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Figure 4 Sendai virus/dFifar up stream element-binding protein-interacting repressor decreased Hel.a cell growth in vitro and in a xenograft animal model.
Hel.a cells (A) and SW480 cells (B) were infected with 0, 0.1, 1, and 10 MOI of SeV/dF/FIR or SeV/dF/GFP vectors and cell growth was measured by MTS assay (see
Materials and Methods). Results are shown as the percentage of cell number at day 0. Points, mean of three separate experiments; bars, SD. Statistical significance
was analyzed by Dunnett's test for multiple comparisons (SeV/dF/FIR vs SeVIdF/GFP, P < 0.007). Two weeks after 5 x 10° HeLa cells were xenografted into the right
thigh of Balbc/nu/nu mice, the tumor size was approximately 7-8 mm. 3.0 x 10" CIU of SeV/dF/FIR or SeV/dF/GFP vector were injected directly around the tumor, and
the tumor growth was observed and measured every three days as described in Materials and Methods. Results are shown as the ratio of tumor volume compared to
the size at day 0. The tumor volume at day 0 of SeV/dF/FIR (n = 6), SeV/dF/GFP (n = 5), and control (n = 5) were 1173.1 + 259.2, 836.0 + 259.2, and 972.2 + 327.0
(average + SD) mm’, respectively. The average tumor volume at day 0 was estimated as 1 in each experiment. Arrows indicate the injection of SeV/dF/FIR or SeV/dF/
GFP vectors. FIR: FBP Interacting Repressor; FBP: FUSE-Binding protein; FUSE: Far Upstream Element; SeV: Sendai virus; GFP: Green fluorescent protein; MOI:
Multiplicity of infection.
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Figure 5 Sendai virus/dF/Far up stream element-binding protein-interacting repressor vector showed anti-tumor activity in a mouse xenograft model. 10°
Yes-5 cells were xenografted into the right thigh of Balbc/nu/nu mice, and the tumor size was approximately 15 mm in diameter at Day 0. 3.0 x 10" CIU of SeV/dF/FIR
vectors were injected directly around the tumor every two days, seven times in total. Tumor growth was observed and measured every two days as described in Ma-
terials and Methods. Ulcer formation was observed in the center of the tumor (day 14 after SeV/dF/FIR injection). Tumor size was significantly diminished with ulcer
formation (day 90) and disappeared completely during surveillance (day 140). Thick arrows in the images indicate the tumor margin. Thin arrows indicate the injec-
tion of SeV/dF/FIR vectors into the tumor. FIR: FBP Interacting Repressor; FBP: FUSE-Binding protein; FUSE: Far Upstream Element; SeV: Sendai virus; CIU: Cell-
infectious units.
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Figure 6 SAP155 siRNA induces c-Myc activation with Er phosphorylation, but suppresses phosphorylated-cdk2/cyclinE expression. Hela cells were
treated with SAP155 siRNA for three days (72 h). A: SAP155 siRNA, as well as SSA treatment, increased not only c-Myc expression level, but also c-Myc phos-
phorylation at both Ser62, but suppressed phosphorylated-cdk2 and cyclinE in a dose-dependent manner. Thus, SAP155 siRNA activates c-Myc potentially via inhibit-
ing endogenous FIR pre-mRNA splicing; B: FIR Sendai virus (SeV/dF/FIR) reversed the cytotoxicity of SSA by suppressing activated endogenous c-Myc. Hela cells
were treated with 50 ng/mL SSA for 48 h with control (MetOH and H:z0). 10 MOI of SeV/dF/FIR apparently suppressed activated c-Myc expression, whereas SeV/dF/
FIR did not influence basal expression (MetOH or H20). FIR: FBP Interacting Repressor; FBP: FUSE-Binding protein; FUSE: Far Upstream Element; SeV: Sendai

virus; GFP: Green fluorescent protein; MOI: Multiplicity of infection; SSA: Spliceostatin.

ment for the future development of cancer therapies
based on targeting individual oncogenes such as c-zzy.. We
have previously reported that FIR strongly represses en-
dogenous ¢-myc transcription, and induces apoptosis” and
is thus applicable for cancer treatment. In this study, first,
we demonstrated that c-zye suppressor FBP-interacting
repressor (FIR) strongly repressed endogenous c-zye tran-
scription and induced apoptosis in SW480, LoVo (hu-
man colon cancer cell lines) as well as HeLa cells (human
cervical squamous cancer cell line). Second, SeV/dF/FIR
showed strong anti-tumor effects in both cultured cells
and xenograft tumor growth in an animal model. These
results provide new insight into a new therapeutic target
for tumor treatment.

What type of suitable vector should be selected and
how should FIR expressing vectors be conveyed to can-
cets? Sendai virus is an RNA virus and exists only in the
cytoplasm, hence it is relatively safe as it does not affect
chromosomes. In addition, SeV does not transform
cells by integrating its genome into the cellular genome,
thereby avoiding possible malignant transformation due
to the genetic alteration of host cells; this is a safety ad-
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vantage of SeV. For this reason, we chose SeV and pre-
pared a fusion gene-deficient SeV/dF/FIR vector. The
fusion gene-deficient SeV vector cannot transmit to F
protein-non-expressing cells as F protein is essential for
viral infection. The fusion gene-deficient SeV vector in
this study does not require helper virus for reproduction,
but is self-replicable in infected cells. Thus, the fusion
gene-deficient SeV vector has several advantages over
expressing vectors as a gene delivery system for human
disease including cancer treatment. First, the fusion
gene-deficient SeV vector is not pathogenic in humans.
Second, the virus replicates only in the cytoplasm, there-
fore does not affect chromosome DNA in host cells.
Third, SeV vector shows highly efficient gene transfer
to a wide spectrum of cells, even to smooth muscle
cells, nerve cells, or endothelial cells which are generally
difficult to infect. Fourth, the SeV vector shows highly
efficient gene transfer to a wide spectrum of cells, even
to smooth muscle cells and does not generate wild-type
virus in packaging cells. Recently, a gene-deficient SeV
(SeV/dF) vector alone demonstrated tumor suppression
by activating dendritic cells (DCs)*, or if granulocyte
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Figure 7 Sendai virus/dF/LacZ transduction efficiency was examined in some human and animal cell lines. Confluent culture of LLC-MK2 (macaque kidney
fibroblasts), HeLa (human adenocarcinoma cells), MDCK (canine kidney cells), and A549 (human lung carcinoma cells) were infected with LacZ expressing SeV vec-
tor (SeV/dF/LacZ) at a MOl of 0.1 or 3.0. LacZ expressing Adenovirus vector (Ad5/LacZ) was used as a control. Two days after infection, the cells were stained with X

Gal. SeV: Sendai virus.

macrophage colony-stimulating factor was encoded, it
produced autologous tumor vaccines™. Therefore, the
SeV/dF/FIR vector in this study may suppress tumot
growth by a dual function through c-Myc suppression of
tumor cells and DC activation. Furthermore, SeV/dF/
FIR showed a synergistic effect with cisplatin in the treat-
ment of malignant pleural mesothelioma™. FIR-binding
proteins are basically classified into four categories (Table
1); (1) RNA binding proteins and splicing factors; (2)
transcription factors and chromatin remodeling proteins;
(3) actin-binding proteins; and (4) signal transduction and
protein kinase families. This suggests that FIR potentially
engages in some different intracellular events, such as
RNA transport, DNA damage repair and pre-mRNA
splicing. Accordingly, the side effects of SeV/dF/FIR
need to be considered before clinical use, such as pre-
mRNA splicing disturbance®™’, DNA damage repair®”
or intracellular protein transport interference. For clinical
safety, SeV/dE/FIR is preferable for local tumor growth
control rather than systemic cancer therapy.

Taken togethet, these findings show that SeV/dF/
FIR is a promising approach for cancer gene therapy, al-

though further clinical and basic research are required to
explain the precise mechanism of tumor suppression by
FIR expressing vectors.
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Background

Far Up Stream Element-Binding Protein-Interacting Repressor (FIR) is a ¢-myc
transcriptional repressor. Thus, FIR expressing vectors are applicable for can-
cer therapy. In this study, the authors examined a novel therapeutic strategy to
suppress c-myc in human cancers using a fusion gene-deficient Sendai virus
(SeV/dF/FIR) which is inherently non-transmissible.
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Research frontiers

As c-myc transcriptional control is largely unknown, modulation of ¢-myc regula-
tion by SeV/dF/FIR for cancer therapy should be monitored, strictly and skepti-
cally, from several aspects. This study revealed that SeV/dF/FIR is effective for
cancer gene therapy without significant side effects in a xenograft model.

Innovations and breakthroughs

SeV/dF/FIR showed high gene transduction efficiency with significant antitumor
effects and apoptosis induction in HeLa and SW480 cells. In the xenograft
model, SeV/dF/FIR showed strong suppression of tumor growth with no signifi-
cant side effects.

Applications

SeV/dF/FIR is potentially applicable for future clinical cancer treatment as
SeV/dF/FIR suppresses endogenous c-Myc as well as Spliceostatin A (SSA)-
activated ¢c-Myc.

Terminology

FUSE: Far Upstream Element which is required for correct c-myc transcription.
FBP: FUSE-Binding protein which has strong transcriptional activity. FIR: FBP
interacting repressor which is a critical transcriptional repressor of c-myc gene.
SeV: Sendai virus, a member of the Paramyxoviridae family, has envelopes
and a nonsegmented negative-strand RNA genome. The SeV genome contains
six major genes in tandem on a single negative-strand RNA. DC: Dendritic cell.
The gene-deficient SeV (SeV/dF) vector alone demonstrates tumor suppression
by activating dendritic cells (DCs).

Peer review

The authors performed the enthusiastic experiments in vivo and animal model
to examine the SeV/dF/FIR for cancer gene therapy to minimize the side effect
for the clinical use.
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Article history: Previously, we developed a vaccination regimen that involves priming with recombinant vaccinia virus
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LC16m8A (rm8A) strain followed by boosting with a Sendai virus-containing vector. This protocol
induced both humoral and cellular immune responses against the HIV-1 envelope protein. The cur-
rent study aims to optimize this regimen by comparing the immunogenicity and safety of two rm8A
strains that express HIV-1 Env under the control of a moderate promoter, p7.5, or a strong promoter,
pSFJ1-10. m8 A-p7.5-JRCSFenv synthesized less gp160 but showed significantly higher growth potential
than m8A-pSFJ-JRCSFenv. The two different rm8A strains induced antigen-specific immunity; how-
ever, m8A-pSFJ-JRCSFenv elicited a stronger anti-Env antibody response whereas m8A-p7.5-JRCSFenv
induced a stronger Env-specific cytotoxic T lymphocyte response. Both strains were less virulent than the
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HIV-1 Env parental m8A strain, suggesting that they would be safe for use in humans. These findings indicate the
Immunogenicity vaccine can be optimized to induce favorable immune responses (either cellular or humoral), and forms
Safety the basis for the rational design of an AIDS vaccine using recombinant vaccinia as the delivery vector.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Despite the increasing availability and effectiveness of antiretro-
viral treatments, a safe and effective vaccine that prevents HIV-1
infection would be invaluable. A recent report from Thailand
showed that the RV144 vaccine protocol, which involved priming
with a canarypox virus vector followed by boosting with recombi-
nant gp120 protein, reduced HIV-1 infection by approximately 30%
{1]. These results are encouraging, and indicate that poxviruses may
be used as vectors for HIV-1 subunit vaccines.

However, the efficacy of the RV144 vaccine was only moderate,
suggesting the need to improve either the vaccination regimen or
the poxvirus vector used for delivery. One improvement that may
elicit a more potent protective immune response is the use of a
replication-competent vaccinia virus (VV) vector rather than the
non-replicating canarypox vector.

We previously reported that a heterologous prime-boost
vaccination protocol using a recombinant m8A (rm8A) virus
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(m8 A-pSFJ-JRCSFenv), which expresses the HIV-1JR-CSF envelope
glycoprotein, and a recombinant Sendai virus (rSeV), SeV-JRCSFenv,
elicited both HIV-1 Env-specific humoral and cell-mediated
immune responses [ 2. This may be a promising vaccination proto-
col to protect against HIV-1 infection. The aim of the present study
is to further optimize this regimen.

The replication-competent VV strain, LC16m8, is a smallpox vac-
cine licensed for use in Japan. It has been used in 100,000 people
without any serious adverse effects {3]. LC16m8A (m8A )isa genet-
ically stable derivative of LC16m8, which is safer than the parental
LC16m8 virus but shows the same degree of antigenicity {4]. More-
over, immunization with m8 A protects mice against infection with
virulent VV much more efficiently than the non-replicating VV
strain, MVA {4]. Thus, m8A may be a promising VV vector for use
in vaccines against infectious diseases. .

Three types of promoter (early, intermediate, and late) have
been identified in VV. Antigens that are highly expressed under
the control of a powerful late promoter are generally considered
to be potent inducers of a strong immune response {5}. However,
early promoters appear to elicit stronger cytotoxic T lymphocyte
(CTL) responses [&,7]. In some cases, the propagation of VV in vitro
is suppressed in the presence of high levels of foreign antigen.
Therefore, the balance between antigen expression and viral
propagation in vivo may be crucial for optimal immunogenicity.
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The p7.5 promoter is an early-late promoter that was identified in
1984 and is widely used for the construction of live VV-vectored
vaccines. Because the levels of gene expression driven by the
p7.5 promoter have yet to be optimal, a more potent promoter,
pSFJ1-10, was constructed, which enables the genes of interest to
be expressed at higher levels during both the early and late phases
of the infection cycle [8,9].

Here, we compared the immunogenicity and safety of two
rm8As that express HIV-1 Env under the control of the p7.5 or
pSFJ1-10 promoters. Both were tested in a vaccination protocol that
involved priming with rm8A followed by boosting with rSeV. We
found that one of the vectors preferably induced humoral responses
against HIV-Env, whereas the other primarily induced cellular
immune responses. These findings suggest that it may be possible to
select vaccine vectors that induce favorable immune responses. In
suckling mice, both rm8 A-p7.5-JRCSFenv and rm8 A pSFJ-JRCSFenv
were relatively less virulent than LC16m8A. Our results may
provide important information to develop HIV-1 vaccine for clinical
trials.

2. Materials and methods
2.1. Cells and viruses

The RK13 cell line was cultured in RPMI1640 supplemented
with 10% FCS at 37°C in an atmosphere containing 5% CO,.
BHK, TZM-bl [10,11], 293T and 1929 cell lines were cultured in
DMEM supplemented with 10% FCS. VV LC16m8A, m8AVNC110
that harbors multiple cloning site in the HA gene of LC16m8A
genome, mM8A-pSFJ-JRCSFenv and SeV-JRCSFenv, which express
gp160 of HIV-1 JRCSF, and canarypox virus were described pre-
viously [2].

2.2. Construction of the LC16m8 A expressing JR-CSFenv under
the control of the p7.5 promoter

To construct LC16m8A-p7.5-JRCSFenv, a transfer plasmid that
harbors the HIV-1 JR-CSF env gene downstream of the p7.5 VV pro-
moter was first constructed. The gp160-encoding region was ampli-
fied from pJWJRCSFenvAEcoR1 (the template) by PCR using the fol-
lowing primer pair: JRCSFenv F1 (AGTGGATCCGCCACCATGAGAG-
TGAAGGGGATCAGGAAG; BamH1 site underlined) and JRCSFenvR 1
(TTAGAGCTCTTATAGCAAAGCCCTTTCCAAGCC; Sacl site under-
lined). The VV transcription termination signals (TTTTTNT) within
the env gene sequence were synonymously mutated in vitro using a
mutagenesis kit (Stratagene). The env fragment was then digested
with Sacl and ligated into the pVR1 vector [12], which had
been digested with Sacl and Smal. BHK cells, which had been
infected with canarypox virus, were then co-transfected with the
resultant plasmid and LC16m8A genomic DNA to generate VV
LC16m8A-p7.5-JRCSFenv. HA~ recombinants were selected using
erythrocytes isolated from white leghorn chickens (Sankyo Labo
Service Corporation, Inc.) [13,14]. Expression of HIV-1 Env protein
was examined by Western blotting and plaque immunostaining.

2.3. Western blotting

Vaccinia-infected-RK13 cells were lyzed and the proteins
separated in 10% SDS-PAGE gels. Immunoblot analysis was per-
formed with human antiserum from a HIV-1-infected patient or
monoclonal mouse anti-f actin antibody, followed by alkaline
phosphatase-conjugated anti-human or mouse IgG (Promega). Pro-
teins were visualized using NBT/BCIP (Sigma).

2.4. Plague immunostaining

RK13 cells were cultured in 6-well plates and infected with
recombinant VV (at approximately 100 plaque forming unit
(pfu)/well). The cells were incubated with the virus for 72h
at 33°C, fixed with 2% paraformaldehyde solution, and perme-
abilized by incubating with 0.5% Nonidet P-40 for 1min. The
fixed cells were blocked with 5% skimmed milk (in PBS) for
30 min at room temperature and incubated with the primary anti-
body (HIV-1 infected human serum; diluted 1000-fold) for 1h at
room temperature, followed by the secondary antibody (alkaline
phosphatase-conjugated anti-human IgG (Promega); diluted 2500~
fold). The plaques were then stained with NBT/BCIP.

2.5, Propagation potential of rm8A

To evaluate the propagation potential of LC16m8A and its
recombinants, RK13, 293T and 1929 cells (3 x 10°) were infected
with the viruses at a multiplicity of infection of 3 and then incu-
bated for 24 h at 33 °C. Progeny viruses were harvested and titrated
on a monolayer of RK13 cells in a plaque assay.

2.6. Immunization of mice

Seven-week-old female C57BL/6] mice (CLEA Japan) were
administered with LC16m8A’s recombinants (each at 1 x 107 pfu
by skin scarification). Eight weeks later, the mice were boosted
with rSeV expressing JRCSFenv (4 x 107 cell-infectious unit (CIU))
via intranasal administration (i.n.). Mice were sacrificed at 2 or 8
weeks after the final immunization, and serum and spleen samples
were collected.

2.7. Intracellular cytokine staining (ICS) of splenocytes

Env-specific cellular immune responses were measured using
an ICS assay as described previously [2]. The percentage of IFN-
v*CD107a* T cells within the CD4- or CD8-gated lymphocyte
populations were determined using a FACSCanto flow cytometer
(BD biosciences) and the data were analyzed using Flow]Jo software
(Tree Star).

2.8. Evaluation of neutralizing activity

The HIV-1 neutralizing activity of the mouse sera was measured
in a TZM-bl cell-based assay as previously described {2,15,16].

2.9. Measurement of anti-Env antibody levels by ELISA

The titer and avidity of the anti-HIV-1 Env IgG antibodies in the
mouse sera were determined by ELISA as described previously {2].

2.10. Safety of m8As

To evaluate the safety of the LC16m8A and m8A recombinants,
10wl of a serially diluted solution that contains 103-107 pfu of
rm8As was injected intracerebrally (i.c.) into 10 to 17 of 2~3-day-
old suckling Crlj:CD1 (ICR) mice (Charles River) | 17]. Survival was
monitored daily for 2 weeks and the 50% lethal dose (LD50) was
calculated as described in a figure legend.

2.11. Statistical analysis

Statistical analysis was performed using Student’s t-test
(Microsoft Excel version 11.6.6). P values of <0.05 were
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Fig. 1. Construction of the Env-expressing vaccinia vector, Env expression, and virus propagation. (A). Schematic illustration showing the structure of the hemagglutinin
(HA) gene region within LC16m8A and its derivatives. Arrows indicate the direction of the HA coding frame. (B). Comparison of Env expression in cells infected with m8 A~
pSFJ-JRCSFenv or m8 A-p7.5-JRCSFenv. One microgram of cell lysate derived from RK13 (rabbit kidney epithelial), 293T (human embryonal kidney cell line) and L929 (mouse
fibroblastoid line) cells infected with rVV was subjected to SDS-PAGE and analyzed by Western blotting as described in Section 2. Lanes 1, 4, and 7 represent the cells infected
with LC16m8A, lanes 2, 5, and 8, m8A-pSFJ-JRCSFenv; Lanes 3, 6, and 9, m8 A-p7.5-JRCSFenv. (C) Comparison of the growth potential of the LC16m8A constructs. Viruses
were recovered from RK13, 293T, and L929 cells 24 h after infection and titrated in a plaque assay. Data represent the mean=+SD (n=4).

considered significant. The survival of virus-injected suckling mice
was evaluated using the log-rank test (R version 2.15.1).

3. Results

3.1. Invitro properties of rm8A expressing JR-CSFenv under the
control of different promoters

We previously constructed m8A-pSFJ-JRCSFenv, which
expresses the HIV-1]JR-CSF env gene under the control of the
high expression pSF]J1-10 promoter, and showed that it elicited
HIV-1 Env-specific cellular and humoral responses when used in
combination with the Sendai vector, SeV-JRCSFenv {2}. However,
because an rVV that moderately expresses a foreign gene, but prop-
agates better, might elicit more potent immunological responses,
we constructed recombinant m8A expressing JR-CSFenv under
the control of the p7.5 promoter (which is a moderate driver of
foreign gene expression) (Fig. 1A). We first compared expression of
the Env protein in various cells infected with m8 A-p7.5-JRCSFenv
or m8A-pSFJ-JRCSFenv by Western blotting (Fig. 1B). Regardless
of the cell type, m8A-p7.5-JRCSFenv produced several-fold less
gp120/160 than m8A-pSFJ-JRCSFenv. In addition, the bands
corresponding to gp120/160 expressed by cells infected with
m8A-pSFJ-JRCSFenv were much broader than those expressed by
cells infected with m8A-p7.5-JRCSFenv. Meanwhile, titration of
the progeny virus after one-step growth revealed that the growth

potential of r'VVs in mouse L929 cells are 10 times lower than that
in human 293T cells and rabbit RK13 cells (Fig. 1C). Nevertheless,
m8A-p7.5-JRCSFenv showed growth potential similar to that of
the parental m8A, and significantly higher (6-50-fold) than that of
m8A-pSFJ-JRCSFenv (Fig. 1C). This indicates that overexpression of
the foreign gene suppresses viral propagation.

3.2. Immunogenicity of m8 A-p7.5-JRCSFenv and
m8A-pSFJ-JRCSFenv

We next compared the immunogenicity of m8 A-p7.5-JRCSFenv
and m8A-pSFJ-JRCSFenv by using them to prime mice, which
were then boosted with SeV-JRCSFenv according to the schedule
outlined in Fig. 2A. Splenocytes were isolated, stimulated with
a mixture of HIV-1 consensus subtype B Env (15-mer) peptides
(NIH AIDS reagent program, No. 202/203; corresponding to aa
805-819 and aa 809-823 of gp160), the two most immunogenic
HIV-derived peptides, and then examined by ICS [2]. The percent-
age of HIV-1 Env-specific IFN-y-secreting CD107a*CD8* T cells was
then calculated. A representative gating strategy is shownin Fig, 2B.
Vaccination with m8A-pSFJ-JRCSFenv and m8A-p7.5-JRCSFenv
elicited HIV-1JR-CSF Env-specific CTL responses. Mice primed with
m8A-p7.5-JRCSFenv showed higher levels of HIV-1 Env-specific
[FN vy*CD107a*CD8* T cells than mice primed with m8A-
pSEJ-JRCSFenv (Fig. 2C; 12.8 £1.2% vs. 7.8+ 2.1%; p=0.002). The
proportion of IFN y*CD107a*CD8* T cells in both groups somewhat
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Fig. 2. The p7.5 promoter induces more efficient production of Env-specific CTL responses than the pSF] promoter. (A) Schematic illustration showing the rm8A prime/rSeV
boost vaccination protocol. Seven-week-old female C57BL/6] mice were vaccinated with LC16m8A’s recombinants (16 mice for m8 A-pSFJ-JRCSFenv (group 1) and 10 mice
for m8 A-p7.5-JRCSFenv (group 2); each at 1 x 107 pfu) followed by a boost with SeV-JRCSFenv (4 x 107 CIU). Blood samples and spleen tissues were examined at the indicated
time points. (B) Representative diagram showing FACS analysis of HIV-1 Env-specific IFN~y-secreting CD107a*CD8* T cells derived from vaccinated mouse splenocytes. (C)
Comparison of Env-specific cellular immune response between the two vaccinated groups at 2 and 8 weeks post-SeV boost,

declined at 8 weeks post-boost; however, the difference between
the groups was maintained (p =0.016). We next measured the lev-
els of Env-specific Abs (Fig. 3A) and anti-HIV-1-neutralizing Abs
(Fig. 3B) in mice sera. The levels of anti-HIV-1 Env-specific IgG were
6-7-fold higher in mice immunized with m8 A-pSFJ-JRCSFenv than
in mice immunized with m8A-p7.5-JRCSFenv; this was in sharp
contrast to the observed cellular responses (Fig. 2). The difference
of humoral immunity had already been detected 6 weeks after
rm8 A prime (supplementary data). The uneven of sample numbers
between two groups did not introduce bias into the data, since we
obtained the same result when two groups have the same num-
ber of animals (data not shown). Sera from both groups of mice

showed neutralizing activity against a tier 1 pseudotyped HIV-1
strain, SF162, but only after rSeV boost, and no neutralization activ-
ity against tier 2 HIV-1 had been detected. At both 2 and 8 weeks
post-SeV-JRCSFenv boost, the neutralizing competency of sera
from mice immunized with m8A-pSF}J-JRCSFenv was marginally
stronger than that of mice immunized with m8A-p7.5-JRCSFenv;
however, the difference was not significant (Fig. 3B). We also mea-
sured the avidity of the anti-Env Abs in both groups: no significant
difference was observed (Fig. 3C). Since the m8A-pSFJ-JRCSFenv
prime/SeV-JRCSFenv boost elicited greater HIV-1 Env-specific anti-
body responses, we next asked whether this antibody titer is
maintained over the long-term. We followed a subgroup of mice
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Fig. 3. m8A-pSFJ-JRCSFenv induces stronger humoral immune responses than m8A-p7.5-JRCSFenv (A). Comparison of Env-specific antibody levels. Serum from individual
immunized mice was analyzed in a HIV-1JR-CSF gp160 ELISA as described previously (Ref. {2}). The plates were developed with an HRP-conjugated anti-mouse IgG antibody.
The Env-specific antibody titer was determined by subtracting the background values at 0D450. Data represent the mean =+ SD of the Env-specific antibody titer of all animals
in each group. Env binding antibody titers measured at 2 and 8 weeks post-rSeV boost are shown. (B) Comparison of anti-HIV-1 neutralizing antibody activity in sera from
the two groups of immunized mice. We included more previously accumulated mice samples that subjected to the same immunization procedure as group 1 in Fig. 2. The
50% inhibitory dose (ID50) against an HIV-1 SF162 env-pseudotyped virus was measured using TZM-bl cells (a CD4- and CCR5-expressing derivative of HeLa cells). The
neutralizing activity of mouse sera is shown at 2 and 8 weeks post-SeV boost. (C) Comparison of the avidity of HIV-1 Env-specific anti-sera from the two groups at 2 and 8
weeks post-SeV boost as described previously (Ref. {21). (D) Comparison of HIV-1 Env-specific antibody induction dynamics between the two groups after the rSeV boost.

treated with this vaccination regimen for 28 weeks after the Sendai
virus boost and found that the anti-HIV-1 Env antibody titer was
maintained throughout the observation period (Fig. 3D).

3.3. Safety evaluation of the rm8A in suckling mice

To evaluate the safety of rm8A, we i.c-injected suck-
ling mice with m8A, m8AVNC110, m8A-pSFJ-JRCSFenv, or

m8A-p7.5-JRCSFenv. At 2 weeks post-injection, more of the mice
in the m8 AVNC110- and m8 A-pSF]-JRCSFenv-injected (at 10% and
10° pfu) groups survived compared with those in the m8 A-p7.5-
JRCSFenv-injected group (Fig. 4B-D). LC16m8A, which should
be safe for human use, showed the highest mortality (Fig. 4A).
The median lethal doses (LD50) for each strain were as follows:
LC16m8A, <103 pfu; m8A-p7.5-JRCSFenv, 5.5 x 10° pfu; m8A-
PSFJ-JRCSFenv, 1.4 x 10° pfu; and m8AVNC110, 5.75 x 105 pfu
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(Fig. 4E). These results suggest that both m8A-p7.5-JRCSFenv and
m8A-pSFJ-JRCSFenv may be safer for use in humans.

4. Discussion

An effective HIV-1 vaccine should induce long-lasting humoral
and cellular immunity against HIV-1. A replication-competent VV
would be a good candidate for such a vaccine because recom-
binant VV can induce both antigen-specific CTL and antibody
responses. In addition, the process of viral replication may allow
the repeated presentation of viral antigens, leading to affinity mat-
uration of both antibodies and T cell receptors. LC16m8 A-JRCSFenv
is a replication-competent vaccinia vector that induces HIV-1 Env-
specific cellular and humoral immune responses when used in
combination with a Sendai virus vector [2]. Here, we tried to opti-
mize this vaccination regimen by using HIV-1 Env recombinant
VV vectors expressed under the control of different promoters.
We found that viruses expressed under the control of these dif-
ferent promoters induced different cellular and humoral immune
responses. m8A-pSFJ-JRCSFenv induced increased production of
anti-HIV-1 Env-specific Abs when compared with m8A-p7.5-
JRCSFenv. By contrast, m8 A-p7.5-JRCSFenv induced the production
of more HIV-1 Env-specific IFN-y-secreting CD107a*CD8* T cells.
These results suggest that the induction of Env-specific CTL and
humoral responses may be dependent upon different presentation

pathways and/or different structures of the Env protein. The pep-
tides used to stimulate the splenocytes in the ICS assay correspond
to the 3’ domain of gp41, since previous mapping of the consen-
sus subtype B Env peptide pool identified peptides comprising aa
805-819 and aa 809-823 as the best immunogens {2}. It also indi-
cated that gp41 but not gp120 is a more potent inducer of cellular
immunity when liberated from gp160 than it is when buried in
gp160. The amount of gp41 in m8 A-p7.5-JRCSFenv-infected 293T
and 1929 cells are comparable with that infected with m8 A-pSFJ-
JRCSFenv and even more in m8A-p7.5-JRCSFenv-infected RK13
cells, which is different from the case of gp160/gp120 (Fig. 1B).
Considering the better replication of m8 A-p7.5-JRCSFenv (Fig. 1C),
we may expect that repetitive antigenic stimulation, which favors
CTL induction, strengthens the immunogenicity of gp41 that is
derived from m8A-p7.5-JRCSFenv to induce production of Env-
specific IFN-y*CD107a*CD8* T cells. The relatively lower ratio of
gp41 to gp160/gp120 in m8A-pSFJ-JRCSFenv-infected cells than
m8A-p7.5-JRCSFenv cells indicates that the cleavage of gp160
to gp120 and gp41 was less efficient due to overexpression of
Env.

On the other hand, the efficient production of anti-Env-specific
antibodies may require higher expression of HIV-1 Env in pri-
marily infected cells. The 6-7-fold higher level of the HIV-1 Env
binding antibody titer observed in mice immunized with m8A-
pSFJ-JRCSFenv. is consistent with the higher levels of Env observed
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in m8 A-pSFJ-JRCSFenv-infected cells. The gp160/gp120 isolated
from m8A-pSFJ-JRCSFenv-infected cells migrated more quickly
and showed a broader band in PAGE gels than that from m8 A-p7.5-
JRCSFenv-infected cells. This suggests the incomplete glycosylation
of gp160/gp120 due to an insufficiency of host glycosyltransferases.
Nevertheless, the impact on the ability of m8 A-pSFJ-JRCSFenv to
elicit anti-Env antibody response was minimal. Although m8A-
pSFJ-JRCSFenv induced greater production of Env binding Abs than
m8A-p7.5-JRCSFenv, it did not induce the production of more
potent anti-HIV-1 neutralizing Abs. At 8 weeks after rSeV-JRCSFenv
boost, the average ID50 of serum from mice immunized with m8 A-
pSFJ-JRCSFenv was higher than that of serum from mice immunized
with m8A-p7.5-JRCSFenv; however, the difference was not signif-
icant. This suggests that, in addition to the amount of expressed
Env, the properties of the antigen (for example, the structure of
the exposed epitopes) may also be important for the induction of
neutralizing antibody production. There was no difference in the
avidity of the anti-Env antibodies between the two groups (Fig. 3C),
implicating that the process of affinity maturation was similar.
This suggests that affinity maturation of antibodies is necessary,
but not sufficient to induce the production of potent neutralizing
antibodies. Even so, higher levels of Env binding antibodies may
enable the induction of other types of antiviral immunity, such as
antibody-dependent cellular cytotoxicity and antibody-dependent
cell-mediated virus inhibition.

We recently showed that priming mice with an m8A that
expresses both CD40Lm and Env induces the production of high-
avidity anti-Env antibodies |2]. The above results suggest that it
might be important to incorporate an adjuvant, such as CD40Lm,
within the AIDS vaccine regimen to induce more potent humoral
responses and produce higher levels of neutralizing antibod-
ies.

A successful AIDS vaccine should induce the production
of long-lasting antibodies. Both m8 A-pSF}-JRCSFenv and m8A-
p7.5-JRCSFenv induced the production of long-lasting anti-Env
antibodies when used in the rm8As prime/rSeV boost regimen.
Immunized mice maintained high levels of anti-Env antibodies for
up to 28 weeks (Fig. 3D). This supports our previous report show-
ing that the rm8 As prime/rSeV regimen is a good platform for the
development of an HIV-1 vaccine.

Safety is critical when evaluating vaccines in clinical trials. Both
m8A-pSFJ-JRCSFenv and m8A-p7.5-]JRCSFenv were less virulent
in newborn mice than the parental strain, LC1I6m8A. LC16m8A
was more virulent probably because it contains an intact HA gene.
The LD50 of m8 A-p7.5-JRCSFenv was significantly lower than that
of m8 AVNC110, although their growth potential was similar. This
suggests that the expression of HIV-1 Env in the mouse brain is
harmful. This is supported by the fact that that virulence of m8A-
PSFJ-JRCSFenv is similar to that of m8 AVNC110, despite having a
much lower capacity for replication. Nevertheless, our finding that
recombinant VVs expressing HIV-1 env are safer than LC16m8A
suggests that they may be promising candidates for clinical tri-
als.

In conclusion, the results of the present study suggest that
VV m8A vectors containing different promoters activate different
arms of the immune system. That said, both strains induced long-
lasting CTL and antibody responses and both appear safe enough
for clinical trials. Thus, it is possible to manipulate the immune
response induced by a rational AIDS vaccine by using VV m8As
harboring different promoters.
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Control of Simian Immunodeficiency Virus Replication by Vaccine-
Induced Gag- and Vif-Specific CD8" T Cells
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Shirokanedai, Minato-ku, Tokyo, Japan®; DNAVEC Corporation, Ohkubo, Tsukuba, Ibaraki, Japan®; Department of Molecular Pathogenesis, Medical Research Institute,
Tokyo Medical and Dental University, Kandasurugadai, Chiyoda-ku, Tokyo, Japan®

For development of an effective T cell-based AIDS vaccine, it is critical to define the antigens that elicit the most potent re-
sponses. Recent studies have suggested that Gag-specific and possibly Vif/Nef-specific CD8" T cells can be important in control
of the AIDS virus. Here, we tested whether induction of these CD8" T cells by prophylactic vaccination can result in control of
simian immunodeficiency virus (SIV) replication in Burmese rhesus macaques sharing the major histocompatibility complex
class I (MHC-I) haplotype 90-010-Ie associated with dominant Nef-specific CD8" T-cell responses. In the first group vaccinated
with Gag-expressing vectors (1 = 5 animals), three animals that showed efficient Gag-specific CD8" T-cell responses in the acute
phase postchallenge controlled SIV replication. In the second group vaccinated with Vif- and Nef-expressing vectors (n = 6 ani-
mals), three animals that elicited Vif-specific CD8" T-cell responses in the acute phase showed SIV control, whereas the remain-

ing three with Nef-specific but not Vif-specific CD8* T-cell responses failed to control SIV replication. Analysis of 18 animals,
consisting of seven unvaccinated noncontrollers and the 11 vaccinees described above, revealed that the sum of Gag- and Vif-
specific CD8* T-cell frequencies in the acute phase was inversely correlated with plasma viral loads in the chronic phase. Our
results suggest that replication of the AIDS virus can be controlled by vaccine-induced subdominant Gag/Vif epitope-specific
CD8" T cells, providing a rationale for the induction of Gag- and/or Vif-specific CD8™ T-cell responses by prophylactic AIDS

vaccines.

. _“uman immunodeficiency virus (HIV) infection induces per-
4 Usistent viral replication, leading to AIDS onset in humans.
Virus-specific CD8" T-cell responses play a central role in the
resolution of acute peak viremia (1-4) but mostly fail to contain
viral replication in HIV infection. Prophylactic vaccination result-
ing in more effective CD8" T-cell responses postexposure than
those in natural HIV infections might contribute to HIV control.
Current trials in macaque AIDS models have shown that vaccine
induction of T-cell responses can result in control of postchal-
lenge viral replication (5-10). It is now critical to define the anti-
gens that elicit the most potent responses for development of an
effective T-cell-based AIDS vaccine.

Recent studies have implicated Gag-specific CD8* T cells in
the control of HIV and simian immunodeficiency virus (SIV) rep-
lication (11-16). Several HLA or major histocompatibility com-
plex class I (MHC-I) alleles have been shown to be associated with
lower viral loads (17-25). Virus control associated with some of
these protective MHC-I alleles is attributed to Gag epitope-spe-
cific CD8* T-cell responses (26-29). For instance, CD8" T-cell
responses specific for the HLA-B*57-restricted Gag, 4540 TW10
and HLA-B*27-restricted Gag,es_,7, KK10 epitopes exert strong
suppressive pressure on HIV replication and frequently select for
escape mutations with viral fitness costs, leading to lower viral
loads (27, 30-33). Thus, certain individuals possessing MHC-I
alleles associated with dominant Gag-specific CD8* T-cell re-
sponses could have a greater chance to control HIV replication
than those without these alleles. For those individuals that do not
express these MHC-I alleles, the question arises as to whether
prophylactic vaccination inducing Gag epitope-specific CD8* T-
cell responses might contribute to HIV control. Furthermore, re-
cent studies have shown that CD8* T-cell responses targeting SIV
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antigens other than Gag, such as Mamu-B*08- or Mamu-B*17-
restricted Vif and Nef epitopes, exert strong suppressive pressure
on SIV replication (10, 34, 35).

We previously developed a prophylactic AIDS vaccine consist-
ing of a DNA prime and a boost with a Sendai virus (SeV) vector
expressing SIVmac239 Gag (SeV-Gag) (36). Our trial showed vac-
cine-based control of an SIVmac239 challenge in a group of Bur-
mese rhesus macaques sharing the MHC-I haplotype 90-120-Ia
(5, 37). Unvaccinated animals possessing 90-120-In dominantly
elicited CD8* T-cell responses specific for the Gagyos_15 (IINEE
AADWDL) and the Gag,4;_,40 (SSVDEQIQW) epitopes after SIV
challenge (38, 39). DNA/SeV-Gag-vaccinated 90-120-Ia-positive
macaques showed enhanced Gag,o_,14-specific and Gagyyy_,40-
specific CD8™ T-cell responses in the acute phase after SIV chal-
lenge, resulting in viremia control (37). This implies virus control
by vaccine-based enhancement of Gag-specific CD8™ T-cell re-
sponses in animals possessing MHC-1 alleles associated with dom-
inant Gag CD8" T-cell epitopes. However, we have not defined
the efficacy of prophylactic vaccination inducing Gag-specific
CD8™" T-cell responses against HIV/SIV infection in the hosts pos-
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sessing MHC-I alleles not associated with dominant Gag CD8™
T-cell epitopes.

In the present study, we first examined efficacy of prophylactic
vaccination inducing Gag-specific CD8" T-cell responses against
SIVmac239 challenge in a group of macaques that possess the
90-010-Ie MHC-I haplotype (referred to as E) associated with
dominant Nef-specific CD8" T-cell responses (39, 40). Further-
more, we examined the efficacy of prophylactic vaccination in-
ducing Vif/Nef-specific CD8" T-cell responses in these E* ma-
caques. Our results show SIV control in those vaccinees that
mounted efficient Gag- or Vif-specific CD8" T-cell responses in
the acute phase postchallenge.

MATERIALS AND METHODS

Animal experiments. Animal experiments were carried out in Tsukuba
Primate Research Center, National Institute of Biomedical Innovation
(NIBP), with the help of the Corporation for Production and Research of
Laboratory Primates after approval by the Committee on the Ethics of
Animal Experiments of NIBP (permission number DS21-28 and DS23-
19) under the guideline for animal experiments at NIBP and National
Institute of Infectious Diseases, which is in accordance with the Guide-
lines for Proper Conduct of Animal Experiments established by Science
Council of Japan (http://www.scj.go.jp/ja/info/kohyo/pdifkohyo-20-k16
-2e.pdf). Blood collection, vaccination, and SIV challenge were per-
formed under ketamine anesthesia.

We used Burmese rhesus macaques (Macaca mulatta) possessing the
MHC-I haplotype 90-010-Ie (E) (39, 40). The determination of MHC-I
haplotypes was based on the family study in combination with the refer-
ence strand-mediated conformation analysis of Mamu-A and Mamu-B
genes and detection of major Marmu-A and Mamu-B alleles by cloning the
reverse transcription (RT)-PCR products as described previously (39—
41). Confirmed MHC-I alleles consisting of the MHC-I haplotype E are
Mamu-A1*066:01, Mamu-B*005:02, and Mamu-B*015:04. Unvaccinated
R01-011, R05-007, R08-003, R08-007, R09-011, and R06-038 and Gag-
vaccinated R01-010 and R01-008 used in our previous experiments (39,
42) are included in the present study. At week 1, unvaccinated macaque
R06-038 was intravenously infused with 300 mg of nonspecific immuno-
globulin G purified from uninfected rhesus macaques as described before
(43). All animals were intravenously challenged with 1,000 50% tissue
culture infective doses (TCIDs,) of SIVmac239 (44).

Macaques R01-010, R05-010, R01-008, R08-002, and R08-006 re-
ceived prophylactic DNA prime/SeV-Gag boost vaccination (referred to
as Gag vaccination) (5). The DNA used for the vaccination, cytomegalo-
virus (CMV)-SHIVdEN, was constructed from env-deleted and nef-de-
leted simian-human immunodeficiency virus SHIVMDI4YE (45) molec-
ular clone DNA (SIVGP1) and has the genes encoding SIVmac239 Gag,
Pol, Vif, and Vpx and HIV Tat and Rev. At the DNA vaccination, animals
received 5 mg of CMV-SHIVAEN DNA intramuscularly. Six weeks after
the DNA prime, animals received a single boost intranasally with 6 X 10°
cell infectious units (CIU) of F-deleted replication-defective Sendai virus
(SeV) expressing STVmac239 Gag (SeV-Gag) (46).

Macaques R08-012, R10-012, R10-013, R10-010, R10-011, and R10-
014 received prophylactic DNA prime/SeV-VifNef boost vaccination (re-
ferred to as Vif/Nef vaccination). The Vif-expressing DNA used for the
vaccination, pcDNA-SIVvif-opt, was constructed by introducing an op-
timized SIVmac239 Vif cDNA (GenScript) into pcDNA3.1. The Nef-ex-
pressing DNA used for the vaccination, pcDNA-SIVnef-G2A, has an
SIVmac239 Nef cDNA with a mutation resulting in glycine (G) to alanine
(A) at the 2nd amino acid (aa) in Nef. Animals intramuscularly received 3
mg of Vif-expressing DNA at the first DNA vaccination and 3 mg of
Vif-expressing DNA and 3 mg of Nef-expressing DNA at the second DNA
vaccination. Six weeks after the first DNA prime, animals received a single
boost intranasally with 1 X 10° CIU of F-deleted SeV expressing Vif-opt
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(SeV-Vif) and 1 X 10° CIU of F-deleted SeV expressing Nef-G2A (SeV-
Nef) (47).

Analysis of antigen-specific CD8" T-cell responses. We measured
virus-specific CD8" T-cell frequencies by flow cytometric analysis of
gamma interferon (IFN-y) induction after specific stimulation as de-
scribed previously (48, 49). Autologous herpesvirus papio-immortalized
B-lymphoblastoid cell lines (B-LCLs) were pulsed with each peptide (at a
final concentration of 1 pM) or peptide pools (at a final concentration of
1to 2 uM for each peptide) using panels of overlapping peptides spanning
the entire SIVmac239 Gag, Vif, and Nef amino acid sequences (Sigma-
Aldrich Japan) for 1 h. Peripheral blood mononuclear cells (PBMCs) were
cocultured with these pulsed B-LCLs in the presence of GolgiStop
(monensin; BD) for 6 h. Intracellular IFN-v staining was performed with
a Cytofix/Cytoperm kit (BD) and fluorescein isothiocyanate-conjugated
anti-human CD4 (BD), peridinin chlorophyll protein-conjugated anti-
human CD8 (BD), allophycocyanin (APC)-Cy7-conjugated anti-human
CD3 (BD), and phycoerythrin (PE)-conjugated anti-human IFN-y
monoclonal antibodies (BioLegend). In the flow cytometric analysis,
PBMCs were gated in forward scatter-side scatter dot plots, and B-LCLs
were excluded in this step. Specific T-cell frequencies were calculated by
subtracting nonspecific IFN-vy T-cell frequencies (less than 100 per mil-
lion PBMCs) from those after peptide-specific stimulation. Specific T-cell
frequencies lower than 100 per million PBMCs were considered negative.

Sequencing analysis of plasma viral genomes. Viral RNAs were ex-
tracted using the high pure viral RNA kit (Roche Diagnostics, Tokyo,
Japan) from macaque plasma obtained around 1 year after challenge.
Fragments of cDNAs encoding SIVmac239 Gag, Vif, and Nef were ampli-
fied by nested RT-PCR (25 cycles at the first RT-PCR using the Prime-
Script one-step RT-PCR kit, version 2 [TaKaRa] and 30 cycles at the
second PCR using KOD-Plus, version 2 [Toyobo]) from plasma RNAs
and subjected to direct sequencing by using dye terminator chemistry and
an automated DNA sequencer (Applied Biosystems, Tokyo, Japan) as
described before (39). Predominant nonsynonymous mutations were de-
termined.

Statistical analysis. Statistical analysis was performed with Prism soft-
ware version 4.03, with significance levels set at a P value of <0.050
(GraphPad Software, Inc.). Antigen-specific CD8" T-cell frequencies
were compared by the nonparametric Mann-Whitney U test. Correlation
was analyzed by the Pearson test.

RESULTS

Plasma viral loads after STVmac239 challenge. We used a group
of Burmese rhesus macaques possessing the MHC-I haplotype
90-010-Ie (E). In our previous study (39), unvaccinated E* ma-
caques consistently showed persistent viremia after STVmac239
challenge. CD4" T-cell percentage in PBMCs declined to less than
20% in a year. In the present study, we compared viral loads in
vaccinated animals with those in these unvaccinated animals.

The first vaccine group of five E¥ macaques received a DNA
prime and an SeV-Gag boost vaccination, followed by an
SIVmac239 challenge. Two of these Gag-vaccinated animals failed
to control viral replication, but the remaining three showed SIV
control (Fig. 1). In the latter controllers, plasma viremia became
undetectable in a few months. Macaques R01-008 and R08-006
rapidly controlled SIV replication and maintained high CD4 levels
(Fig. 1).

The second group of six E* macaques received a DNA prime
and an SeV-Vif/Nef boost vaccination, followed by an SIVmac239
challenge. The vaccine protocol first delivered Vif-expressing
DNA, with the second vaccination consisting of Vif-expressing
and Nef-expressing DNAs, and the third with Vif-expressing and
Nef-expressing SeVs (SeV-Vif and SeV-Nef) with intervals of 3
weeks. After SIV challenge, three of these Vif/Nef-vaccinated an-
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FIG 1 Viral loads and percentages of CD4 in Gag-vaccinated animals after
SIVmac239 challenge. (A) Protocol of Gag vaccination and SIVmac239 chal-
lenge. (B) Plasma viral loads (SIV gag RNA copies/ml plasma) determined as
described previously (5). The lower limit of detection is approximately 4 X 10
copies/ml. (C) Percentages of CD4™* T cells in PBMCs. In panels B and C, data
on unvaccinated animals (n = 7) are shown by dotted lines for comparison.
Data on six unvaccinated (39) and two Gag-vaccinated (R01-010 and RO1-
008) (42) animals used in our previous studies are included.

imals failed to control viral replication and had high levels of set-
point viral loads equivalent to those in unvaccinated macaques,
but the remaining three showed SIV control with low levels of
set-point viral loads (geometric mean of viral loads from 6 months
to 1 year in each controller, <2.0 X 10* copies/ml) and main-
tained higher CD4 levels (Fig. 2). Indeed, these six SIV controllers,
consisting of three Gag-vaccinated and three Vif/Nef-vaccinated
animals, showed significantly higher percentages of CD4 at 1 year
than those in the remaining noncontrollers (see Fig. S1 in the
supplemental material).

Gag-, Vif-, and Nef-specific CD8"* T-cell responses in unvac-
cinated and vaccinated animals. We examined Gag-, Vif-, and
Nef-specific CD8" T-cell responses in these animals. Unvacci-
nated macaques showed SIV-specific CD8" T-cell responses
equivalent to those observed in Indian rhesus macaques (8) (Fig.
3). All of these E* unvaccinated macaques elicited immunodom-
inant Nef-specific CD8" T-cell responses, consistent with our
previous study analyzing other E* macaques (50). Gag-specific
and Vif-specific CD8* T-cell responses were detected but were
not immunodominant in these animals.

In contrast, all Gag-vaccinated E* macaques showed Gag-spe-
cific CD8* T-cell responses after the SeV-Gag boost and in the
early phase after SIV challenge (Fig. 3). In these animals, Nef-
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FIG 2 Viral loads and percentages of CD4 in Vif/Nef-vaccinated animals after
SIVmac239 challenge. (A) Protocol of Vif/Nef vaccination and SIVmac239
challenge; (B) plasma viral loads; (C) percentages of CD4" T cells in PBMCs.
In panels B and C, data on unvaccinated animals are shown by dotted lines for
comparison.

specific CD8™ T-cell responses mostly became immunodominant
in the later phase. Importantly, all three animals that controlled
SIV replication showed efficient Gag-specific CD8™ T-cell re-
sponses in the acute phase postchallenge, suggesting a significant
contribution of these Gag-specific CD8" T-cell responses to SIV
control.

In the second group of Vif/Nef-vaccinated E* animals, analysis
of Gag-specific, Vif-specific, and Nef-specific CD8" T-cell re-
sponses showed different patterns of responses between SIV con-
trollers and noncontrollers (¥ig. 3). In the acute phase after SIV
challenge, the noncontrollers (R08-012, R10-012, and R10-013)
elicited immunodominant Nef-specific CD8" T-cell responses,
whereas the controllers (R10-010,R10-011, and R10-014) showed
immunodominant Vif-specific CD8" T-cell responses. This sug-
gests that the Vif-specific CD8" T-cell responses contributed to
primary SIV control. In the chronic phase, Nef-specific CD8*
T-cell responses were immunodominant except for one noncon-
troller, R10-012.

Thus, among 18 E* animals, consisting of seven unvaccinated,
five Gag-vaccinated, and six Vif/Nef-vaccinated animals, three
Gag-vaccinated and three Vif/Nef-vaccinated animals controlled
SIV replication. Comparison between these six SIV controllers
and the remaining 12 noncontrollers showed no significant differ-
ence in the sum of Gag-, Vif-, and Nef-specific CD8"* T-cell fre-
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FIG 3 SIV Gag/Vif/Nef-specific CD8" T-cell responses in macaques. We examined CD8™ T-cell responses specific for Gag, Vif, and Nef 1 week after SeV-Gag
boost (p-B) and approximately 2 weeks, 3 months, 6 months, and 1 year after SIV challenge in unvaccinated (top), Gag-vaccinated (middle), and Vif/Nef-
vaccinated (bottom) animals. We examined only Gag-specific CD8" T-cell responses but not Vif- or Nef-specific ones at week 2 in macaques R01-010 and

R01-008 (indicated by asterisks). ND, not determined.

quencies in the acute phase (data not shown). The sum of Gag-
and Vif-specific CD8™" T-cell frequencies in the acute phase, how-
ever, was significantly higher in the controllers than in the non-
controllers (P = 0.0031 by Mann-Whitney U test) (Fig. 4A).
Indeed, the sum of Gag- and Vif-specific CD8™ T-cell frequencies
in the acute phase was inversely correlated with postpeak plasma
viral loads (P = 0.0268, R = —0.5205 with viral loads at 3 months
[data not shown]; P = 0.0017, R = —0.6849 with viral loads at 1
year [Fig. 4B] by Pearson test). When we focused on seven unvac-
cinated and five Gag-vaccinated animals, three Gag-vaccinated
controllers showed significantly higher Gag-specific CD8 " T-cell
frequencies in the acute phase than the remaining nine noncon-
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trollers (P = 0.0045 by Mann-Whitney U test) (Fig. 4C). Also, in
the analysis of seven unvaccinated and six Vif/Nef-vaccinated an-
imals, Vif-specific CD8" T-cell frequencies in the acute phase
were significantly higher in three Vif/Nef-vaccinated controllers
than in the remaining 10 noncontrollers (P = 0.0140 by Mann-
Whitney U test) (Fig. 413). These results suggest that efficient Gag-
or Vif-specific CD8* T-cell responses in the acute phase can result
in SIV control.

Viral gag, vif, and nef mutations in vaccinated animals. We
then tried to define the CD8™ T-cell responses that might be con-
tributing to the vaccine-based SIV control, although we were not
able to map all of the CD8" T-cell epitopes because of sample
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FIG 4 Comparison of Gag/Vif-specific CD8" T-cell frequencies in the acute
phase between SIV controllers (C) and noncontrollers (NC). Data on Gag- and
Vif-specific CD8™" T-cell frequencies around week 2 postchallenge, which are
shown in Fig. 3, were used. In macaques R01-011 and R05-010, samples at
week 2 were unavailable, and data at week 12 were used. (A) Comparison of the
sum of Gag- and Vif-specific CD8™" T-cell frequencies (Gag/Vif-specific CD8™
T-cell frequencies) between the controllers (three Gag-vaccinated and three
Vif/Nef-vaccinated animals) and the noncontrollers in seven unvaccinated,
five Gag-vaccinated, and six Vif/Nef-vaccinated animals (n = 18). The con-
trollers showed significantly higher frequencies than the noncontrollers (P =
0.0031 by Mann-Whitney U test). (B) Correlation analysis of Gag/Vif-specific
CD8™ T-cell frequencies in the acute phase with plasma viral loads at 1 year.
The frequencies were inversely correlated with the viral loads (P = 0.0017,R =
—0.6849 by Pearson test). (C) Comparison of Gag-specific CD8* T-cell fre-
quencies in seven unvaccinated and five Gag-vaccinated animals (n = 12). The
three Gag-vaccinated controllers showed significantly higher frequencies than
the noncontrollers (P = 0.0045 by Mann-Whitney U test). (D) Comparison of
Vif-specific CD8" T-cell frequencies in seven unvaccinated and six Vif/Nef-
vaccinated animals (1 = 13). The three Vif/Nef-vaccinated controllers showed
significantly higher frequencies than the noncontrollers (P = 0.0140 by Mann-
Whitney U test).

limitation. Among three Gag-vaccinated controllers, R01-008,
R08-002, and R08-006, our previous study found Gagsg,_s5,-spe-
cific CD8™ T-cell responses at week 5 in macaque R01-008 (5).
This animal showed rapid selection of a mutation leading to an
isoleucine (I)-to-threonine (T) change at the 377th aa (I377T) in
SIV Gag, which results in escape from Gags,_sq,-specific CD8™
T-cell recognition. This suggests that these Gag,s;._sg;-specific
CD8" T-cell responses may have played an important role in SIV
control. Analysis in the present study found Gagags_ 400-specific
CD8™ T-cell responses in the acute phase with rapid selection of a
mutation leading to an I-to-T change at the 391st aa (I391T) in
Gag in macaque R08-006 (Fig. 5A). We confirmed that this [391T
substitution results in escape from Gagsgs_4q0-specific CD8™ T-
cell recognition (data not shown), suggesting a contribution of
these Gagags. ago-specific CD8™ T-cell responses to the control of
SIV. Macaque R08-002 mounted Gag,,;_,q,-specific CD8™ T-cell
responses but showed no gag mutation in the early phase. None of
the noncontrollers selected gag mutations at week 5 or 6.

Among three Vif/Nef-vaccinated controllers, R10-010, R10-
011, and R10-014 (Fig. 5B), macaque R10-010 mounted Vifg;_,¢-
specific CD8™" T-cell responses in the acute phase that resulted in
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the rapid selection of a mutation leading to a histidine (H)-to-
tyrosine (Y) change at the 66th aa (H66Y) in Vif. Macaque R10-
011 mounted Vif;,5_,4,-specific and Vif}5,_,,5-specific CD8" T-
cell responses in the acute phase with rapid selection of a mutation
leading to a Y-to-cysteine (C} change at the 143rd aa (Y143C) in
Vif. We confirmed that this Y143C substitution results in escape
from Vif 5,_ysg-specific CD8" T-cell recognition (data not
shown). None of the noncontrollers selected vif mutations at week
5 or 6. These suggest that Vifys_;¢-specific and Vif,,,_; ,5-specific
CD8™ T-cell responses contributed to SIV control in macaques
R10-010 and R10-011, respectively. Macaque R10-014 mounted
Vif, 5.1 52-specific CD8™ T-cell responses but showed no vif mu-
tation in the early phase.

In E" macaques, CD8" T-cell responses specific for Nef,g 4
and Nef,,, ;35 regions were frequently observed (see Fig. S2 in the
supplemental material). In all three Gag-vaccinated controllers,
we confirmed both Nefys_g¢-specific and Nef,,,_,35-specific
CD8™" T-cell responses in the chronic phase, although we did not
have available samples for analysis of these responses in the acute
phase. In five Vif/Nef-vaccinated animals, we confirmed Nef,;_ ¢4~
specific CD8™" T-cell responses in the acute phase, followed by
Nef,o,_;35-specific CD8" T-cell induction. Nefsq_¢c-specific
CD8™ T-cell responses became undetectable at week 12 in all the
three noncontrollers but were maintained at detectable levels in
controllers R10-010 and R10-011.

Further mapping defined the Nef,s s, CD8" T-cell epitope.
Mutations in the Nef,;_s;-coding region were selected after 1 year
in five of seven unvaccinated E* animals. Rapid selection of mu-
tations at this Nef,;_s;-coding region in a month after SIV chal-
lenge was observed in both Gag-vaccinated noncontrollers and all
three Vif/Nef-vaccinated noncontrollers (Fig. 5C). In contrast,
out of six Gag-vaccinated or Vif/Nef-vaccinated controllers, only
one animal (R10-010) rapidly selected a mutation in this region.
We confirmed that the leucine (L)-to-proline (P) substitution at
the 53rd aa (L53P) in Nef results in escape from Nef,5_s,-specific
CD8" T-cell recognition (data not shown). Thus, Nef,s_s;-spe-
cific CD8" T-cell responses may have exerted strong suppressive
pressure on SIV replication in the acute phase in Gag-vaccinated
or Vif/Nef-vaccinated noncontrollers.

DISCUSSION

In this study, we examined efficacy of prophylactic DNA-prime/
SeV-boost vaccines against SITVmac239 challenge in a group of
Burmese rhesus macaques sharing the MHC-I haplotype E. Our
previous study indicated that unvaccinated E* animals show typ-
ical courses of SIV infection and AIDS progression (39). However,
three of five Gag-vaccinated and three of six Vif/Nef-vaccinated
E* animals controlled SIV replication, indicating a possibility of
virus control by prophylactic vaccination.

Unvaccinated E* animals showed high-frequency Nef-specific
CD8™ T-cell responses, particularly specific for the Nefyg_¢s and
Nef,,_155 regions, after SIVmac239 challenge. The Nef,;_s; re-
gion is a candidate for a CD8" T-cell target associated with
MHC-I haplotype E, and the NefL53P mutation resulting in es-
cape from Nef,, s,-specific CD8" T-cell recognition was often
selected in E* animals. These results imply suppressive pressure
on SIV replication by Nef-specific CD8" T-cell responses in ma-
caques sharing this MHC-I haplotype.

Gag-vaccinated animals elicited detectable Gag-specific CD8™
T-cell responses after SeV-Gag boost. All three Gag-vaccinated
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R10-011 Vif113-132 & 134-148 Y143C
R10-014 Vif113-132 none
Nef45-53 Nef45-53
GLDKGLSSL GLDKGLSSL
Unvaccinated
R01-011 1mo --——--——- F R08-011 imo -——————-—-
6mo -S------- 6mMO e P
1yr ———-C---- 1yr  --G---—- P
R05-007 1Mo ~-mmeeeee R06-038 1mo  ——wemm———
6mo  —---——--- 6mo ------——--
1yr tyr e
R08-003 1mo -———-—---- R09-005 1Tmo  ———emmmee
6mo --G------ 6mo --G------
Tyr e R 1yr oG H
R08-007 1mo -——————-—-
6mo -S------—-
1yr B R
Gag-vaccinated
non-controllers controllers
R01-010 1mo ———=-me= P R01-008 imo -————————-
6mo --G----- P R08-002 1mo -—---e-me-
1yr —=Gm—— - 6mo E---~----
R05-010 imo E-------—- 1yr E————————
6mo E-G------ R08-006 1mo ~—-e————-
1yr G 6mo -
1yr -
Vif/Nef-vaccinated
non-controllers controliers
R08-012 imo -—-——---—- P R10-010 tmo A-————-—-
6mo —---——- P 6mo E------- P
R10-012 1mo E----S--- 1yr E-——————-
6mo ----D---P R10-011 1tmo  —------—-
Tyr ————- L--P 6mo -------—-
R10-013 imo -—--——-—- R Tyr e
6mo  -----—-- R R10-014 1tmo -—---—-—----
1yr =G ———— 6mo -—------—-
Tyr e

FIG 5 Predominant nonsynonymous mutations in CD8* T-cell target-coding regions. (A) Gag target regions for CD8™ T-cell responses in the acute phase in
Gag-vaccinated controllers. Macaque R01-008 induced Gagss,._55,-specific CD8™ T-cell responses and selected 1377T mutation in 5 weeks as described before
(5). (B) Vif target regions for CD8" T-cell responses in the acute phase in Vif/Nef-vaccinated controllers. (C) Nonsynonymous mutations in Nef,s_s; CD8"
T-cell epitope-coding regions of viral cDNAs at 1 month (1 mo), 6 months (6 mo), and 1 year (1 yr). Amino acid substitutions are shown.

controllers showed efficient Gag-specific CD8" T-cell responses
in the acute phase after SIV challenge. In particular, macaques
R01-008 and R08-006 showed rapid SIV control without detect-
able plasma viremia after week 5. Gagsg;_s5,-specific CD8 " T-cell
responses with rapid selection of a Gagag;_ss,-specific CD8" T-
cell escape mutation, I1377T, were observed in R01-008, whereas
Gagsgs._s00-Specific responses were associated with an escape mu-
tation, I391T, in R08-006. Our results suggest that the prophylac-
tic Gag vaccination results in the efficient induction of these Gag-
specific CD8" T-cell responses in the acute phase, which then
played an important role in the control of primary SIV replication.
The MHC-I haplotypes other than E (see Table SI in the supple-
mental material) may be associated with these effective Gag
epitope-specific CD8" T-cell responses. Nef-specific CD8 " T-cell
responses became predominant after 3 or 6 months.
Vif/Nef-vaccinated animals induced Vif- or Nef-specific CD8™*
T-cell responses in the acute phase after SIVmac239 challenge.

430 jviasm.org

Before challenge, detectable Vif-specific CD8" T-cell responses
were elicited after SeV-Vif/Nef boost only in macaque R10-011. It
should be noted, however, that all three Vif/Nef-vaccinated con-
trollers showed high-frequency Vif-specific CD8" T-cell re-
sponses in the acute phase, while the three noncontrollers exhib-
ited Nef-specific CD8" T-cell responses. In particular, our results
implicate Vifys_¢-specific and Vif] s, ,5-specific CD8" T-cell re-
sponses in the control of primary viral replication in macaques
R10-010 and R10-011, respectively. These CD8™ T-cell responses
may be associated with the second MHC-I haplotypes (see Table
S1 in the supplemental material). Even Vif/Nef-vaccinated con-
trollers inducing Vif-specific CD8* T-cell responses in the acute
phase showed predominant Nef-specific CD8* T-cell responses in
the chronic phase.

Vif/Nef-vaccinated noncontrollers showed no Vif-specific
CD8™ T-cell responses but mounted Nef-specific CD8* T-cell
responses in the acute phase. All three noncontrollers rapidly se-
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lected nef mutations in the Nef,, 5;-coding regions, and Nef,5_s4-
specific CD8 ™" T-cell responses were undetectable after 3 months
postchallenge. Interestingly, both Gag-vaccinated noncontrollers
also showed rapid selection of nef mutations in the Nef,s_s5-cod-
ing regions. We speculate that, in these Gag-vaccinated or Vif/
Nef-vaccinated noncontrollers, dominant Nef,s_g;-specific CD8 ™"
T-cell responses may have exerted strong suppressive pressure on
primary SIV replication without the help of other vaccine antigen-
specific, effective CD8* T-cell responses, leading to failure in virus
control with rapid selection of escape mutations. Unvaccinated
macaque R08-007 elicited Gag- and Vif-specific as well as Nef-
specific CD8" T-cell responses in the acute phase but failed to
control SIV replication. The high magnitude of responses may
reflect the highest peak viral loads (1.4 X 107 copies/ml) at day 10
in this animal among the unvaccinated. These naive-derived Gag-
and Vif-specific CD8" T-cell responses may have been less func-
tional and insufficient for SIV control. In contrast, in vaccinated
controllers, prophylactic vaccination resulted in effective Gag- or
Vif-specific CD8" T-cell responses postexposure, leading to pri-
mary SIV control, followed by Nef-specific CD8 " T-cell responses
possibly contributing to maintenance of virus control. Induction
of CD8” T-cell responses specific for dominant Nef epitopes by
prophylactic vaccination may not be good for SIV control in E*
animals. Several studies have indicated contribution of subdomi-
nant CD8" T-cell responses to HIV or SIV suppression (51-53).
Thus, induction of CD8" T-cell responses specific for subdomi-
nant but not dominant epitopes by prophylactic vaccination may
be a promising AIDS vaccine strategy resulting in effective,
broader CD8™ T-cell responses postexposure.

In summary, this study demonstrates SIV control by prophy-
lactic vaccination in hosts possessing MHC-I alleles associated
with dominant non-Gag antigen-specific CD8"* T-cell responses.
Our results suggest that prophylactic vaccination resulting in ef-
fective subdominant Gag/Vif epitope-specific CD8" T-cell re-
sponses in the acute phase postexposure can lead to primary HIV
control. This may imply a rationale of altering the hierarchy of
postexposure CD8™ T-cell immunodominance toward HIV con-
trol.
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