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*3, *4, and 1.8-kb species) among 5R/low expressors and high
expressors. Since these transcripts do not contain the RRE region,
it is clear that they are generated via splicing downstream of SAL.
The abundance of these transcripts (*3, *4, and 1.8-kb species) for
5R and low expressors may also imply that the overall splicing
efficiency of these clones is higher than that of high expressors.
Efficient splicing at SA sites may compete with Rev function, and
equilibrium between the strength of splicing acceptors and Rev
function for the nuclear export of Rev-dependent mRNAs is im-
portant for virus replication (28). Thus, increased splicing for 5R
and low expressors may obstruct the function of Rev, which re-
sults in a decrease in the Rev-dependent expression of late proteins
from RRE-containing transcripts. On the other hand, while the
amounts of 1.8-kb mRNAs of 5R and low expressors were larger
than those of high expressors, the expression levels of viral early
proteins were similar among 5R and its variants. A high concen-
tration of Rev was previously shown to inhibit the translation
from various RNAs (47). It is possible that the expression of viral
early proteins may be regulated at an optimal level for viral repli-
cation. Alternatively, the translation efficiency of ~40 mRNA iso-
forms synthesized by alternative splicing events may vary due to
differences in their noncoding sequences and/or structures. Viral
mRNA species within 1.8-kb and 4-kb RNAs were shown to be
altered by mutations that change splicing efficiency at SA1 or the
structure of SLSA1 (27, 45, 48). Viral mRNA isoforms with a low
translation efficiency, even if present in abundance, may not ex-
press a high level of their corresponding proteins.

vif mRNA expression is strongly influenced by splicing effi-
ciency at the SAI site. The regulation of splicing at SA1 is compli-
cated and is determined by various elements, including three dif-
ferent exonic splicing enhancers (ESE-Vif and ESE-M1 [Fig. 9A]
and ESE-M2 [nt 4956 to 4962 in NL4-3]), a suboptimal D2 splic-
ing site (nt 4960 to 4970 in NL4-3), a GGGG silencer (nt 4968 to
4971 in NL4-3), and a G run (G,-1, nt 5034 to 5038 in NL4-3),
which are located within the region from SA1 to just upstream of
the vif start codon (nt 5041 in NL4-3) (27, 28, 48). The proviral
clone 5R was constructed by introducing SIVmac239 vif into the
downstream region of the pol open reading frame in the NL4-3
genome (Fig. 1 and 9B) (34). As aresult, while the poland vif genes
of NL4-3 partially overlap, those of 5R do not. Since splicing effi-
ciency is dependent on the sequence around the splice sites and
their distance from the regulatory elements, the insertion of SIV-
mac239 vif into NL4-3 may have changed the splicing event at
SA1l. Indeed, 5R produced abundant amounts of the vif transcript
(the *1 species in Fig. 9). The increase in vif mRNA was previously
shown to decrease virion production, and the proportion between
unspliced and spliced mRNAs has been suggested to be important
for virion production (27). In agreement with this finding, we
found that the virion production level from 293T cells transfected
with 5R was lower than that from cells transfected with NL4-3
(data not shown). The decrease in vif transcript (*1 species) ex-
pression for high expressors may have caused the increase in vi-
rion production.

The splicing balance of viral mRNAs has been suggested to
have biologically significant effects on viral replication (4, 9-11).
Accumulating evidence has shown that HIV-1 gene expression
processes, composed of transcription, poly(A) tailing, splicing,
mRNA export, and subsequent translation, are mutually affected
and coupled, even though these processes are biochemically dis-
tinguished (1, 2, 49). In addition, various elements within the
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HIV-1 genome and a number of virus/host factors have been
shown to be involved in HIV-1 gene expression (3, 4, 9-11, 25-30,
50-55). The virological importance of the nucleotide sequence in
the SAlprox is evident from the increase or decrease in viral rep-
lication caused by naturally occurring single-nucleotide changes.
Further studies are needed to elucidate the molecular mechanism
underlying the modulation of overall HIV-1 gene expression gen-
erated by single-nucleotide changes in the SAlprox.
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ABSTRACT

CD4* T-cell responses are crucial for effective antibody and CD8" T-cell induction following virus infection. However, virus-
specific CD4™" T cells can be preferential targets for human immunodeficiency virus (HIV) infection. HIV-specific CD4* T-cell
induction by vaccination may thus result in enhancement of virus replication following infection. In the present study, we show
that vaccine-elicited CD4" T cells expressing CD107a are relatively resistant to depletion in a macaque AIDS model. Comparison
of virus-specific CD107a, macrophage inflammatory protein-1f, gamma interferon, tumor necrosis factor alpha, and interleu-
kin-2 responses in CD4* T cells of vaccinated macaques prechallenge and 1 week postchallenge showed a significant reduction in
the CD107a~ but not the CD107a™ subset after virus exposure. Those vaccinees that failed to control viremia showed a more
marked reduction and exhibited significantly higher viral loads at week 1 than unvaccinated animals. Our results indicate that
vaccine-induced CD107a~ CD4™ T cells are depleted following virus infection, suggesting a rationale for avoiding virus-specific

CD107a~ CD4" T-cell induction in HIV vaccine design.

IMPORTANCE

Induction of effective antibody and/or CD8* T-cell responses is a principal vaccine strategy against human immunodeficiency
virus (HIV) infection. CD4™ T-cell responses are crucial for effective antibody and CD8* T-cell induction. However, virus-spe-
cific CD4™ T cells can be preferential targets for HIV infection. Here, we show that vaccine-induced virus-specific CD107a~
CD4™ T cells are largely depleted following infection in a macaque AIDS model. While CD4* T-cell responses are important in
viral control, our results indicate that virus-specific CD107a~ CD4" T-cell induction by vaccination may not lead to efficient
CD4" T-cell responses following infection but rather be detrimental and accelerate viral replication in the acute phase. This sug-
gests that HIV vaccine design should avoid virus-specific CD107a~ CD4" T-cell induction. Conversely, this study found that
vaccine-induced CD107a™ CD4™ T cells are relatively resistant to depletion following virus challenge, implying that induction of

these cells may be an alternative approach toward HIV control.

rus-specific CD8* T-cell responses play a central role in the
control of human immunodeficiency virus (HIV) replication
(1-6). CD8™ T cells, via their T-cell receptor, specifically recog-
nize viral epitopes bound to human leukocyte antigen (HLA) class
I molecules on the surface of virus-infected cells. Previous studies
on HIV-infected individuals have shown an association of several
HLA genotypes with delayed AIDS progression, implying possible
HIV control by effective CD8™ T-cell responses (7-10). Current
vaccine trials in macaque AIDS models with simian immunodefi-
ciency virus (SIV) infection have shown that induction of effective
CD8™" T-cell responses can result in reduction of postchallenge
viral loads (11-16). Furthermore, cumulative studies have shown
protection of SIV challenge by passive immunization with neu-
tralizing antibody in macaques, suggesting the possibility of HIV
protection by vaccine-induced effective antibodies (17-19).

Virus-specific CD4 ™ T-cell responses are crucial for induction
of effective CD8 ™" T-cell and antibody responses (20-28). CD4* T
cells, however, are targets for HIV, which can be an obstacle to
potent virus-specific CD4™ T-cell responses following HIV infec-
tion (29-31). Because HIV preferentially infects HIV-specific
CD4™ T cells, induction of HIV-specific memory CD4 " T cells by
vaccination may increase the target cell pool for HIV infection and
thus enhance viral replication (32).

Our previous trial of a prophylactic vaccine regimen of a DNA
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prime and a boost with a Sendai virus (SeV) vector expressing SIV
Gag (SeV-Gag) showed control of an SIV challenge in some vac-
cinated rhesus macaques (11). Vaccine-induced Gag-specific
CD8" T cells were shown to be responsible for this SIV control
(33, 34). However, the effect of SIV-specific CD4 ¥ T-cell induction
by vaccination on postchallenge virus replication remains unclear.
Virus-specific CD4 ™" T cells can be divided into multiple subsets pro-
ducing a variety of cytokines following viral antigen stimulation (35,
36). In the present study, we examined changes in multiple subsets of
vaccine-induced CD4 ™" T cells following SIV infection in a macaque
AIDS model. Comparison of SIV-specific CD4 " T-cell profiles pre-
and postchallenge indicated that vaccine-elicited CD4" T cells ex-
pressing CD107a are relatively resistant to depletion whereas virus-
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specific CD107a™ CD4™ T cells are largely depleted in the postchal-
lenge acute phase of infection. These results imply that induction of
the latter CD4 ™" T-cell subset by vaccination may result in enhanced
HIV replication after virus exposure.

MATERIALS AND METHODS

Samples. The present study used frozen peripheral blood mononuclear
cell (PBMC) samples derived from 18 vaccinated and 21 unvaccinated
Burmese rhesus macaques (Macaca mulatta) for analysis of SIV-specific
CD4* T-cell responses. Our previous SIVmac239 challenge experiments
using these animals (34, 37-40) were conducted at the Tsukuba Primate
Research Center, National Institute of Biomedical Innovation (NIBP),
and the Institute for Virus Research, Kyoto University (IVRKU), with the
help of the Corporation for Production and Research of Laboratory Pri-
mates. This study was approved by the Committec on the Ethics of Animal
Experiments of NIBP and IVRKU under the guidelines for animal exper-
iments at NIBP, IVRKU, and the National Institute of Infectious Diseases,
which is in accordance with the Guidelines for Proper Conduct of Animal
Experiments established by the Science Council of Japan (http://www.scj
.go.jp/ja/info/kohyo/pdf/kohyo-20-k16-2¢.pdf).

Vaccinated animals received a DNA prime and an SeV-Gag boost. The
DNA used for the vaccination, CMV-SHIVAEN DNA (11), was con-
structed from an env- and nef-deleted simian-human immunodeficiency
virus (SHIV) molecular clone DNA (SIVGP1) and has the genes encoding
SIVmac239 Gag, Pol, Vif, Vpx, and a part of Vpr and HIV Tat and Rev.
Animals received 5 mg of CMV-SHIVAEN DNA intramuscularly. Six
weeks after the DNA prime, animals received a single boost intranasally
with 1 X 10® cell infectious units (CIU) of replication-competent SeV-
Gag (macaques R02-003, R02-012, R02-005, and R02-001) or 6 X 10
CIU of replication-defective F-deleted SeV-Gag (1 = 14) (11, 41). There
were no differences observed for CD4" T-cell markers between animals
receiving replication-competent boosts and those receiving replication-
defective boosts. Vaccinated (3 months postboost) and unvaccinated an-
imals were intravenously challenged with 1,000 50% tissue culture infec-
tive doses (TCIDs,) of SIVmac239 (42). In our previous study (34, 38), the
geometric mean of viral loads at 6 months was approximately 2.5 X 10°
copies/mland the “M — 2 X SD” value (where M is the mean and SD is the
standard deviation) of log-transformed viral loads was 3.2 (corresponding
to 1.6 X 10” copies/ml) in unvaccinated animals possessing major histo-
compatibility complex class 1 (MHC-I) haplotype 90-120-Ie, which ex-
hibit a typical course of SIV infection in Burmese rhesus macaques. Ani-
mals whose viral load at 6 months was less than 1.6 X 10° copies/ml were
considered SIV controllers. The 21 unvaccinated animals included 17
with persistent viremia and 4 with undetectable or marginal levels of set-
point plasma viral loads (see Fig. $1 in the supplemental material).

Analysis of SIV-specific CD4"* T-cell responses. We examined SIV-
specific induction of CD107a, macrophage inflammatory protein-1(3
(MIP-1B), gamma interferon (IFN-v), tumor necrosis factor alpha (TNEF-
a), and interleukin-2 (IL-2) in CD4™" T cells as described previously (38,
43, 44). In brief, 5 X 10° PBMCs were prestimulated with 5 pg/ml immo-
bilized anti-human CD28 (BD) and 5 pg/ml immobilized anti-human
CD49d (Biolegend) in 96-well U-bottom plates at 37°C for 12 h, followed
by coculture at 37°C for 6 h in the presence of Alexa Fluor 647-conjugated
anti-human CD107a (Biolegend) with 1 X 10° autologous herpesvirus
papio-immortalized B-lymphoblastoid cell lines (B-LCLs) infected with
vesicular stomatitis virus G protein (VSV-G)-pseudotyped SIVGP1 for
SIV-specific stimulation or mock B-LCLs for nonspecific stimulation.
Monensin (final concentration, 0.7 pg/ml; BD) and brefeldin A (final
concentration, 10 pg/ml; Sigma-Aldrich) were added to the culture 1 h
after the start of coculture. The pseudotyped virus was obtained by
cotransfection of 293T cells with a vesicular stomatitis virus G protein
expression plasmid and an SIVGP1 DNA. SIV Gag capsid p27-positive
cells detected by immunostaining were 5 to 10% of B-LCLs infected with
VSV-G-pseudotyped SIVGP1. Immunostaining was performed using the
Fix & Perm fixation and permeabilization kit (Invitrogen) and the follow-
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ing monoclonal antibodies: APC-Cy7-conjugated anti-nonhuman pri-
mate CD3 (BD), phycoerythrin (PE)-Texas Red-conjugated anti-human
CD4 (Invitrogen), Alexa Fluor 700-conjugated anti-human CD8 (BD),
PE-Cy7-conjugated anti-human IFN-y (eBioscience), Pacific Blue-con-
jugated anti-human TNF-« (Biolegend), peridinin chlorophyll protein
(PerCP)-Cy5.5-conjugated anti-human IL-2 (Biolegend), and PE-conju-
gated anti-human MIP-18 (BD). Dead cells were stained using the Live/
Dead Fixable Dead Cell stain kit (Invitrogen).

Flow cytometric analysis was performed using FlowJo. Each subset
positive for the marker of interest was determined in the dot plot gated by
CD4™ T cells as shown in Fig. 52 in the supplemental material. The fre-
quency of each subset of SIV-specific CD4™ T cells was calculated by
subtracting the frequency after nonspecific stimulation from that after
SIV-specific stimulation. As negative controls, we examined SIV-specific
CD107a™, MIP-18", IFN-y™, TNF-a*, and [L-2" CD4™ T-cell frequen-
cies in naive PBMCs derived from vaccinated (preprime; n = 13) and
unvaccinated (prechallenge; n = 16) animals. The “M -+ 2 X SD” values of
these negative controls, 0.031%, 0.034%, 0.028%, 0.017%, and 0.010%,
were considered cutoff values for SIV-specific CD107a™, MIP-1p ™", IEN-
v, TNF-a*, and IL-2* CD4" T-cell frequencies, respectively. SIV-spe-
cific CD4 ™" T-cell frequencies less than 0.01% are shown as 0.01% in the
figures, while statistical analyses were performed by using data in which
values below the cutoff were set as zero. SIV-specific CD107a™ CD4™
T-cell frequencies, shown in Fig, 1C, were calculated as the sum of the
frequencies of CD107a~ MIP-1B", IEN-y*, TNF-a ™, or IL-2* CD4™ T
cells determined by Boolean gating. In our previous analyses (41, 45),
SIV-specific IEN-y* CD4" T-cell frequencies peaked 1 week after SeV-
Gagboostand were largely reduced 1 week after the peak, followed by only
agradual, <2-fold decrease for a few months until challenge. In this study,
SIV-specific stimulation was performed by coculture with the E/T (effec-
tor [PBMCs]/target [B-LCLs infected with VSV-G-pseudotyped SIVGP1])
ratio of 5:1, while stimulation with the E/T ratio of 2.5:1 was confirmed to
induce similar levels of responses, implying that the E/T ratio of 5:1 is suffi-
cient for the stimulation.

Statistical analysis. Differences in two sets of measurements were ex-
amined by the Wilcoxon signed-rank test or the Mann-Whitney U test.
Multiple comparisons of measurements were performed by Friedman’s
test and Wilcoxon signed-rank test with Bonferroni’s multiple-compari-
son procedure or the Kruskal-Wallis test and Mann-Whitney U test with
Bonferroni’s multiple-comparison procedure. Correlation between T-cell
frequencies and viral loads was analyzed by the Spearman’s test. We set
significance levels of all statistical tests at P values of <0.05.

RESULTS

SIV-specific CD4" T-cell responses pre- and postchallenge in
vaccinated macaques. In the present study, we analyzed SIV-spe-
cific T-cell responses using frozen PBMC samples derived from 18
vaccinated and 21 unvaccinated Burmese rhesus macaques (see
Fig. S1 in the supplemental material). These animals had been
used in our previous SIVmac239 challenge experiments (34, 37—
40). Vaccinated animals received a DNA prime and an SeV-Gag
boost, followed by an SIVmac239 challenge at 3 months post-
boost. Eleven vaccinated animals, referred to as vaccinated con-
trollers (v-C), showed undetectable or marginal levels of set-point
plasma viral loads, whereas the remaining seven, referred to as
vaccinated noncontrollers (v-NC), failed to control SIV replica-
tion (see Fig. S1 in the supplemental material).

We examined SIV-specific CD4™" T-cell responses by measure-
ment of five markers, CD107a, MIP-1, IFN-vy, TNF-a, and IL-2,
after SIV-specific stimulation (35, 36, 38, 44). We used an env- and
nef-deleted SHIV molecular clone DNA, SIVGP1, to measure the
frequencies of T cells responding to SIVGP1-transduced cells (re-
ferred to as SIV-specific T cells) (11, 33). The DNA used for the
prime and SIVGP1 both encode SIVmac239 Gag, Pol, Vif, Vpx,
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FIG 1 SIV-specific CD4™" T-cell responses before and after SIV challenge in vaccinated macaques. (A) SIV-specific CD107a™, MIP-18*, IEN-y*, TNF-a.*, and
IL-2" frequencies in total CD4™ T cells at 1 or 2 months prechallenge (left panel [n = 17; samples of macaque R01-008 prechallenge were unavailable]) and 1
week postchallenge (right panel [n = 18]). TNF-a™ frequencies were significantly higher than those of any of the other four markers prechallenge, whereas
CD107a™ frequencies were significantly higher than those of TNF-a™ and IL-2" at week 1 postchallenge (Friedman’s test and Wilcoxon signed-rank test). (B)
Comparison of SIV-specific CD107a™, MIP-18*, IFN-y*, INF-a ™, and IL-2* CD4 " T-cell frequencies prechallenge (pre) and at week 1 (wk 1) in vaccinated
animals (n = 17). Cutoff values are indicated by dotted lines (see Materials and Methods). No significant change in SIV-specific CD107a™ CD4" T-cell
frequencies was observed, whereas other subset frequencies were significantly reduced following challenge (MIP-18*, P = 0.0005; IFN-y™, P = 0.0004; TNF-c: ¥,
P = 0.0009; IL-2, P = 0.0005 by Wilcoxon signed-rank test). (C) Comparison of SIV-specific CD107a~ CD4* T-cell frequencies prechallenge and 1 week postchallenge

in vaccinated macaques (1 = 17). The prechallenge frequencies were significantly higher than those at week 1 (P = 0.0005 by Wilcoxon signed-rank test).

and a part of Vpr (see Materials and Methods). A representative
gating schema for the flow cytometric analysis is shown in Fig. S2
in the supplemental material.

We first examined SIV-specific individual marker frequencies in
total CD4™ T cells 1 or 2 months before and 1 week after STVmac239
challenge in vaccinated macaques (Fig. 1A). Multiple comparisons
among the five markers prechallenge revealed that SIV-specific
TNF-a CD4™ T-cell frequencies were the highest while CD107a™
frequencies were the lowest. In contrast, SIV-specific CD4™ T cells
postchallenge showed a different hierarchy of individual marker fre-
quencies, with the highest being CD107a™ and IL-2" the lowest.

We then compared pre- and postchallenge SIV-specific
CD107a, MIP-18, IFN-vy, TNE-q, and IL-2 responses in CD4* T
cells (Fig. 1B). Remarkably, frequencies of SIV-specific MIP-18™,
IFN-y*, TNF-a™, and IL-2* subsets were significantly reduced
following challenge (P = 0.0005, P = 0.0004, P = 0.0009, and P =
0.0005, respectively), but no significant reduction was observed in
SIV-specific CD107a* CD4" T-cell frequencies. SIV-specific
TNE-a*/IL-2% CD4™ T-cell frequencies were above the cutoff
values (see Materials and Methods) in all vaccinated animals at
prechallenge but in only 4/17 at week 1 postchallenge. SIV-specific
MIP-1B*/IFN-y* CD4™ T-cell frequencies were above the cutoff
in 13/17 and 14/17 animals, respectively, prechallenge but in only
5/17 postchallenge. SIV-specific CD107a~ CD4™ T-cell frequen-
cies (CD107a” populations in SIV-specific MIP-18™, IFN-y™,
TNF-a.*, or IL-2* CD4" T cells) were significantly reduced (P =
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0.0005) (Fig. 1C). In contrast, SIV-specific CD107a™ CD4 " T-cell
responses were above the cutoff in nine vaccinees prechallenge
and in nine postchallenge. These results indicate that SIV-specific
CD4" T cells producing MIP-1B, IEN-y, TNF-a, and/or IL-2 are
efficiently elicited by the DNA-prime/SeV-Gag-boost vaccination
but are depleted in the acute phase postchallenge, whereas vac-
cine-elicited SIV-specific CD4™ T cells expressing CD107a are re-
sistant to depletion following SIV infection.

We further examined whether vaccine-elicited SIV-specific
CD4" T cells producing MIP-18", IFN-y*, TNF-a*, or IL-2*
together with CD107a are resistant to depletion postchallenge.
SIV-specific CD107a* TNF-a* and CD107a™ IL-2* CD4™" T-cell
frequencies were significantly reduced following SIV challenge
(P =10.0125 and P = 0.0137, respectively), whereas no significant
reduction was observed in SIV-specific CD107a™ MIP-1B*
or CD107a™ IFN-y* CD4™ T-cell subset (Fig. 2A). SIV-specific
CD107a~ MIP-187, CD107a”~ IEN-y*, CD107a~ TNF-a", and
CD107a” IL-2" CD4" T-cell frequencies showed more profound
and significant reductions following challenge (P = 0.0005, P =
0.0001, P = 0.0011, and P = 0.0005, respectively) (Fig. 2B). Com-
parison of CD107a™ and CD107a~ populations in SIV-specific
TNF-a* and IL-2" CD4* T cells revealed that the latter
(CD107a™) subset was higher at prechallenge (Fig. 3A) whereas
the former (CD107a™) subset was predominant mostly in those
that remained above the cutoff values at week 1 postchallenge
(Fig. 3B). These results imply that vaccine-elicited CD4™" T cells
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FIG 2 SIV-specific CD107a* and CD107a~ CD4 " T-cell responses pre- and postchallenge in vaccinated macaques. (A) Comparison of SIV-specific MIP-15™
CD107a™*, IEN-y* CD107a", TNE-a™ CD107a", and IL-2* CD107a™ CD4™ T-cell frequencies prechallenge and at week 1 postchallenge. No significant change
in SIV-specific MIP-18 " or IEN-y" CD107a* CD4™" T-cell frequencies was observed, whereas frequencies of the other two subsets were significantly reduced
following challenge (TNF-a*, P = 0.0125; IL-2%, P = 0.0137 by Wilcoxon signed-rank test). (B) Comparison of SIV-specific MIP-13" CD107a~, IFN-y*
CD107a”, TNF-o" CD107a", and IL-2* CD107a™ CD4™ T-cell frequencies prechallenge and at week 1 postchallenge. All these frequencies were significantly
reduced following challenge (MIP-18™, P = 0.0005; IEN-y™, P = 0.0001; TNE-a™, P = 0.0011; IL-2*, P = 0.0005 by Wilcoxon signed-rank test).

producing these markers together with CD107a are relatively re-
sistant to depletion following SIV challenge.

SIV-specific CD4" T-cell responses pre- and postchallenge
in vaccinated noncontrollers and controllers. Next, we com-
pared SIV-specific CD4™" T-cell responses in vaccinated noncon-
trollers (v-NC) and controllers (v-C). No significant difference
was observed in SIV-specific CD107a*, MIP-18 ", IFN-y ", TNF-

a’, or IL-2% CD4" T-cell frequencies between these two groups
before SIV challenge (Fig. 4A), indicating that prechallenge SIV-
specific CD4 ™" T-cell responses are not the major determinant for
SIV control in these vaccinated animals.

In vaccinated noncontrollers, SIV-specific MIP-18™, IFN-y ™,
TNF-a*, and IL-2" CD4" T cells were significantly reduced fol-
lowing SIV challenge, while reduction in SIV-specific CD107a™
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FIG 3 Comparison of SIV-specific CD107a" and CD107a~ CD4* T-cell responses in vaccinated macaques. (A) Comparison of frequencies of prechallenge
SIV-specific CD4™ T-cell subsets inducing individual markers with (107a*) and without CD107a (107a™). Data for animals having SIV-specific MIP-18* (n =
13), IEN-y* (n = 14), INF-a™* (n = 17),and IL-2™ (n = 17) CD4" T-cell frequencies above individual cutoff values are shown. (B) Comparison of frequencies
of postchallenge SIV-specific CD4 ™" T-cell subsets inducing individual markers with (107a™) and without CD107a (107a™). Data for animals having SIV-specific
MIP-18* (n = 5), IEN-y™* (n = 5), INF-a™ (n = 4), and IL-2" (n = 4) CD4" T-cell frequencies above individual cutoff values are shown.
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FIG 4 SIV-specific CD4™ T-cell responses pre- and postchallenge in vaccinated noncontrollers (v-NC) and controllers (v-C). (A) Comparison of SIV-specific
CD107a*, MIP-18%, ITEN-y™, TNF-a", and IL-2* CD4™ T-cell frequencies prechallenge in v-NC (n = 7) and v-C (n = 10; samples of macaque R01-008
prechallenge were unavailable]). No significant difference was detected between the two groups for any of the 5 markers. (B) Comparison of SIV-specific
CD107a*, MIP-1B%, IFN-y*, TNF-a*, and IL-2* CD4" T-cell frequencies prechallenge and at week 1 postchallenge in v-NC. SIV-specific MIP-1B", IEN-y*,
TNF-a ¥, and IL-2* CD4™ T-cell frequencies were significantly reduced following challenge (MIP-1B*, P = 0.0313; IEN-y*, P = 0.0360; TNF-a*, P = 0.0156;
IL-27, P = 0.0156 by Wilcoxon signed-rank test). (C) Compatrison of SIV-specific CD107a™, MIP-1B*, IFN-y*, TNF-a*, and IL-2* CD4 ™ T-cell frequencies
prechallenge and at week 1 postchallenge in v-C. SIV-specific MIP-18¥, IEN-y*, TNF-a*, and IL-2* CD4™ T cells were significantly reduced following
challenge (MIP-18", P = 0.0312; IFN-y™, P = 0.0273; TNF-a*, P = 0.0137; IL-2", P = 0.0059 by Wilcoxon signed-rank test).

CD4" T cells was not significant (Fig. 4B). SIV-specific MIP-137,
IEN-y*, TNF-a*, and IL-2* CD4" T-cell frequencies at 1 week
postchallenge were below the cutoff values in almost all noncon-
trollers, and even the CD107a™ subsets were below the cutoff in
five of the seven. In contrast, SIV-specific CD107a™ CD4™ T-cell
frequencies were not reduced but rather increased following chal-
lenge in vaccinated controllers; 7 of the 10 showed an increase in
SIV-specific CD107a" CD4" T-cell responses (Fig. 4C). MIP-
1Y, IFN-y*, TNF-a™, and IL-2" subsets postchallenge were
above the cutoff in 5/10, 5/10, 4/10, and 3/10, respectively, al-
though significant reductions in these subset frequencies were ob-
served. Thus, reductions in vaccine-elicited SIV-specific CD4" T
cells following SIV challenge were prominent in noncontrollers
but not in controllers.

Comparison of SIV-specific CD4* T-cell responses postchal-
lenge in unvaccinated animals, vaccinated noncontrollers, and
vaccinated controllers. We then examined SIV-specific individual
marker responses in CD4™ T cells at week 1 postinfection in unvac-
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cinated macaques (Fig. 5A). Unvaccinated animals showed a higher
frequency of SIV-specific CD107a* CD4™ T cells than other markers,
as seen in vaccinees at week 1 postchallenge (Fig. 1A), implying that
the CD107a™ subset in unvaccinated animals may also be relatively
resistant to depletion in the acute phase of SIV infection.

Next, we compared SIV-specific CD4" T-cell responses at 1
week postchallenge in unvaccinated animals, vaccinated noncon-
trollers, and vaccinated controllers (Fig. 5B). No significant dif-
ference in SIV-specific CD107a™ CD4" T-cell responses was ob-
served among these groups, but there was a trend for a lower
frequency of this subset in vaccinated noncontrollers. SIV-specific
CD107a* CD4™ T-cell frequencies were above the cutoff values in
10 of 21 unvaccinated animals and 7 of 11 vaccinated controllers
but only in 2 of 7 vaccinated noncontrollers. SIV-specific MIP-
18, IFN-y*, TNF-a*, and IL-2" CD4" T cells were below the
cutoff in almost all vaccinated noncontrollers. Thus, SIV-specific
CD4™" T-cell depletion occurred primarily following SIV chal-
lenge in vaccinated noncontrollers.
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FIG 5 SIV-specific CD4™ T-cell responses at week 1 postchallenge in unvaccinated and vaccinated macaques. (A) SIV-specific CD107a™, MIP-18™, IFN-y™,
TNF-a*, and IL-2" frequencies in CD4™ T cells in unvaccinated macaques (n = 21). No significant difference was indicated by multiple comparisons

(Friedman’s test and Wilcoxon signed-rank test). (B) SIV-specific CD107a*, M

IP-15", IFN-y™, TNF-a ", and IL-2" CD4™" T-cell frequencies in unvaccinated

animals (unvac; # = 21), vaccinated noncontrollers (v-NC; # = 7), and vaccinated controllers (v-C; n = 11).

Comparison of plasma viral loads in the acute phase in un-
vaccinated, vaccinated noncontroller, and controller groups.
Finally, we compared plasma viral loads in the acute phase in
unvaccinated, vaccinated noncontroller, and controller groups.
Interestingly, vaccinated noncontrollers showed significantly
higher viral loads at week 1 than unvaccinated as well as vaccinated
controllers (Fig. 6A). Even compared to the unvaccinated non-
controllers, vaccinated noncontrollers had significantly higher vi-
ral loads at week 1 (Fig. 6B). Unvaccinated but not vaccinated
animals showed a significant increase in viral loads from week 1 to
week 2 postchallenge (Fig. 6C), indicating that viral loads peaked
earlier in vaccinated macaques. At week 2, unvaccinated animals
had viral loads that were at levels similar to those of vaccinated
noncontrollers but significantly higher than those of vaccinated
controllers (Fig. 6A). These results suggest a higher acceleration of
viral replication in the acute phase following SIV infection in vac-
cinated noncontrollers than in unvaccinated animals.

DISCUSSION

Virus-specific CD4™ T-cell responses are crucial for induction of
effective antibody and CD8* T-cell responses against virus infec-
tion. Current vaccine strategies include induction of neutralizing
antibody and/or CD8" T-cell responses, which are accompanied
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by CD4" T-cell induction. Vaccine-induced CD4" T cells, how-
ever, can be the preferential targets for HIV/SIV infection. In the
present study, we found that vaccine-clicited SIV-specific
CD107a” CD4" T cells are depleted in the acute phase of infection
after SIV challenge. In contrast, our results indicate that SIV-spe-
cific CD4™ T cells expressing CD107a are relatively resistant to
depletion following infection.

HIV is known to preferentially infect HIV-specific CD4" T
cells (32). Our results present the basis of this preference. How-
ever, the mechanism of relative resistance of the CD107a™ popu-
lation in HIV/SIV-specific CD4" T cells to depletion following
infection remains undetermined. Analysis using PBMCs found no
significant difference in CCR5" frequencies among SIV-specific
CD107a", MIP-18™", IFN-y*, TNF-a ™, and IL-2" CD4™" T cells
(see Fig. S3 in the supplemental material). CD107a* subset fre-
quencies were the lowest among the five markers after vaccination
(Fig. 1A), and if this subset’s responses were also lower following
infection, it may contribute to lower sensitivity to depletion. It is
difficult, however, to examine in vitro SIV infection and T-cell
responses under the conditions exactly reflecting what occurs in
vivo. It is also difficult to determine the possibility of changes in
SIV-specific CD4™ T-cell function following infection.

It has been reported that virus-specific CD107a expression in
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FIG 6 Plasma viral loads at weeks 1 and 2 after SIVmac239 challenge. (A)
Comparison of viral loads in unvaccinated animals (unvac), vaccinated non-
controllers (v-NC), and vaccinated controllers (v-C) at weeks 1 (left panel)
and 2 (right panel). Multiple comparisons (Kruskal-Wallis test and Mann-
Whitney U test) indicated significantly higher viral loads at week 1 in v-NC
than unvac and v-C (P = 0.0086 and P = 0.0053, respectively) and significantly
lower viral loads at week 2 in v-C than unvac (P = 0.0329). (B) Comparison of
viral loads at week 1 between unvaccinated noncontrollers (unv-NGC; n = 17)
and vaccinated noncontrollers (v-NC; n = 7). The load for the latter set was
significantly higher than for the former (P = 0.0028 by Mann-Whitney U test).
(C) Comparison of viral loads between weeks 1 and 2 in unvaccinated (left
panel) and vaccinated (right panel) animals. Unvaccinated animals showed
significantly higher viral loads at week 2 than week 1 (P = 0.0003 by Wilcoxo!

signed-rank test). .

CD4" T cells is associated with cytotoxic CD4™ T-cell function via
cytotoxic granules (46-49), which may confer resistance. Virus-
specific MIP-1B", IFN-y*, TNF-a*, and IL-2* rather than
CD107a* CD4™ T cells are believed to be important for helper
function (27, 36). In particular, IFN-v is an important marker for
Tyl cells. However, our results indicate that vaccine-induced
CD4" T cells producing MIP-183, IEN-y, TNF-a, or IL-2 are
largely depleted following SIV challenge. SIV-specific TNF-a™
and IL-2* populations decreased postchallenge even in CD107a™
CD4™ T cells, suggesting that these TNF-o and IL-2 responses
may confer higher sensitivity to depletion on CD4™ T cells. Nev-
ertheless, the reduction of the CD107a™ population postchallenge
was less prominent than that of CD107a~ in SIV-specific TNF-a™
and IL-2* CD4™ T cells. Furthermore, the CD107a” population
of SIV-specific MIP-1B™" or IFN-y* CD4™ T cells showed no sig-
nificant reduction postchallenge. These results imply that the
CD107a" subset of vaccine-elicited CD4" T cells with helper
function may be relatively resistant to depletion following HIV/
SIV infection.

Our previous studies (33, 34, 39) showed that vaccine-induced
Gag-specific CD8" T-cell responses are responsible for the con-
trol of SIV replication in the vaccinated controllers used in the
present study. No significant difference in prechallenge SIV-spe-
cific CD4" T-cell responses was observed between vaccinated
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FIG 7 Correlation analysis between SIV-specific CD4™" T-cell frequencies at
week 1 and plasma viral loads at week 1. SIV-specific CD107a™ (left panel) and
IEN-y* (right panel) CD4* T-cell frequencies were inversely correlated with
the viral loads (P = 0.0121, rho = —0.5774 for the left panel and P = 0.0444,
rho = —0.4788 for the right panel by Spearman’s test).

controllers and noncontrollers, supporting a notion that vaccine-
induced CD4™ T-cell responses are not the determinant for SIV
control in these animals. There was no correlation between pre-
challenge SIV-specific CD107a™, MIP-18 ", IEN-y*, TNF-a*, or
IL-2" CD4" T-cell frequencies and viral loads at week 1. How-
ever, the noncontrollers showed a larger reduction in SIV-specific
CD4™ T cells following SIV challenge and higher plasma viral
loads at week 1 than the controllers. Even the CD107a" as well as
IEN-y™ subset frequencies at week 1 were inversely correlated
with viral loads at week 1 postchallenge in vaccinated animals (Fig.
7). These results imply that the reduction of vaccine-induced SIV-
specific CD4™" T cells reflects killing of these cells by SIV within 1
week postchallenge. Vaccine-induced CD4™ T cells would be sub-
jected to the killing without effectors such as CD8™ T cells, which
protect these cells following infection.

SIV-specific MIP-18 ", IFN-y", TNF-a*, and IL-2* CD4* T
cells were mostly depleted at week 1 in vaccinated noncontrollers.
We found that viral loads peaked earlier in vaccinated than in
unvaccinated animals. Furthermore, vaccinated noncontrollers
that showed depletion of vaccine-elicited CD4™" T cells had signif-
icantly higher viral loads at week 1 than unvaccinated animals.
While virus-specific CD4* T-cell responses are important in viral
control (50-52), our results suggest that induction of virus-spe-
cific CD4™ T cells, especially CD107a™ cells, by vaccination may
notlead to efficient CD4 ™ T-cell responses following infection but
rather enhance or accelerate viral replication in the early acute
phase after HIV/SIV exposure. It is speculated that vaccinated
controllers elicited highly effective CD8" T-cell responses, which
could overwhelm this enhanced viral replication. Without this
enhancement, however, such highly potent effectors may not be
required for HIV/SIV control. Thus, it would be reasonable to
develop a vaccine to induce effective responses without inducing
HIV-specific memory CD107a~ CD4™ T cells. Indeed, our previ-
ous study suggested that vaccine induction of epitope-specific
CD8™ T cells with the help of SeV-specific but not SIV-specific
CD4™ T cells can result in effective CD8 ™" T-cell responses against
SIV infection in the acute phase postchallenge (53). Alternatively,
induction of HIV-specific CD107a™ CD4" T cells may be a prom-
ising HIV vaccine approach, although the strategy for induction of
these cells remains unknown (27, 54).

In summary, this study found that vaccine-elicited SIV-specific
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CD4™" T cells expressing CD107a are relatively resistant to deple-
tion following infection in a macaque AIDS model. In contrast,
our analysis revealed massive depletion of SIV-specific CD107a”
CD4" T cells following SIV exposure. These results suggest a ra-
tionale for vaccine design to elicit effective antibody or CD8*
T-cell responses without induction of HIV-specific CD107a”™
CD4" T cells toward HIV control.
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Abstract

Nef-Y135F in circulating HIV-1 sequences.

Background: Human Leukocyte Antigen (HLA) class | restricted Cytotoxic T Lymphocytes (CTLs) exert substantial
evolutionary pressure on HIV-1, as evidenced by the reproducible selection of HLA-restricted immune escape mutations
in the viral genome. An escape mutation from tyrosine to phenylalanine at the 135th amino acid (Y135F) of the HIV-1
nef gene is frequently observed in patients with HLA-A*24:02, an HLA Class | allele expressed in ~70% of Japanese
persons. The selection of CTL escape mutations could theoretically result in the de novo creation of novel epitopes,
however, the extent to which such dynamic “CTL epitope switching” occurs in HIV-1 remains incompletely known.

Results: Two overlapping epitopes in HIV-1 nef, Nef126-10 and Nef134-10, elicit the most frequent CTL responses
restricted by HLA-A*24:02. Thirty-five of 46 (76%) HLA-A*24:02-positive patients harbored the Y135F mutation in their
plasma HIV-1 RNA. Nef codon 135 plays a crucial role in both epitopes, as it represents the C-terminal anchor for
Nef126-10 and the N-terminal anchor for Nef134-10. While the majority of patients with 135F exhibited CTL responses
to Nef126-10, none harboring the “wild-type” (global HIV-1 subtype B consensus) Y135 did so, suggesting that
Nef126-10 is not efficiently presented in persons harboring Y135. Consistent with this, peptide binding and limiting
dilution experiments confirmed F, but not Y, as a suitable C-terminal anchor for HLA-A*24:02. Moreover, experiments
utilizing antigen specific CTL clones to recognize endogenously-expressed peptides with or without Y135F indicated
that this mutation disrupted the antigen expression of Nef134-10. Critically, the selection of Y135F also launched the
expression of Nef126-10, indicating that the latter epitope is created as a result of escape within the former.

Conclusions: Our data represent the first example of the de novo creation of a novel overlapping CTL epitope as a
direct result of HLA-driven immune escape in a neighboring epitope. The robust targeting of Nef126-10 following
transmission (or in vivo selection) of HIV-T containing Y135F may explain in part the previously reported stable
plasma viral loads over time in the Japanese population, despite the high prevalence of both HLA-A*24:02 and

Background

Cytotoxic T lymphocytes (CTLs) are key players in the
immune control of Human Immunodeficiency Virus 1
(HIV-1), as they recognize virally-derived peptide epi-
topes presented by HLA class I molecules on the in-
fected cell surface [1,2]. Over the course of infection
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however, HIV-1 mutations arise within the infected indi-
vidual, notably in targeted CTL epitopes, that allow the
virus to escape immune recognition by CTLs. Importantly,
despite the hypermutability of HIV-1, these immune
escape mutations often arise in a stereotypical manner
[3,4] that is highly predictable based on the specific
HLA class I molecules expressed by the host [5-8].
Although selection of HLA-associated mutations in
HIV-1 is driven by immune pressure, these amino acid
substitutions sometimes result in the induction of a
de novo immune response in which the mutant epitope
is recognized by a TCR associated with a different CTL
subset [7,9]. What is less well-characterized is the
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extent to which selection of immune escape mutations
result in the de novo creation of novel CTL epitopes
nearby, that could subsequently be targeted by CTL
in vivo (in a manner similar to the continual exposure
of novel antibody epitopes in HIV-1 envelope as a conse-
quence of escape from earlier humoral responses [10]).
Here, we demonstrate such a dynamic phenomenon of
“CTL epitope switching” as a direct result of CTL escape
from HLA-A*24:02.

We reported previously that the substitution from
tyrosine to phenylalanine (Y135F) at the 135th amino acid
of the HIV-1 nef gene is frequently observed in patients
with HLA-A*24:02, an HLA Class 1 allele expressed
in ~70% of Japanese persons [4,11]. Our observation
that Y135F appeared to be an escape mutation was later
confirmed [12]. In order to examine the influence of
HIV-1 mutations on the strength of various epitope-
specific CTL responses, we studied CTL epitopes re-
stricted by HLA-A*24:02 in relatively conserved regions
of the HIV-1 genome. Our results indicate that Nef-
Y135E, selected to escape recognition of a well-described
HLA-A*24:02-restricted CTL epitope in this viral protein,
results in the creation of another HLA-A*24:02 epitope
immediately upstream. To our knowledge, our findings
represent the first evidence of immune escape-driven
“epitope switching” in HIV-1 infection.

Results
Identification of immunodominant CTL responses
restricted by HLA-A¥*24:02
Forty-six HLA-A*24:02-positive patients with HIV-1 in-
fection were studied. Forty-four were infected through
unprotected sexual intercourse and 2 were hemophiliacs.
Forty-five were infected with subtype B except one was
infected with subtype AG. The median plasma viral load
(pVL) was 4.11 (range 2.26 to 5.36) log 10 copies/ml, and
the median CD4 cell count was 395 (range 120 to 1,035)
cells/pl. To determine which published HLA-A*24:02-
restricted CTL epitopes are most frequently recognized
among persons expressing this allele, IFN-y ELISpot
assays were performed using expanded PBMCs. Due to
limited PBMC numbers, 11 published A*24:02-restricted
CTL epitopes in the relatively conserved gag, pol and nef
regions [13-15] were selected for investigation. Pub-
lished optimal epitopes were used for the assay. The
response rate against Nefl34-10 was highest (80.4%),
followed by Nefl26-10 (50.0%), Gag28-9 (40.0%) and
Pol496-9 (28.3%), while limited (<10%) or no responses
were observed in the other epitopes (Figure 1A, B). Of
note, Nef126-10 and Nef134-10 overlap each other by 2
amino acids (Figure 1A).

We next analyzed patient plasma HIV RNA amino
acid sequences within the Nefl126-10-Nef134-10 regions
(Table 1). The great majority of patients (35/46 =76.1%)
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had a tyrosine (Y) to phenylalanine (F) mutation
(Y135F) at Nef codon 135 (Nef135F) while eight patients
(8/46 = 17.4%) had the global consensus subtype B resi-
due at this position (Nefl35Y). Two were Nefl35L and
one was Nefl35W. These results were consistent with
our earlier findings [4]. Intriguingly, none of the eight
patients with Nefl35Y exhibited a Nefl26-10-specific
response, while all of them exhibited a Nefl34-10-
specific response (p < 0.001, Fisher’s exact test) (Figure 1C,
left). Of the 35 patients harboring Nefl35F, 23 (65.7%)
and 28 (80.0%) responded to Nefl26-10 and Nefl134-
10, respectively (Figure 1C, right) (p = 0.2823, Fisher’s
exact test).

Dramatic improvement in the HLA-binding affinity of
Nef126-10 following mutation of the C-terminal anchor
residue

To clarify the relationship between Y135F and peptide-
specific responses, we examined HLA-binding affinity
of the wild type and mutant peptides using in vitro
peptide-HLA binding assays (Figure 2A). In context of the
Nef134-10 epitope, the mutant Y135F peptide (represent-
ing position 2, the N-terminal anchor of this epitope;
Nef134-10(2F)) was almost as effective as the “wild type”
Nefl134-10 (Nef134-10(wt)) peptide in binding to HLA-
A*24:02. In contrast, in context of the Nef126-10 epitope,
the mutant Y135F peptide (representing position 10, the
C-terminal anchor of this epitope), dramatically improved
its binding to HLA-A*24:02. The presence of threonine
(T) at the 8th position (Nef126-10(8T10F)), representing
Nef mutation 11337, did not significantly affect epitope-
HLA binding compared to the wild type isoleucine (I)
(Nef126-10(8110F)). These results are compatible with
previous reports identifying Y or F as possible N-terminal
anchors for HLA-A*24:02, but only F as a possible C-
terminal anchor [16,17].

We then examined the effect of the mutations on
epitope recognition using CTL clones established from
patients with HIV-1 infection. 293FT-A24DRm-CY0
cells pulsed with different dilutions of peptides were co-
cultured with CTL cell clones. The Nef134-10-specific
CTL clone H27-9 produced IFN-y almost equally well
in response to Nefl34-10(wt) peptides or to Nefl34-10
(2F) peptides (Figure 2B, left). In contrast, the Nef126-
10-specific CTL clone 130-1 produced IFN-y only at high
concentrations of the wild-type Nefl26-10(wt) peptide,
whereas mutant peptides Nefl126-10(8I10F) and Nef126-
10(8T10F) induced strong responses at very low peptide
concentration (Figure 2B, right). These results were con-
sistent with peptide-HLA binding assays suggesting that

- the 1133T mutation did not have much effect on re-

cognition of the epitope-HLA complex by the Nef126-10-
specific CTL clone I30-1. Moreover, the results were
consistent with the observation that the presence of
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wild-type Y at the C-terminus lowers the affinity of the
Nef126-10 peptide to HLA-A*24:02 (Figure 2A).

CTL responses against the endogenously expressed
epitopes

In order to examine whether intracellularly-derived Nef
protein could still be targeted by peptide-specific CTLs,
we constructed nef-minigene expression vectors, pmNef
(wt)-hRluc-EGFP, pmNef(135F)-hRluc-EGFP, and pmNef
(133T135F)-hRluc-EGED, for the generation of polypep-
tides encompassing the Nefl26-10 and Nefl34-10 epi-
topes (Figure 3A). The vectors encoded EGFP as a
transfection marker, as well as the Renilla Luciferase
(Rluc) gene hooked to the mini-nef gene by a GlyGlyGly-
GlySer linker. Rluc activity served as a quantitative refer-
ence for the expression of the mini-nef polypeptide.
Each vector was transfected into 293FT-A24DRm-CY0
cells. Rluc activities indicated that three types of nef-

minigenes were expressed well and to comparable levels
(Figure 3B).

We and others reported previously that Y135F is a
processing mutation, as CTL responses could be induced
to mutant epitopes via peptide-pulsing, but not via
intracellularly-expressed polypeptide [4,12,18]. Consist-
ent with the previous results, Nefl34-10-specific re-
sponses by CTL clone H27-9 were induced by the wild
type minigene, but diminished to minimal levels by the
presence of Y135F or 1133T/Y135F (Figure 3C, left).

By contrast, Nefl26-10-specific responses by CTL
clone 130-1 were provoked dramatically by the presence
of Nefl35F. Specifically, the Nefl26-10-specific CTL
clone I30-1 showed much higher responses to antigen-
presenting cells transfected with the 1331/135F or 133T/
135F minigene than Nefl34-10-specific CTL clone H27-9.
The 130-1 responses to minigenes encoding I versus T at
the Nef133 position did not substantially differ (Figure 3C,
right). In contrast, I30-1 responses to the wild type
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Table 1 Amino acid sequences (Nef126-143) of plasma
HIV-1 in 46 patients

Group®

Amino acid sequenceb Frequency (number)®

Consensus B NYTPGPGIRYPLTFGWCF

17.4% (8)
22% (1)
4.3% (2)
22% (1)
22% (1)
22% (1)
22% (1)
22% (1)
76.1% (35)
4.3% (2)
22% (1)
22% (1)
22% (1)
50.0% (23)
22% (1)
22% (1)
8.7% (4)
22% (1)
6.5% (3)
4.3% (2)
22% (1)

?Patients were partitioned into three groups, Nef135Y (135Y), Nef135F (135F),
or others, according to their amino acid information at the Nef135 position.
PMiddle column shows amino acid sequence of the Nef126-143 region. The
same amino acids as the subtype B consensus sequence are indicated by dots.
Differences compared to the subtype B consensus sequence are indicated by
the corresponding letters.

Right column indicates frequency (and number) of individuals exhibiting the
stated sequence. Subtotal frequency (and number) of each group is italicized.

135Y group

135F group

Lo T T R 5 T I L I

others

minigene were indistinguishable from background.
These results suggest that wild-type Nefl26-10 peptide
was not expressed as an epitope on the surface of the
antigen-presenting cells when expressed endogenously,
but Nef126-10 containing 135F (regardless of variation at
position 133) was efficiently expressed. In turn, these
in vitro results (Figure 2 and 3) strongly suggest that a
novel mechanism, i.e. “epitope switching” was taking place
after the selection of the Y135F mutation in vivo (Figure 1).
Namely, selection of Y135F facilitates escape from CTL re-
sponses targeting the first epitope (Nefl134-10), but simul-
taneously results in the creation of another epitope
upstream (Nef126-10).

“Epitope switching” during the clinical course of HIV-1
infection

Among 8/46 patients in the IMSUT cohort who initially
harbored the “wild type” (global consensus B) Y135
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residue within the Nefl34-10 epitope, we identified one
patient who subsequently selected 135F, followed by
133T, over a period of 12 months. We performed IFN-y
ELISpot assays on PBMCs expanded from corresponding
frozen longitudinal samples (Figure 4A). Before the mu-
tated viruses became the majority, specific responses to
Nef134-10(wt) were the most prominent, followed by
responses to Nefl34-10(2F) (Figure 4B, left). Import-
antly, no Nefl126-10-specific responses were observed at
these time points. After plasma viruses were replaced by
viruses with 133T/135F, robust responses against Nef126-
10(8I10F) and Nef126-10(8T10F) were observed, while
responses against Nef126-10(wt) were detected only at
high peptide concentrations (Figure 4B, right). These
results were consistent with the results in vitro using
CTL clones (Figure 2B, right), and support the in vivo
presentation of Nef126-10 only after selection of Y135F.
Of interest, responses against Nefl34-10 peptides de-
creased but remained detectable after the selection of
135F and 133T/135F mutations.

Coupled selection of Nef135F and Nef133T mutants

in vivo

We investigated the correlation between Nefl35F and
Nef133T in silico in two other independent cohorts. In a
large cohort of antiretroviral-naive patients chronically
infected with subtype B HIV-1 in British Columbia,
Canada (British Columbia HOMER cohort), positive
correlations between Nefl135F and Nef133T (Odds ratio:
11.3), as well as between Nefl35Y and Nef133I (Odds
ratio: 16.3) were observed (Figure 5A, all p <0.0001).
Furthermore, in a multicenter longitudinal acute/early
infection cohort comprising 16 HLA-A*24:02-express-
ing persons infected with subtype B HIV-1, selection of
Nef135F preceded that of Nef133T by a short duration
(Figure 5B). The median times to Y135F and [133T se-
lection were 220 and 236 days, respectively, a difference
that was not statistically significant.

The correlation between the magnitude of Nefl26-10
(8I10F) or Nef126-10(8T10F)-specific response and pVL
was assessed in 24 IMSUT cohort participants for
whom Nef126-10(8I10F) and Nef126-10(8T10F) responses
(measured by IFN-y ELISpot) and pVL at the correspond-
ing time point, were available (Figure 5C). Interestingly,
Nef126-10(8110F)-specific but not Nefl26-10(8T10F)-
specific responses were inversely correlated with pVL,
suggesting that responses to the former, but not the latter,
contribute to iz vivo immune control.

Crystal structures of Nef126-10 epitopes presented on
HLA-A*24:02

In order to examine the impact of these mutations on
epitope structure, we solved the crystal structures of
HLA-A24/Nef126-10(8110F) and HLA-A24/Nefl126-10
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(8T10F) at 1.66 A and 2.0 A resolution, respectively
(Figure 6A top and bottom; Additional file 1: Figure
S1A, B). Superposition of the Nefl26-10(8110F) and
Nef126-10(8T10F) peptide structures showed almost
similar backbone atoms, with root mean square devi-
ation of 0.307 A, but conformational differences were
found at P6 (131P) and P9 (134R) residues. The side
chains of P6 and P9 residues in the Nef126-10(8110F)
and Nef126-10(8T10F) epitopes had poor electron dens-
ities in spite of structures being at modestly higher reso-
lution (Additional file 1: Figure S1C, D). In addition, the
B-factors for the central portions (P5-P7) of each pep-
tide (41.5 A” for the Nef126-10(8I10F) and 46.2 A® for
Nefl126-10(8T10F)) were higher than for overall pep-
tides (24.1 A? for Nefl26-10(8I10F) and 33.2 A? for
Nef126-10(8T10F)). These results indicated a flexibility
of the central portion and P9 residue in both peptides,
accounting for the structural difference observed.

The side chains of P8-Ile and P8-Thr protruded from,
rather than being buried within, the antigen-binding

cleft of HLA-A*24:02, suggesting the P8 residue could
be involved in the contact with TCR (Figure 6A bottom).
Therefore, different TCRs could be favored by the pres-
ence of either hydrophobic P8-1 or hydrophilic P8-T at
the interface of a TCR-HLA-A*24:02/Nef126-10. If this
is the case, different TCR repertoires would be selected
by Nef126-10(8I110F) or Nefl26-10(8T10F), suggesting
Nef-1133T as a possible immune escape mutation that
alters the in vivo repertoire of CTL recognizing this
epitope.

Immune responses against Nef126-10 epitopes

We compared the epitope-specific immune responses
between two groups of individuals: those whose plasma
viruses were 133I/135F (n=4) or 133T/135F (n=10).
Ex vivo IFN-y ELISpot assays using PBMCs and Nef126-
10(8I10F) or Nefl26-10(8T10F) revealed that O of 4
patients with Nef126-10(8I10F) viruses had Nef126-10
(8T10F)-specific responses (Figure 6B). Nine out of 10
patients with Nef126-10(8T10F) viruses exhibited specific
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responses to the circulating epitope, and 7 of 10 patients
retained the response specific against Nefl126-10(8I10F).
These results strongly suggested that the I1133T mutation
induced a new subset of CD8+ T cells capable of recogniz-
ing Nef126-10(8T10F) (p = 0.005, Fisher’s exact test).
Functional avidity has been reported as a correlate of
CTL selective pressure [19,20]. As such, we analyzed
functional avidities of Nef126-10-specific CTLs. Nine in-
dividuals harboring 133T/135F were analyzed by limiting
dilution (Figure 6C). Nefl26-10(8I10F)-specific CTL
responses showed significantly higher avidities compared
to those against Nef126-10(8T10F). Taken together with
the observation that pVL correlated inversely with the
magnitude of Nef126-10(8I10F)-specific, but not Nefl26-
10(8T10F)-specific, responses (Figure 5C), these results
suggest that the new subset of CD8+ T cells elicited fol-
lowing selection of 1133T exert less immune pressure on

the 133T mutant compared to the “wild-type” 1133. The
hypothesis that Nef-I133T is an A*24-driven escape
mutation is additionally supported by numerous HLA-
association studies in HIV subtype B-infected popula-
tions including Japan, which consistently demonstrate
highly significant associations between A*24 and Nef-
1133T [4,8,21,22].

Discussion

HLA-A*24:02 is highly prevalent among East Asians in-
cluding Japanese [11]. In an effort to identify immuno-
dominant CTL epitopes presented by HLA-A*24:02, we
observed that the two most frequently-recognized
epitopes lay in Nef and overlapped each other by two
amino acids. Nef codon 135 is critical to both epitopes,
as it represents the N-terminal anchor for the down-
stream epitope Nef134-10, and the C-terminal anchor
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for the upstream epitope Nefl26-10. In the downstream
epitope Nefl34-10, the Y-to-F mutation (Y135F) at the
second position is observed at high frequencies in circulat-
ing HIV-1 sequences in Japan — in fact it represents the
consensus at this position in Japan - presumably as a result
of high HLA-A*24:02 prevalence in the population [4,23].
Our experiments using a Nefl34-10-specific CTL clone
and a minigene corroborated the earlier observation that
the Y135F mutation disrupts antigen processing of the
Nef134-10 epitope (Figure 3C) [4,12]. Importantly, while
the majority of patients with Y135F responded to the
upstream epitope Nefl26-10, none of the patients with
the wild-type sequence responded to this epitope. Con-
sistent with this observation, results of the peptide
binding (Figure 2A) and limiting dilution experiments
using antigen-specific CTLs (Figure 2B) were compat-
ible with the previous reports indicating that F, but not
Y, could serve as a C-terminal anchor [16,17]. Also con-
sistent with this observation is that the 2nd position of
Nef126-10 is Y, a strong N-terminal anchor amino acid
for HLA-A*24:02. Taken together, in a process similar
to the ongoing exposure of novel antibody epitopes in
HIV-1 envelope as a consequence of escape from earlier

humoral responses [10], our results demonstrate that an
analogous phenomenon also occurs with CTL responses:
in this case a novel A*24:02-restricted “epitope switch”
from Nefl34-10 to Nefl26-10, as a result of immune-
driven escape at a single Nef codon.

We also showed that Nef residues 1133T and Y135F are
highly significantly linked in vivo. Nef126-10 emerges as a
CTL epitope by the introduction of the Y135F mutation.
Though I1133T has previously been identified as an
HLA-A*24:02-associated polymorphism in statistical asso-
ciation studies [4,8,21,22,24,25], its mechanism remained
unknown. Our data strongly suggest that I133T is
HLA-A*24:02-restricted escape mutation whose mechan-
ism of action is alteration of the in vivo CTL repertoire
capable of recognizing the HLA-bound epitope. Although
the sample size was limited, patients with 133I/135F
viruses did not exhibit responses to Nefl26-10(8T10F)
(Figure 6B). These results, together with studies of a pa-
tient whose plasma viral sequences shifted from wild-type
to 133T/135F, strongly suggest that immune pressures
selected an I-to-T substitution at Nef’s 133rd position.
IFN-y ELISpot assays showed that Nefl126-10(8I10F)-
specific but not Nefl26-10(8T10F)-specific responses
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correlated inversely with pVL (Figure 5C) and that the
former had significantly higher functional avidities
(Figure 6C). These findings therefore suggest a TCR-
mediated mechanism underlying HLA-A*24:02-mediated
escape via 1133T. Although higher functional avidity is a
hallmark of CTLs with stronger selective pressure [19,20],
further studies are needed to confirm that the 1133T
mutation alleviates immune pressures directed on the
Nef126-10 epitope.

Crystal structures of peptide-HLA showed that the side
chain of the 133rd residue (P8 residue in the Nefl26-10
epitope) protruded from the peptide-binding cleft presum-
ably providing a feature of the Nef126-10 epitope to the
TCRs (Figure 6A). The shorter side chain of T compared
to I might make the Nef126-10(8T10F) less accessible to
TCR than the Nef126-10(8110F) epitope. Considering the
similarity of the structures, the absence of the T cell reper-
toire against the Nef126-10(8T10F) epitope in the patients
with 1331/135F viruses is an enigma. The suggested struc-
tural flexibility of the central portion (P5-P7) and P9 of
the Nef126-10 epitope may be relevant here.

A key remaining question is why the Y135F mutation
is repeatedly selected by A*24:02, given that a conse-
quence of this escape is the introduction of another
A*24:02 epitope immediately upstream. We offer the
following hypothesis. In studies of HIV-1 infected popu-
lations around the globe, the association between HLA-
A*24:02 and Nef-135F consistently ranks among the
strongest in the HIV proteome [8,21], including in Japan
where F (rather than the global subtype B consensus Y)
represents the consensus at this position [4,22]. Indeed,
a recent international cohort study revealed an odds
ratio of >28 and a p-value of 8x10™*® for this association
[21]. The extraordinary magnitude of this association indi-
cates that Nef-135 is under similarly extraordinary selec-
tion pressure by A*24 in vivo - presumably due to highly
effective CTL responses against the Nefl34~10 epitope.
The benefits to HIV of evading A*24-mediated recogni-
tion of Nefl34-10 presumably outweigh its substantial
negative consequences to the virus, which in this case in-
clude the creation of the adjacent Nef126-10 epitope. That
Nef126-10 is targeted by less than 70% of A*24-expressing
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