijo (2013). Mailly et al. (2013) have
focused on the quest for appropriate animal models for hepatitis
C virus. Clark et al. (2013) have discussed about the use of non-
human primates as models for dengue hemorrhagic fever/dengue
shock syndrome. Ohsugi (2013) has summarized mouse strains
transgenic for the tax gene of human T-cell leukemia virus
type 1 (HTLV-1). Also, a bovine model for HTLV-1 patho-
genesis has been described by Aida et al. (2013). Challenging
new attempts to establish human immunodeficiency virus type
1 (HIV-1)/macaque infection models have been reviewed by
Misra et al. (2013), and also by Saito and Akari (2013). Another
approach to understand HIV-1 biology in vivo has been described
by Matsuyama-Murata et al. (2013). (ii) Kodama et al. (2013) has
described a new and simple method to prepare human dendritic
cells from peripheral blood mononuclear cells. Doi et al. (2013)
have summarized their studies on macaque-tropic HIV-1 clones.

Tkeno et al. (2013) has reported a new, sensitive, and quantitative
system to monitor measles virus infection in humanized mice.
Iwami et al. (2013) have summarized the quantification of viral
infection dynamics based on various quantitative analyses. (iii)
Tada et al. (2013) have suggested that LEDGF/p75 may be a cel-
lular factor acting as a species-barrier against HIV-1 in mouse
cells. Kuwata et al. (2013) have shown that simian immunode-
ficiency virus may acquire the increased infectivity and resistance
to neutralizing antibodies by truncation of its gp41 cytoplasmic
tail. Ohsugi et al. (2013) have reported that natural infection sta-
tus of laboratory mice by murine norovirus. Finally, Kajitani et al.
(2013) have described the possible involvement of E1"E4 protein
of human papillomavirus type 18 in its differentiation-dependent
life cycle.

We are proud to add our “Animal model studies on viral infec-
tions” to a series of Research Topic in Frontiers in Microbiology.
A wide variety of DNA and RNA viruses are covered by this
special issue consisting of original research, review, mini-review,
methods, and opinion articles. As we described in the beginning,
animal studies are certainly required for understanding virus
replicative/pathogenic properties in vivo and for overcoming
virally-caused infectious diseases. We human virologists should
make every effort to fight against numbers of unique pathogenic
viruses.
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