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5.2. Immune-Mediated Attenuation of Nef Function?

HIV-1 Nef is highly targeted by the host immune response during primary infection [119], and a
large number of HLA-associated polymorphisms have been identified within or near known CTL
epitopes [120]. HLA-mediated immune pressure on Nef drives rapid selection of escape mutations
following infection [121,122], and HLA-associated polymorphisms have been identified at
approximately half of Nef’s 206 residues [120,123]. Indeed, a substantial proportion of natural
sequence variation observed in Nef is attributable to immune selection pressure on this
protein [120,124]. It has been presumed that the extensive ability of Nef to incorporate sequence
changes would allow it to escape from immune pressure with limited consequence for viral fitness.
However, while the impact of certain CTL escape mutations on Nef function has been
assessed [35,125,126], the broader impact of HLA-restricted pressure on Nef function and viral
pathogenesis at the individual or population level has not been clarified, and data to address this
important issue are currently lacking.

We have previously reported that HLA-B*35-associated CTL escape mutations R75T and Y85F
located in the conserved proline-rich region of Nef can impair HLA-I down-regulation
activity [35,126]. Along with other data for A*02 [125], these observations indicate that host immune
pressure can alter Nef function in at least some cases and further highlight the need for additional
studies to characterize the wide array of Nef sequence variants that are likely to arise within an
individual during natural infection. Indeed, population-level analyses have identified a number of
HLA-associated polymorphisms in the N-terminal and C-terminal domains of Nef, as well as in sites
near other critical Nef residues [120], including several that are selected by the protective allele HLA-
B*57. Fully understanding the potential impact of naturally occurring HLA-associated mutations on
Nef function and clinical outcome will be an important area for future study.

6. Conclusions

Research advances have significantly improved our understanding of the HIV-1 Nef protein and the
mechanisms that it uses to effectively down-regulate HLA class I expression on the surface of infected
cells. Molecular and biochemical studies have identified many of Nef’s crucial binding partners and
have mapped Nef sequence motifs that are required for its function. Structural data have very recently
allowed us to visualize the Nef protein in complex with HLA-I and the p1 subunit of AP-1, validating
our current models and identifying potential sites for therapeutic intervention.

Nef-mediated evasion of host immunity is expected to contribute significantly to the establishment
and maintenance of persistent HIV-1 infection. However, despite recent progress in the field to
understand the cellular mechanisms of Nef-mediated HLA-I down-regulation, our knowledge of Nef’s
role during HIV-1 disease progression remains poor. To fully elucidate the impact of Nef during natural
infection, it will be necessary to extend our current studies of lab-adapted viral isolates to include
detailed analyses of patient-derived Nef proteins. Only then will we be able to fully appreciate the
consequence of Nef sequence variation on protein function and make important links to clinical outcome.
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Figure 1. Presentation of viral peptide antigens by Human Leukocyte Antigen (HLA) class 1.
Human immunodeficiency virus type 1 (HIV-1) proviral gene expression, including RNA
transcription (a) and protein translation (b); generates functional viral proteins (¢) as well as
truncated or mis-folded proteins that are degraded by the cellular proteasome complex to
form short antigenic peptides (d); These peptides are transported from the cytoplasm into the
endoplasmic reticulum (ER) (e) where they can be loaded onto HLA-I molecules.
Peptide/HLA complexes traffic from the ER through the Golgi and secretory vesicle (SV)
network to the plasma cell membrane, where the peptide antigens are presented to circulating
cytotoxic T lymphocytes (CTL) (f); The viral Nef protein shuttles HLLA molecules located at
the cell surface or within the frans-Golgi network into lysosomal compartments (g); where they
are degraded. In the absence of Nef-mediated HLA down-regulation, antigen-specific CTL
respond to stimulation by releasing cytotoxic molecules, including perforin and granzymes,
resulting in elimination of the virus-infected cell (h).
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Introduction

Human immunodeficiency virus type 1 (HIV-1), the causative
agent of acquired immunodeficiency syndrome (AIDS) in
humans, infects CD4™ T cells as well as macrophages and
dendritic cells by binding to its primary receptor, CD4, and
a co-receptor, usually CCR5 or CXCR4 [1,2,3]. Not only is the
tropism of HIV-1 determined by its use of either GCR5 or
CXCR4, but factors such as cellular activation status, differen-
tiation and maturation status, cell type, and the histological
location of the target cells also determine HIV-1 infectivity with
respect to its replication, dissemination, and latency [4,5,6]. In
vivo studies are essential if we are to better understand the
dynamics of HIV-1 infection and pathogenesis, in addition to
improving the trials of putative anti-HIV/AIDS drugs, gene
therapy, and vaccines. Therefore, the development of suitable
experimental animal models is desirable. Mice reconstituted
with human hematopoietic cells, referred to as humanized mice,

PLOS ONE | www.plosone.org

have recently attracted attention as experimental animal models
of HIV-1 infection [7,8,9,10,11,12].

At present, bone marrow/liver/thymus (BLT) mice, which are
produced by surgical implantation of human fetal thymus and liver
tissue into NOD/SCID mice, followed by transplantation of
autologous fetal liver CD34" hematopoietic stem cells (HSCs),
seem to be an ideal humanized mouse model because they support
T cell development in 2 human thymic environment and generate
human MHC-restricted T cell responses i vivo [13]. However,
due to the ethical issues surrounding the use of fetal organs, studies
using BLT mice are limited. Therefore, Rag2™ " IL2RY™" mice
(including BRG (BALB/c-background) and B6RG (C57BL/6-
background) mice), or NOD/SCID/IL2RY™" mice (including
NOG (truncated IL-2Ry chain lacking the intracytoplasmic
domain) and NSG (complete absence of IL-2Ry chain) mice) are
conventionally used as recipients of transplanted human HSCs
[7,9,10,12,14,15,16]. In addition, BALB/c-Ragl™"IL2Ry™"
mice [17] and NOD/SCID/JAK3™" (NOJ) mice [18] have
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recently been developed as an alternative recipient mouse strain,
thereby providing more options for the construction of humanized
mice.

Various methods are used to construct humanized mice
[12,14,19]. The key issuc is the efliciency of HSC engraftment
[19,20,21]. Mycloablative irradiation is conventionally performed
to augment the engraftment of donor HSCs within the recipient
bone marrow (BM) [22], although irradiation may shorten the life-
span of certain strains of mice {17,18,22,23]. Hence, it is difficult
to study prolonged HIV-1 infection/pathogenesis using certain
strains of irraciated mice. To overcome this problem, Watanabe
et al. proposed the use of non-irradiated humanized NOG mice, as
they have a longer life-span and support HIV-1 infection for over
3 months [22]. For this reason, we attempted to construct
a humanized mouse model based on NOJ mice (hNOJ mice) that
were not irradiated prior to HSC transplantation. Our preliminary
study showed that many of the CD4" T cells that were
reconstituted in hNOJ mice expanded with an activated effector
memory phenotype over time. Because non-irradiated humanized
mice reconstitute human hematopoicetic cells less efficienty [22],
non-irradiated hNOJ mice may provide a lymphopenic environ-
ment that favors lymphopenia-driven homeostatic proliferation
(HSP) of T cells. Lymphopenia-induced HSP involves both slowly
and rapidly proliferating CGD4" T cells: the former remain
phenotypically naive, whereas the latter convert from a naive to
a memory-like phenotype with a greater activation potential
[24,25,26]. The occurrence of T' cell HSP, particularly in the latter
case, is supported by other conventional humanized mouse models
based on the BRG [27] and NOG [28] strains. Therefore, it is
postulated that both the manner and dynamics of HIV-1 infection
in humanized mice may be affected by the presence of HSP and, if
so, that the humanized mouse model should be used selectively
according to the specific experimental objectives.

The aim of the present study was to clucidate whether HSP of
CD4" T cells was influenced by the degree of chimerism, and
whether it affected HIV-1 infectivity in hNOJ mice. First, we
compared the dynamics of reconstituted CD4" T cell cellularity
between hNOJ mice that were irradiated (hNOJ (IR+) or not
(hNOJ (IR—)) prior to human HSC transplantation, and
characterized them as high and low chimerism groups, re-
spectively. Here, we show that the conversion of CD4% T cells
to an activated cffector memory phenotype occurred in both
hNOJ (IR+) and hNOJ (IR —) mice over time. We also challenged
hNOJ (IR+) and hNOJ (IR —) mice, which were selected as naive-
and memory CD4" T cell subset-rich groups, respectively, with
CCRS5-tropic (R5) HIV-1. The plasma viral load was blunted
during the early phase post-challenge, but subsequently reached
a l-log higher level in memory-rich hNOJ (IR—) mice than in
naive-rich hNOJ (IR+) mice. Taken together, the results of the
present study provide useful information for evaluating the
usefulness of hNOJ mice as a model of HIV-1 infection.

Methods

Ethics Statement

Human umbilical cord blood was obtained from the Tokyo
Ciord Blood Bank (Tokyo, Japan) after receiving written informed
consent. Human peripheral blood was obtained from the Blood
Bank of Japan Red Cross (Tokyo, Japan) or from healthy adult
volunteers after receiving written informed consent. The use of
human umbilical cord blood and peripheral blood was approved
by the Institutional Ethical Committeé of the National Institute of
Infectious Diseases (Tokyo, Japan) (Permit Numbers: 127 and 122,
respectively). All mice were treated in accordance with the
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guidelines set down by and approved by the Institutional Animal
Care and Use Committee of the National Institute of Infectious
Disecases (Permit Numbers: 208022, 109019, 110026, 211033, and
112040).

Mice

NOD/SCID/JAKS™ (NOJ) mice were cstablished as de-
scribed previously [18] and maintained under specific pathogen-
free conditions in the animal facility at the National Institute of
Infectious Discascs.

Construction of Humanized Mice

Human HSCs were isolated from umbilical cord blood using
a CD133 MicroBead Kit (Miltenyi Biotee Inc, Auburn, CA). The
purity was approximately 90% as assessed by flow cytometric
analysis of CD34 expression. Human HSCs (0.5—1x10° cells)
were transplanted into the livers of irradiated (1 Gy) or non-
irraciated newborn mice within 2 days of birth. The number of
hNQJ mice used and the ID number of the donor from which
hNOJ mice were derived are listed in Table 1.

Cell Preparation

Human peripheral blood mononuclear cells (PBMCs) were
separated by a Ficoll-Hypaque density gradient (Lymphosepal;
IBL, Gunma, Japan). For hNO]J mice, peripheral blood, spleens
and BM were collected and the red blood cells were lysed in ACK
buffer (0.15 M NI,Cl, | mM KHCOy, and 0.1 mM EDTA-2Na;
pH 7.2—7.4). In some cases, CD4" T cells from human PBMCis or
hNOJ splenocytes were negatively selected using an EasySep
Human CD4% T cell Enrichment Kit (StemCell Technologies,
Vancouver, BC, Canada), or a combination of this kit and
a StemSep Mouse/Human Chimera Enrichment Kit (StemCell
Technologics), respectively. The purity was Z=95% as assessed by
flow cytometry.

Flow Cytometry

Cells were stained with fluorescence-conjugated monoclonal
antibodies as described previously [29]. The following antibodies
were used for flow cytometry in various combinations: FITC-
conjugated anti-mousc CD45 (30-F11), anti-human CD34 (581),
and CD195/CCR5 (HEK/1/85a); PE-conjugated anti-human
CD19 (HIB19), CD150 (A12(7D4)), CD184/CXCR4 (12G5) and
IFN-y (4S.B3); PerCP-conjugated anti-human CD3 (UCHT1),
CD4 (RPA-T4), CD8a (RPA-T8), and HLA-DR (L.243); PE-Cy7-
conjugated anti-human CD3 (UCHT1); APC-conjugated anti-
human CD8a (RPA-T8) and CD45RA (HI100); Alexa Fluor 647-
conjugated anti-human CD25 (BC96); Alexa Fluor 700-conjugat-
ed anti-human CD4 (OKT4), CD27 (0323) and CD69 (FN50);
Pacific Blue-conjugated anti-human CD3 (UCHT1), CD4 (RPA-
T4), and CD45 (HI30) (all purchased from BioLegend, San Diego,
CA). FITC-conjugated anti-human Ki-67 (B56) and PE-Cy7-
conjugated anti-human CD197/CCR7 (3D12) were purchased
from BD Biosciences (San Diego, CA). APC-conjugated anti-
human CD14 (TUK4) was purchased from Miltenyi Biotec Inc.
Anti-human CDl1la (TS1/22.1.1.13) and CD38 (OKT10) anti-
bodies were prepared from hybridoma cells (ATCC Nos. HB202
and CRL8022, respectively) and were conjugated with Alexa Fluor
647 and Alexa Fluor 700, respectively, using Alexa Fluor
succinimidyl esters (Invitrogen, Carlsbad, CA). Dead cells were
stained with propidium iodide or with a LIVE/DEAD Fixable
Dead Cell Stain Kit (L.34957; Invitrogen) and were gated out
during analysis. Intracellular staining for Ki-67 and IFN-y was
performed using a BD Cytofix/Cytoperm Fixation/Permeabiliza-
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Table 1. The number of mice used in the present study.

Humanized NOJ Mice for HIV-1 Infection

Figure Number of NOJ mice

Notes

Total Composition (donor #)

Total

Composition (donor #)

2 (D56), 3 (D57), 3 (659), 1(D62), 1 (D63),1 28
(D65), 1 (D69), 1 (D74), 3 (D80)

Figure 2
B, C

Fiéﬁre 3.
A

Figure 4

Figure 5

(

D E 3
Figwe7 , ‘
A B C 7 (D101}

Figure 8 3

3 (D65) 1

3 (D47), 2 (D49), 2 (D51), 1 (D52), 2 (D56), 2
(D57), 3 (D59), 2 (D65), 3 (D67), 1 (D68), 2
(D69), 1 (D74), 4 (D80)

*Representative of Figure 3B

3 (D80), 3 (D92)
3 (D92)

2 (D57), 1 (D59), 2 (D69), 1 (D80)

1 (D59)

2 (D13),' 1/ (DiS), 5(D122)

3 (D33)

doi:10.1371/journal.pone.0053495.t001

tion Solution (BD Biosciences) or a FIX & PERM Fixation and
Permeabilization Kit (Invitrogen). Absolute cell counts in the
peripheral blood of hNOJ mice were determined using Trucount
tubes (BD Biosciences). Data were collected using a FACGSCanto IT
(BD Biosciences) and analyzed using FACSDiva software (BD
Biosciences) or FlowJo software (Tree Star, San Carlos, CA).

Ex vivo IFN-y Production in CD4* T Cells Induced by PMA/
ionomycin Stimulation

Purified CD4" T cells were stimulated ex vizo with or without
20 ng/ml phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich,
St. Louis, Mo) and 1 pg/ml ionomycin (Sigma-Aldrich) in RPMI
medium containing 10% heat-inactivated fetal bovine serum,
100 pg/ml penicillin, 100 pg/ml streptomycin, 2 mM L-gluta-
mine, 5 pg/ml brefeldin A, and 2 pM monensin at 37°C for 4 h.

PLOS ONE | www.plosone.org

Intracellular IFN-y was analyzed by flow cytometry as described
above. Because PMA treatment downmodulates CD4 expression
[30], and to distinguish CD4" T cells from CD8* T cells (a minor
contaminant in the purified CD4" T cell fraction), CD3*CD8™ T
cells were denoted as CD4" T cells in this experiment.

Detection of Cytokines in the Plasma

IL-2, IL-7, and IL-15 levels in the plasma from routinely
collected peripheral blood samples were measured using a Milliplex
MAP Human Cytokine/Chemokine Pane]l (Merck Millipore
Japan, Tokyo, Japan) on a MAGPIX platform (Merck Millipore
Japan).
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Figure 1. influence of irradiation on the survival and growth of hNOJ mice. Newborn NOJ mice (12 days after birth) were irradiated (1 Gy)
or not before transplantation with CD34"CD133" HSCs isolated from human cord blood. (A) Survival curves for hNOJ (IR+) and hNOJ (IR—) mice
(n=16 and n=28, respectively). Significant differences (""P</0.001) were determined by the log-rank test. (8) Changes in the body weight of hNOJ
(IR+) and hNOJ (IR—) mice (n=7 and n= 10, respectively). Data are expressed as the mean = SD. Significant differences (" P<0.001) were determined

by the unpaired t test.
doi:10.1371/journal.pone.0053495.g001

Fusion Assay

A fusion assay was performed using HIV-1 possessing p-
lactamasc-Vpr chimeric proteins (BlaM-Vpr) and CD4" T cells
loaded with C:CF2 dye, a fluorescent substrate for B-lactamase, as
previously described [31,32]. In brief, RS HIV-Ini apan [29]
containing BlaM-Vpr (I{IV'1NI:A[)S»I)-]}I;];\’[»\"pr) was obtained by
cotransfecting 293T cells with pNL-ADS-D  plus pMM310,
encoding Escherichia coli B-lactamase fused to the amino terminus
of Vpr [33]. The purified CD4" T cells (1 x 10° cells) were infected
with 200 ng of p24-measured amounts of HIV-1x; aps-p-sravi-vpr
by spinoculation at 1200 xg for 2 h at 25°C: as previously described
[34]. After spinoculation, cells were washed and then incubated in
RPMI containing 10% heat-inactivated fetal bovine serum for 2 h
at 37°C to induce viral fusion. After fusion, cells were washed and
loaded with CCI2-AM for 1 h at RT using a GeneBLAzer In Vivo
Detection Kit (Invitrogen). The dye-loaded cells were incubated
overnight at RT and subjected to flow cytometry. Cells permissive
for HIV-1 fusion were detected at a fluorescence emission
spectrum of 447 nm after excitation with a 405-nm violet laser

in a FACSCanto II.

In vivo HIV-1 Infection of hNOJ Mice

hINOJ mice were challenged intravenously with 200 ng of p24-
measured amounts of RS HIV-Ini.apg-p, which express DsRed
[29]. Peripheral blood was harvested from the HIV-1-challenged
hNOJ mice on a wecekly basis. All animal experiments with highly
pathogenic viruses were conducted in a biosafety level 3
containment facility.

Detection of Plasma Viral RNA by Quantitative Real-time
RT-PCR

Viral RNA was extracted from the plasma and purified using
a QJAamp Viral RNA Mini Kit (Qiagen, Valencia, CA). The
RINA was subjected to quantitative real-time RT-PCR using
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a SuperScript III' Platinum One-Step Quantitative RT-PCR
System (Invitrogen) with the following set of HIV-1 gag primers
and probe [35]: forward primer, HIVgag638 (+) (5'-
CTCTCGACGCAGGACTCGGCTTGCT-3'); reverse primer,
HIVgag803 (—) (5’-GCTCTCGCACCCATCTCTCTCCTTC-
TAGCC-3"); and HIV-1 gag probe, TagMan 720R748 (FAM-5'-
GCAAGAGGCGAGRGGUGGCGACTGGTGAG-3'-BHO-1).
PCR was performed using an Mx3000P PCR system (Stratagene,
La Jolla, CA). The detection limit was set at 5000 copies/ml
plasma using samples obtained from HIV-lxy, apg.p-challenged
NOJ mice that were not transplanted with HSCs.

Statistical Analysis

The significance of the data was evaluated using an unpaired ¢
test, a paired ¢ test, the Mann-Whitney U test, the Wilcoxon signed
rank test, Spearman’s rank correlation cocfficient, or Tukey’s or
Bonferroni multiple comparison tests based on the normality and
variance of the data compared, or the Log-rank test (see individual
Figure Legends). Prism ver.4 software (GraphPad Software, Inc.,
San Diego, CA) was used for all analyses. P<<0.05 was considered
statistically significant.

Results

Influence of Irradiation on the Survival and Growth of
hNOJ Mice

We initially examined how the irradiation of recipient mice
influences their survival and growth. Because infant mice were
sometimes cannibalized and abandoned by their mothers, and the
death of an infant could not always be attributed to irradiation, we
started monitoring weaned mice from 6 wk post-transplantation.
There was a significant difference between the survival curves of
irradiated hNOJ (hNOJ (IR+)) and non-irradiated hNOJ (hNOJ
(IR—)) mice (n= 16 and n= 28, respectively, P<0.001) (Figure 1A).
At 16 wk post-transplantation, the survival rate of hNOJ (IR+)
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Figure 2. Development of human hematopoietic cells in hNOJ mice. (A) Changes in the percentage of human CD45" (hCD45") cells within
the PBMC population from hNOJ (IR+) and hNOJ (IR—) mice (n=22 and n=13, respectively). Data are expressed as the mean = SD. Significant
differences (“P<0.01) were determined by the Mann-Whitney U test. (B) Percentage of human CD34™" cells within the BM cells isolated from hNOJ
(IR+) and hNOJ (IR—) mice (n=5 and 6, respectively) at 8 wk post-transplantation. Data are expressed as the mean = SD. Significant differences
("P<0.01) were determined by the Mann-Whitney U test. (C) Association between the percentage of hCD45" cells within the PBMC population and
that of CD34" cells within the BM cells of hNOJ (IR+) and hNOJ (IR—) mice at 8 wk post-transplantation (11 plots from five hNOJ (IR+) and six hNOJ
(IR—) mice). Spearman’s rank correlation coefficient was used for statistical analysis. (D, E} Changes in the percentage of human CD19" B cells, CD14*
monocytes, CD4" T cells (CD3*CD4"CD8™ cells), and CD8* T cells (CD3"CD4~CD8" cells) within the peripheral blood hCD45" cell population (D) or
total PBMC populstion (E) from hNOJ (IR+) and hNOJ (IR—) mice (n=22 and n=13, respectively). Data are expressed as the mean = SD. Significant
differences ('P<0.05, "'P<<0.01, ""P<<0.001) were determined by the Mann-Whitney U test.

doi:10.1371/journal.pone.0053495.g002

mice dramatically ‘declined (median survival: 20.0 wk) and none
survived beyond 25 wk post-transplantation (Figure 1A). However,
obvious signs and symptoms of illness, such as wasting, weakness,
diarrhea, hunchback posture, and alopecia, were not observed
during their lifetime; although the growth of hNOJ (IR+) mice
(n=7) was significantly stunted compared with that of hNOJ
(IR—) mice (n=10) (Figure 1B). Although the life-span of the
hNOJ (IR+) mice used in the present study was shorter than that
reported previously [18], probably because of the environmental
conditions in our animal facility, these results demonstrated that
irradiation apparently induces high mortality and low growth in
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hNOJ mice. Therefore, in the present study, the averaged data
obtained from hNOJ (IR+) mice surviving up until 16 wk post-
transplantation are reported for all the following experiments.

Development of Human Hematopoietic Cells in hNOJ
Mice

Reconstitution of human hematopoietic cells (i.e., chimerism) in
hNOQOJ mice was investigated by flow cytometry using peripheral
blood samples collected routinely (every 4 wk) after 8 wk post-
transplantation. hNOJ (IR+) mice (n= 22) showed higher chime-
rism (according to the percentage of human CD45" (hCD45%)
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doi:10.1371/journal.pone.0053495.g003
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Figure 4. Activation status of CD4" T Cells in hNOJ mice. (A) Changes in the percentage of CD69* (upper) and HLA-DR" (lower) cells within the
peripheral blood CD4" T cells isolated from hNOJ (IR+) and hNOJ (IR—) mice (n=18 and n=6, respectively). Data are expressed as the mean *+ SD.
Significant differences ('P<0.05, ““P<0.0001) were determined using the Wilcoxon signed rank test or a paired t test. (B) Percentage of HLA-DR" cells
within the CD4* T cell populations isolated from PBMCs, spleens (SP), and BM from hNOJ (IR+) mice at 8 wk post-transplantation (n=2) and hNOJ
(IR—) mice at =20 wk post-transplantation (n=4), and from human PBMCs (n =7). Data are plotted individually. The black line represents the mean.
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