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including HIV-2, feline immunodeficiency virus (FIV),
bovine immunodeficiency virus (BIV), EIAV, and MLV
[297]. Collectively, these results demonstrated that
SAMHDI1 is a Vpx target that strongly blocks viral repli-
cation in non-dividing cells by depleting the intracellular
dNTP pool. SAMHDI1 is a nuclear protein, but its
nuclear localization is not required for its enzymatic
activity and/or antiviral activity [293,294]. Because cellu-
lar AN'TPs are not compartmentalized, SMAHD1 should
be able to degrade dN'TPs in both the cytoplasm and the
nucleus (Figure 1). Although SAMHDI imposes an
important block to HIV-1 infection, disruption of this
block cannot restore HIV-1 replication in resting CD4"
T cells, indicating that there are additional blocks in
these cells [301,302]. In addition, another type I IFN-
inducible unknown restriction factor in dendritic cells,
which also blocks HIV-1 replication at an early step and
is counteracted by Vpx, needs to be identified [328].

An important feature of SAMHD1’s antiviral activity is
that it requires cells to stay in a resting or non-dividing
state. The SAMHDI1 activity is only detectable in the
myeloid cell lines THP1 and U937 after they are fully
differentiated into macrophages by treatment with phor-
bol myristate acetate (PMA) [323]; although activated
primary CD4" T cells still express SAMHD]I, this expres-
sion neither reduces intracellular dAN'TP levels, nor does
it inhibit HIV-1 replication [302,323]. In addition,
ectopic expression of SAMHDI in a human T cell line
did not show these restrictive activities, either [317,323].
Because dividing cells maintain high levels of dNTPs,
SAMHD1 may not sufficiently reduce dNTPs to restrict
viral replication. Thus, SAMHDI1-mediated dJNTP
hydrolysis and inhibition of viral reverse transcription
stand as a very attractive model for SAMHD1 antiviral
mechanism in non-dividing cells. Alternatively, the
SAMHDI1 antiviral activity may not be completely
dependent on the dNTP triphosphohydrolase activity.
Because SAMHD1 has nucleic acid binding activity, it
may interact with viral reverse transcription complex
and inhibit production of full-length viral DNA, and this
activity may require other cellular factor that is only
expressed in non-dividing cells. Thus, the regulation of
SAMHDI antiviral activity remains an important area of
future study.

Action of Vpx

As introduced earlier, Vpx tightly associates with
DCAF1, which is a substrate receptor subunit of the
Cul4A E3 ubiquitin ligase complex, and this interaction
is linked to Vpx activity to relieve SAMHDI restriction
in non-dividing cells [307]. Like Vpr, the Vpx protein has
three central a-helices connected by two flexible loops
and unstructured amino and carboxy termini (Figure 6)
[329,330]. Like SAMHD]1, Vpx is also a nuclear protein,
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which is determined by a C-terminal proline-repeat and
a NLS motif crossing the end of second loop and the
beginning of the a-helix 3 region [329]. Vpx binds
DCAF1 through the a-helix 3 region where the
Q76 residue is located [312], and it binds to SAMHD1
through the N-terminal unstructured region, where
the T17 residue is located [331,332]. Vpx recognizes the
C-terminal 31 amino acid residues of SAMHDI, loads
this protein onto the Cul4A-DCAF1 complex, and trig-
gers SAMHDI1 proteasomal degradation [331,333].
Indeed, the SAMHD1 C-terminal tail is highly divergent
among vertebrate species; so the neutralization of
SAMHDI by Vpx is highly species-specific. For example,
Vpx from SIVmac239 can effectively neutralize human
but not mouse and zebrafish SAMHD1 [331]. In
addition, this domain is the target for strong positive
selection during primate evolution, which contains a
cluster of five positively selected sites. Among these, the
last M626 residue critically determines human and
primate SAMHD1 sensitivity to Vpx [333]. Several other
positively selected residues are also found in the
N-terminal region, and among these, the G46 and R69
also contribute to this species-specific interaction [334].
Notably, although SAMHD1 still retains antiviral activity
when it is relocated to cytoplasm, the cytoplasmic
SAMHDI1 becomes resistant to Vpx-induced degrad-
ation [293,294]. Because Cul4A and DCAF1 are also nu-
clear proteins, which can induce polyubiquitylation of
proteins associated with chromatin [335], it is possible
that Vpx loads SAMHDI1 onto the Cul4A/DCAF1 E3
ligase complex in the nucleus. However, it is still incon-
clusive whether SAMHD1 is degraded in the nucleus
[294], or it is re-targeted to the cytoplasm for degra-
dation [293,333].

HIV-1 does not have the capability to neutralize
SAMHDI, because its Vpr does not degrade SAMHD1
and it does not encode a Vpx protein. However, an evo-
lutionary study has uncovered that the ancestral Vpr
gene had the ability to antagonize SAMHD1 before it
gave rise to the Vpx gene [334]. Accordingly, Vpr pro-
teins from several SIV strains isolated from different old
world monkey species are still able to degrade SAMHD1
[294,334]. SAMHD1 may have exhibited evolutionary
pressure to differentiate Vpr and Vpx, so that the two
proteins have divergent functions. HIV-1 is originally
from SIVcpz, whose Vpr does not have SAMHDI-
degrading ability [334]. This and other factors may
explain why HIV-1 replicates in macrophages at very
low levels, and why it cannot infect efficiently dendritic
cells [336]. In fact, by not infecting dendritic cells,
HIV-1 could avoid activating a cryptic sensor, which
induces type I IFNs and thus activates an antiviral
response [337]. By evading detection by this sensor,
HIV-1 is able to replicate in macrophages at a low level
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that is sufficient to transmit the virus to activated CD4"
T cells. This covert replication strategy may help HIV-1
to establish a persistent infection in humans. In addition,
although HIV-1 Vpr does not overcome SAMHDI, it
may target another unknown restriction factor in human
CD4" T cells, and this mechanism needs to be clarified
[338-340].

MoVv10

The Moloney Leukemia Virus 10 inactivated gene
MOVIO was first discovered from the Moloney murine
leukemia virus (M-MLV)-carrying mouse strains (Mov
mice), which have a single copy of M-MLV provirus at
different loci after germline infection [341]. These MOV
mice show three different levels of viral replication
during development: viremic, conditional viremic, and
non-viremic. The MOV10 mouse is non-viremic,
because the provirus has mutations in the gag-pol region
and does not produce infectious particles [342]. The
provirus is integrated into a gene locus on chromosome
3, which encodes a 110-kDa protein. Since this protein
contains three consensus elements for GTP-binding pro-
teins, it was named gb110 [343]. Later, it was found that
this protein has seven conserved helicase motifs, which
classified it as a SF-1 helicase [344]. Helicases have
purine nucleoside triphosphate phosphatase (ATPase or
GTPase) activity, which catalyzes the separation of DNA
and/or RNA duplex into single strands in an ATP-
dependent reaction [345]. They may have up to seven
helicase motifs (I, Ia, 1I, IIL, IV, V, and VI) and are classi-
fied into three super families (SF-1, SF-2, SF-3) and two
small families (F-4, F-5) [346]. Motif I has a GxxxxGKT/S
consensus and binds to phosphates; and muotif II has a
" DExx consensus and binds to magnesium (Figure 7).

Page 16 of 28

These two motifs catalyze the hydrolysis of purine
nucleoside triphosphate, providing energy for helicase ac-
tivity. The other five motifs are more diverse, and they
could contribute to RNA or DNA binding [346]. All heli-
cases have motifs I and II, but only SF-1 and SF-2 heli-
cases have all seven motifs [347]. MOV10 has all seven
motifs, and its motif II has a DEAG fingerprint, which
qualifies it as a SF-1 helicase [344]. The physiological
function of MOV10 was not clear until its ortholog in
Arabidopsis, the silencing defective gene 3 (SDE3), was
found to be required for the RNA silencing pathway [348].
This activity was confirmed by another ortholog in Dros-
ophila, the Armitage (Armi) gene, which is also required
for the RNA silencing pathway [349,350]. In addition,
MOV10 interacts with the RNA interference machinery
through the Argonaute 2 (Ago2) protein in mammalian
cells, which further highlights its important role in the
regulation of gene expression [351,352].

Discovery of MOV10 antiretroviral activity
Because the RNA interference (RNAi) pathway defends
viral infection in plants, invertebrate, and vetebrate
animals [353-355], several components of the mamma-
lian RNAi machinery have been tested for anti-HIV
activity [356-360]. Among these proteins, MOV10 was
consistently found to have very potent and direct anti-
HIV-1 activity when it was ectopically expressed
[356,358,360,361]. MOV10 additionally inhibits SIV
[360], MLV [360], EIAV [358], hepatitis C virus (HCV)
[362], and vesicular stomatitis virus (VSV) [363]. Thus,
MOV10 has very broad antiretroviral activity, and this
activity may extend to several RNA viruses.

MOV10 has a mammalian paralog, which is called
MOV10-like-1 (MOV10L1). MOV10L1 shares 45% amino
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Figure 7 Schematic illustration of human MOV10 protein. Numbers indicate amino acid positions. The Cys-His-rich (CH) domain, helicase
domain, and seven helicase motifs (, la, II, lll, IV, V, VI) are indicated. The amino acid sequences of these motifs from MOV10 and MOV10L proteins
are aligned. Dots indicate identical residues, and critical residues in each motif are in orange color.
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acid identity with MOV10 in the C-terminal helicase
region (Figure 7), and it is specifically expressed in the
mouse germ cells [364]. Knockout studies demonstrate
that MOV10L1 is required for spermatogenesis by serving
as one critical component of the Piwi-interacting RNA
(piRNA) pathway, which specifically inhibits retrotrans-
poson activity [365,366]. ~41% of the human genome is
constituted from retrotransposons [367], including en-
dogenous retroviruses (ERVs), long-interspersed-element
1 (LINE1), short-interspersed-elements (SINEs)/Alu, and
SINE-VNTR-Alu (SVA) [368]. Like retroviruses, the ERVs
have two long terminal repeats (LTRs), so they are also
called LTR-retrotransposons, and the others are called
non-LTR retrotranspnosons (LINE1, SINE-Alu, SINE-
SVA). The LTR and LINE1 retrotransposons are strongly
activated in the primary spermatocytes of MOVI1OL1
knockout mice, followed by death of these cells, indicating
that MOV10L1 plays a critical role in genome integrity in
germ cells. Indeed, MOVI10 exhibits similar anti-
retrotransposon activity in vitro, which inhibits both LTR
and non-LTR retrotransposons [361,369,370]. Thus, like
A3 proteins, the MOV10 antiviral activity also applies to
endogenous retroviral elements. Notably, although both
exogenously and endogenously expressed’ MOV10 pro-
teins inhibit retrotransposon replication [361,369], the
endogenous MOV10 was found unable to inhibit HIV-1
replication [361]. This puzzle needs to be solved.

Action of MOV10

The human MOVI10 has 1,003 amino acids, which are
translated from 20 or 21 exons in chromosome 1 (Figure 7).
Its seven helicase motifs are located in the C-terminal re-
gion from residues 524-911. Notably, its N-terminal
region from residues 93-305 contains a structurally
exposed Cys-His-rich (CH) domain [371], which has been
recently recognized as a novel class of protein-protein
interaction module [372]. MOVI10 decreases both the
quantity and quality of the HIV-1 infectious particles in
viral producer cells. MOV10 reduces HIV-1 production,
possibly by decreasing Gag expression and processing, but
this mechanism is still unclear [356]. In addition, MOV10
is packaged into virions and inhibits HIV-1 replication
from the 2™ cycle by interfering with viral reverse tran-
scription (Figure 1) [356,358,360]. The MOV10 packaging
involves a specific interaction with Gag. MOV10 interacts
with Gag in the NC region, probably via the basic linker
domain [371]. On the other hand, Gag binds to the
MOV10 CH domain via a region from amino acid
261-305 [371]. However, the CH-domain is not sufficient
for packaging of the full-length MOV10 protein, and its
packaging also requires the C-terminal helicase motifs
[371]. Because these helicase motifs have high-affinity for
RNA, unknown cellular RNAs are required for MOV10
packaging. In fact, MOV10 is packaged inside the core
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[360], which allows MOV10 to directly interact with viral
RNA and block viral reverse transcription in the target
cells. Compared to its reduction of viral production, the
reduction of viral infectivity by MOV10 is more significant,
leading to over 100-fold inhibition of viral replication.
MOV10 also associates with retrotransposon ribonucleo-
protein particles (RNPs) and inhibits their replication in a
similar manner [369,370]. LINE1 produces two proteins: a
40-kDa RNA-binding protein ORFlp, and a 150-kDa
ORF2p protein that has endonuclease and reverse tran-
scriptase activities. MOV10 tightly interacts with ORFlp,
which mediates its strong anti-LINE1 activity [369].
Because all these inhibitory activities require its helicase
domain, MOVI10 likely recognizes a common RNA
secondary structure to exhibit its inhibitory effect. Unlike
other restriction factors, MOV10 has not been subjected to
positive selection, indicating that it may not participate into
the co-evolutionary arms race with exogenous pathogens.
However, its strong sequence conservation across species
suggests that MOVI10 may play an important role
in vivo [369].

MicroRNAs
While the primary aim of this review is to survey protein
restriction factors, one should be mindful that non-coding
RNAs and RNAi activities have also been found to play
increasingly significant regulatory and effector roles in
eukaryotic biology. Indeed, RNAI activity is ubiquitously
involved in normal and diseased physiology including can-
cers, metabolic disorders, and infectious diseases
[373-375]. In the realm of host-virus interaction, it was
originally thought that RNAi only serves host defense
against viral infection in plants and invetebrate animals
[376,377]; however, emerging evidence suggests that this
defense also functions in mammals [353,378]. Significant
findings supportive of this notion arise from evidence that
the virulence of viral infection in mammals is exacerbated
by a reduction in host RNAi function [348,355,379-381].
MicroRNAs (miRNAs) represent a major class of small
non-coding RNAs in the human genome. Humans
encode for more than 1,600 characterized miRNAs
(miRbase.org). Relevant to HIV-1, many human miRNAs
have been found to directly target HIV-1 sequences and
to attenuate virus replication in cells. These include
miR-28, miR-29a, miR, miR-125b, miR-150, miR-223,
miR-382, miR-133b, miR-138, miR-149, and miR-326
[382-388]. Other cellular miRNAs have also been shown
to indirectly target factors such as PCAF and cyclin T1
that are needed by HIV-1 to replicate [355,389,390]. In
this manner, these miRNAs can indirectly repress HIV-1
replication in cells [391]. MiRNA-repression of the intra-
cellular replication of mammalian viruses appears to be
a common theme; indeed, an increasingly large number
of published reports document the suppression by
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various human miRNAs of Epstein Barr Virus (EBV)
[392,393], Kaposi’s sarcoma Herpes virus (KSHV) [394],
hepatitis B virus [395,396], coxsackie virus [397], human
papilloma virus [398], amongst others. This list of exam-
ples promises to grow longer over time.

In view of the above, how do viruses counter the host
cell's RNAI restriction? In principle, there are several
means that viruses can employ, including the shielding
of viral genomes from access by RNAi, the mutation of
viral sequences to evade RNAi, the encoding of viral
RNAi suppressor moieties, and changing the miRNA
expression profile of the infected cells [399]. For HIV-1,
several published reports have shown that the virus can
explicitly alter the cellular profile of miRNA expression
[400,401], presumably to benefit viral replication. Other
reports have implicated that the HIV-1 Tat protein
[402-407] and the viral TAR RNA [408] serve RNAi-
suppressing activities. Tat, like the HTLV-1 Rex protein,
likely suppresses RNAi through sequestration of RNA
via its basic amino acids [409]. Nevertheless, the RNAi-
suppressing activity of Tat appears to be modest and has
been difficult to measure in some assays [410].

Several HIV-1 encoded small non-coding RNAs
(ncRNAs) have also been identified in infected cells
using next generation pyrosequencing; and the over
expression of these ncRNAs represses viral replication
[411-413]. HIV-1, like HTLV-1 [414,415], also expresses
antisense non-coding RNAs [416,417]. Currently, we do
not fully understand the roles of these non-coding HIV-
1 RNAs. The clarification of their biological functions in
virus replication represents an important future chal-
lenge for investigators.

Conclusions

Over the past decade much progress has been made in
generating insights into HIV-1 virus-host interactions. In
this respect, several hundred host dependency factors
have been identified that act positively to regulate HIV-1
replication in human cells [418-423]. As a counterweight
to the study of positive host factors, it is also instructive
and important to appreciate the role that restriction fac-
tors play in moderating HIV-1 replication. Our survey
here of several examples of HIV-1 restriction factors is
not intended to be complete or fully comprehensive. We
hope the review provides a platform that introduces this
topic to those readers interested in further studies of
viral restriction factors.
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Abstract

T cells are key mediators of cell-mediated immunity. Their functions and proliferation result from T cell-specific
receptor signaling (TCR/CD28) that activates the NF-kB, NFAT, Ras-MAPK, and PI3K-Akt pathways. Their
development and activation also involve a complex array of signaling pathways that regulate gene expression
networks, including signaling of mTOR, Notch, Wnt, Hedgehog, TGF-8, and toll-like receptors. Furthermore, recent
discoveries have provided two molecular hallmarks of potential generality: miRNA patterns and polycomb-mediated
epigenetic reprogramming, which can strongly coordinate the balance between molecular networks in lymphocytes.
Their deregulation apparently causes T cell disorders, such as T cell acute lymphoblastic leukemia (T-ALL), and
human T cell leukemia virus (HTLV-1)-induced adult T cell leukemia (ATL). This review continues with a description
of our understanding of crosstalk among the signaling pathways, which contribute to the highly orchestrated
development of T cell fate specification under both normal physiological and pathological conditions.

Introduction

T cells use diverse genetic programs to direct the development
of distinct lineages and the generation of several effector functions
required for innate and adaptive immunity. The molecular networks
in T cells are strictly controlled by the input from intercellular and
extracellular signals. T cell activation is basically achieved by antigen-
presenting cells (APCs). Antigen recognition by and signaling through
the T cell receptor (TCR) are crucial processes for T cells and provide
the molecular underpinning for the specificity and execution of
immune system responses.

TCR-mediated signaling pathways are the bare bones of T cell
activation. However, several other signaling pathways are intimately
associated with T cell development, activation, and homeostasis. In
addition, newly emerging molecular characteristics have been proposed
on the basis of studies of normal T cells and T cell malignancies.
This new paradigm includes miRNA-mediated gene regulation and
epigenetic reprogramming.

In this review, by dissecting each signaling pathway, we summarize
the molecular hallmarks of T cells. We first briefly introduce the
fundamental molecular mechanisms involved in T cell activation
and gene expression related to T cell functions [1,2]. These signaling
pathways are also involved in T cell development and disorders. We
next discuss the newly emerging signaling pathways involved in T
cell biology. Genetic and physiological studies have indicated that the
pathways primarily identified in the areas of development, regeneration,
and innate immunity are also closely associated with T cell functions
and their appropriate development. Finally, we discuss regarding a
conceptual advance, i.e., crosstalk between several signaling pathways.

The complexity of signaling networks within T cells confers
robustness to specific and diverse gene expressions and biological
functions. The complex signaling regulation that is involved within
different environments has been suggested from investigations in
immature and mature T cell malignancies, including T cell acute
lymphoblastic leukemia (T-ALL) and adult T cell leukemia/lymphoma
(ATL).

Proximal Signaling of TCR-mediated T cell Activation

T cells are instructed to use their developmental and effector
programs through stimulation of the TCR complex and costimulatory
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molecules, which are presented by professional APCs, e.g.,
macrophages, dendritic cells, and B cells. TCR signaling is initiated by
CD3 phosphorylation. The CD3 proteins comprise a series of dimers,
including ye, 8¢, and {(, which are associated with a single TCRap
heterodimer (Figure 1). After the recognizing cognate complexes of
foreign peptide and self major histocompatibility complex (MHC) class
II (pMHC) molecules, TCR/CD3 affects signaling cascades, including
phosphorylation of proximal TCR components, Ras-mitogen-activated
protein kinase (MAPK) signaling, activation of nuclear factor kB (NF-
kB) by protein kinase C 6 (PKCO), and Ca™ flux-mediated signaling
[1]. In response to stimulation, signaling through these mediators is
integrated with input from other signaling pathways. This provides the
biological output after TCR recognition of a ligand.

CD3 phosphorylation is regulated by thelocal balance of the tyrosine
kinase Lek, which is associated with the monomorphic coreceptors CD4
and CD8 and phosphatases in the TCR signaling complex. Functional
key motifs within CD3e, y, §, and { chains, designated immunoreceptor
tyrosine-based activation motifs (ITAMs), are phosphorylated by
Lck after TCR ligation, which is an early, prerequisite step for TCR-
directed T cell activation. Importantly, conformational changes in CD3
molecules are directly induced by CD3 phosphorylation after pMHC-
TCR ligation. These conformational changes in CD3e and CD3{ make
ITAMs more accessible for phosphorylation and are required for
efficient T cell activation.
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Figure 1: TCR/CD3-mediated proximal signaling. After engagement of
TCR/CD3 complex, conformation change and following phosphorylation
cascade is induced. Activated PLCy coordinates the signaling required for T
cell activation.

Phosphorylated CD3({ (and other ITAM-containing proteins)
provides recruitment sites of the 70-kDa phosphoprotein ZAP-70,
a Syk kinase family member. That is, TCR engagement by pMHC
leads to the activation of Src family PTK, such as Lck, which results
in ITAM phosphorylation and ZAP-70 recruitment (Figure 1). The
tandem SH2 domains of ZAP-70 are engaged by the phosphorylated
ITAMs of CD3{, where in turn ZAP-70 is activated by Lck-mediated
phosphorylation.

Among the most important ZAP-70 targets are the transmembrane
adapter protein linker for the activation of T cells (LAT) and the
cytosolic adapter protein Src homology 2 (SH2) domain-containing
leukocyte phosphoprotein of 76 kDa (SLP-76). Phosphorylated LAT
in turn serves as a docking site to which a number of signaling proteins
can bind. These two adapters form the backbone of a complex that
includes several effector molecules to allow for the activation of multiple
signaling pathways. Proteins that are incorporated in these assemblies
include other scaffold molecules, such as Grb2, Gads, and enzymes like
phospholipase C y1 (PLCyl), and phosphoinositide 3-kinase (PI3K).
The coordination of these interactions and the ensuing signaling result
in a stable, but dynamic, zone of contact between APCs and T cells;
this zone has been designated the immunological synapse (IS). IS has
become a paradigm for studying the signals exchanged between the two

cell types.

A lipid raft is a microdomain within the plasma membrane that is
rich in cholesterol, glycosphingolipids, and sphingomyelin. Lipid rafts
accumulate at IS. Initial TCR activation and an early phosphorylation
cascade precedes the formation of IS, which not only provides the
sustained signaling required for gene regulation in T cells but may also
control the eventual halt of the signaling pathways. It is important that
the ability of a kinase to support TCR signaling critically depend on
its lipid modification. Indeed, the accumulation of lipid rafts and Lck
in these areas can accelerate increased phosphorylation. Within a lipid
raft, the signaling backbone established by LAT and SLP-76 coordinates
downstream signaling by controlling PLCy1 activity. However, a large
amount of data suggests that the formation of this complex is more
complicated. For its optimal activity, PLCyl directly binds to SLP-
76, LAT, and Vavl as well as to its activating kinase Itk. Lck, which
binds to CD4/8 and activates ZAP-70, also phosphorylates Itk. Itk
in turn phosphorylates PLCyl. Activated PLCyl then hydrolyzes
the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2),
producing the second messengers inositol trisphosphate (IP3) and
diacylglycerol (DAG), that are essential for T cell function (Figure 2).
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TCR-mediated Gene Regulation via NFAT, NF-xB, and
MAPK Cascades

TCR engagement results in the induction of expression of
numerous genes required for T cell activation by triggering several
signaling pathways. These pathways are described follows. Each of them
acts specifically, but collaboratively, during T cell activation process.

Ras-MAPK pathway

TCR-induced DAG production results in the activation of two major
key molecules: Ras and PKCO. DAG recruits both RasGRP and PKC8
to the plasma membrane. Activated Ras, a guanine nucleotide-binding
protein, initiates the MAPK phosphorylation and activation cascade
by activating of the serine/threonine kinase Rafl [1]. Rafl is a MAPK
kinase kinase (MAPKKK) that phosphorylates and activates MAPK
kinases (MAPKKSs), including MEK. This in turn phosphorylates and
activates MAPK extracellular signal-regulated kinase 1 (Erk1) and Erk2
(Figure 2) [3]. Erk kinase activity is regulated by its phosphorylation.
The transcription factor Elk1 is one of downstream molecule of Erk1 and
induces Fos expression. Consequently, the activation of the activator
protein-1 (AP1) complex constituted by Jun and Fos is sustained by
the DAG-Ras pathway. Jun is activated via the Vavl-Rac pathway. In
addition, Erk activation results in phosphorylation of signal transducer
and activator of transcription 3 (STAT3) and Lck.

PKCO-dependent NF-kB and AP1 pathways

Increased cellular concentrations of DAG also activates NF-
kB signaling through PKCO, a PKC family member that contains a
lipid-binding domain specific for DAG. This domain is required for
recruiting PKCB to the lipid raft after TCR engagement. Moreover,
Lck-mediated PKCO phosphorylation appears to contribute to
conformational changes required for binding of PKCBO to the lipid
membrane. This concentration of PKCO within the lipid raft enhances
binding of PKCO to DAG and results in PKC#@ activation.

NF-«B plays its most important and evolutionarily conserved role
in the immune system by regulating genes involved in inflammatory
and immune responses as well as in some aspects of cell growth, survival
and differentiation [4]. Both canonical (classical) and noncanonical
(alternative) activation of this pathway in T cells are intimately
involved in TCR-mediated T cell activation. PKCB-mediated NF-xB
induction has been shown to be selectively mediated by IKK that is

TCR/CD3

B Een
. Geneexpression. = = =

Figure 2: TCR-mediated signaling cascades. Engagement of TCR
consequently induces expression of numerous genes required for T cell
activation by triggering several signaling pathways, including Ras—MAPK
pathway, NF-kB pathway, and NFAT pathway. Each of them specifically but
collaboratively acts during T cell activation or anergy induction processes.
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associated only with the canonical pathway, whereas noncanonical
activation in T cells remains elusive. One study showed that MAP3K14
(also called NE-kB-inducing kinase; NIK), which is an essential factor
for the noncanonical NF-kB cascade, was required for complete T cell
activation [5].

Following TCR stimulation, PKCO regulates the assembly of a
CBM complex (CARMA1/Bcl10/MALT1) through its phosphorylation
of CARMA1, which is required for CARMAL oligomerization and
association with Bcll0 [6]. MALT1 physically binds to Bcll0O and
induces polyubiquitination of IKKy, the regulatory subunit of the
IKK complex, via activation of the E3 ubiquitin ligase TRAF6, K63
polyubiquitination appears to have a role in IKKy activation, which
results in IxB phosphorylation by IKK catalytic subunits and subsequent
IxB degradation. Nuclear localization of NF-«kB heterodimers induces
gene activation (Figure 2). NF-kB activation is also regulated by
costimulatory signaling (described below).

The original analysis of PKCO knockout mice revealed that two
transcription factors, NF-kB and AP, are targets of PKCO in TCR/
CD28-costimulated T cells [7-9]. The pathway leading from PKCO
to AP1 activation is less clearly understood. One study has reported
that SPAK, a Ste20-related MAP3K, is a direct substrate of PKCO in
the pathway leading to AP1, but not NF-xB, activation [10]. SPAK is
most likely a mediator of PKCO signals leading to AP1 activation, but
intermediates downstream of SPAK in AP1 activation remain to be
identified and functionally characterized.

Ca*-dependent NFAT pathway

PLCyl-mediated IP3 generation stimulates Ca® permeable ion
channel receptors (IP3R) located on the endoplasmic reticulum (ER).
This leads to the release of ER Ca*' stores into the cytoplasm. Because
Ca?* jons are universal second messengers in eukaryotic cells, TCR-
induced increases in intracellular Ca levels result in the activation
of Ca*- and calmodulin-dependent transcription factors, including
phosphatase calcineurin and the Ca**/calmodulin-dependent kinase
(CaMK). Activated calcineurin then dephosphorylates members of the
nuclear factor of activated T cells (NFAT) family, which results in their
translocation to the nucleus. In the nucleus, NFATs form cooperative
complexes with various other transcription factors, and this results
in differential gene expression patterns and functional outcomes,
depending on the context in which the TCR signal is delivered [11].
AP1 proteins are the main transcriptional partners of NFAT during
T cell activation. Cooperation between NFAT and AP integrates two
of the main signaling pathways i.e. the Ca*" signaling and RAS-MAPK
pathway. The NFAT-AP1 cooperation during T cell activation is
responsible for a specific pattern of gene expression, which induces the
functional changes that characterize an activated T cell. In the absence
of AP1, NFAT proteins activate a distinct program of gene expression.
The products of these genes inhibit T cell function at different levels and
induce a status of T cell unresponsiveness, which is one of processes
to induce the immune tolerance [12]. Thus, NFAT proteins control
two opposing aspects of T cell function i.e. activation and anergy [13]
(Figures 2 and 3).

Costimulation Signaling

A most important gene induced by TCR-mediated signaling is IL-
2, which can activate STAT pathways. However, full induction of IL-2
expression is not achieved by TCR signaling alone, i.e., a nonresponsive
state (anergy) exists in which T cells are refractory to restimulation.
Additional engagement of other cell surface receptors provides and
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integrates signals required for anergy avoidance and productive T cell
activation. Although many cell surface receptors can participate in
costimulation signaling, CD28 provides more robust signals than other
costimulatory molecules.

Weak TCR ligation does not lead to cell proliferation and
differentiation; rather, it results in anergy or cell death. However,
if engaged, CD28 strongly amplifies a weak TCR signal. In contrast,
triggering of CD28 alone results in the transient expression of only
a few genes and has no obvious biological consequences. A question
has arisen whether TCR and the coreceptors induce separate
signaling pathways (qualitative model) or whether the signaling
pathways triggered by both receptor systems are entirely overlapping
(quantitative model) [14].

Many studies have indicated that the signals generated by CD28
ligation have no unique effects. A microarray study showed that
TCR-induced expression of thousands of genes in primary T cells was
amplified (or suppressed) to varying degrees by CD28 costimulation,
but that no new gene was induced by CD28 costimulation [15]. Indeed,
all of the factors identified as components of the CD28 signaling
pathway are those that are implicated in TCR-mediated signaling.
These include PI3K, the Tec family of PTKs, such as Itk, Vavl, and the
serine/threonine kinase Akt (also known as PKB), and NF-«B signaling.

CD28-mediated PI3K-Akt pathway

PI3K recruitment is a key event for coupling CD28 to several
signaling pathways. Following engagement of CD28 with its ligands
CD80 or CD86 expressed on APCs, the p85 regulatory subunit of
PI3K associates with the phosphorylated cytoplasmic tail of CD28.
This regulatory subunit recruits the p110 catalytic subunit of PI3K,
which can convert PIP2 to PIP3 in the cell membrane. Then, the locally
generated PIP3 serves as a docking site for the PH domains of PDK1
and its target Akt (Figure 3). '

Akt phosphorylates multiple proteins involved in numerous
cellular responses. Activated Akt enhances the nuclear translocation
of NF-«kB by associating with CARMA1 and facilitating the assembly
of the CBM complex, a step critical for NF-xB activation [16]. In
addition, one well-known Akt target is GSK-3, a serine/threonine
kinase that influences the nuclear export of NFAT as well as the Wnt
pathway. Thus, Akt-mediated GSK-3 inactivation might be a pathway
responsible for prolonged NFAT nuclear localization and thus IL-2
transcription following CD28 costimulation (Figure 3).

DCDSO/CDBS

TCR/CD3

Figure 3: Costimulation signaling. Additional engagement of cell surface
receptors such as CD28 provides and integrates signals required for anergy
avoidance and productive T cell activation. The signaling generated by CD28
ligation has no unique effects but enhances the T cell signaling, including
pathways of PI3K--Akt-mTOR, NF-kB, NFAT-AP1, and MAPK.
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CD28/PI3K-generated PIP3 also provides a docking site for the
PH domain of Itk. As described above, Itk associates with the TCR
downstream complex consisting of LAT/SLP-76/Gads/PLCy1 (Figure
3). Importantly, the localization and activation of this signaling
complex depends on PI3K-generated PIP3.

A novel signaling mechanism has been suggested where by CD28
regulates CAMP degradation in T cell rafts through the recruitment
of an Akt/B-arrestin/PDE4 complex [17]. CD28/PI3K-mediated PIP3
production recruits this supramolecular complex to lipid rafts, with
recruitment occurring through the Akt PH domain.

Thus, although many of these pathways are activated by TCR
ligation alone, the magnitude and maintenance of T cell activation
signaling required for an appropriate response appear to be
considerably regulated by costimulatory signals. This suggests that
CD28 engagement primarily functions in a quantitative rather than a
qualitative change in T cell activation.

CD28-mediated NF-«kB pathway

Another important CD28 mediator is NF-kB signaling. CD28/
PI3K generates the second messenger PIP3 that binds to various
proteins harboring PH domains, including PDK1 and Akt. At present,
we know that Akt is not an essential component of NF-«B signaling,
at least in T cells. Akt appears to function as a rheostat; Akt can gently
modulate the strength of the NF-kB cascade through its interaction
with CARMAL (Figure 3) [16]. Of note, PDK1, which is recruited to
newly generated PIP3, can efficiently bind to both PKC6 and CARMA1
[18]. CD28 facilitates NF-«B activation by regulating the recruitment
and phosphorylation of PDK1, which are necessary for the efficient
binding of PDK1 to PKC68 and CARMA1 and thus for NF-«B induction.
Furthermore, TCR/CD28 confers the noncanonical NF-kB activation
in naive T cells [19]. Taken together, NF-xB signaling is one of the
major signaling pathways regulated by costimulation. Full activation
of the NF-kB pathway requires CD28-mediated costimulatory signals
in T cells.

CD28-Vavl pathway

Vavl is a guanosine exchange factor (GEF) for several small
GTPases, including RACl, RAC2, and RHOG. Vavl controls
several biochemical processes, such as those involved in cytoskeletal
rearrangements. In addition, Vavl strongly amplifies CD28-mediated
costimulation-dependent activation of NFAT, NF-kB, CD28 response
element, and JNK [20,21].

T cell development is markedly reduced in Vavl-deficient mice
[22]. Of note, a CD28 mutant, which is unable to activate Vavl, does
not alter TCR-directed ZAP-70 and LAT phosphorylation, but it does
affect SLP-76, PLCy1, and Itk phosphorylation and Akt activation [23].
This phenotype, which is remarkably similar to that of VavI-deficient
T cells [24], supports a role for Vavl as a crucial signaling effector of
CD28 costimulation.

TCR/CD28 and MAPK pathways

TCR engagement activates the ERK, JNK, and p38 cascades in T
cells. With regard to costimulation effects, one study demonstrated
that T cell activation involves these three MAPK cascades [25]. pMHC
ligation directly activates the Ras-MEK-ERK pathway, as described
above. JNK activation stimulated by TCR engagement requires CD28
coligation in T cell clones. However, JNK activation is not observed
in mouse primary T cells. TCR and CD28 synergize after coligation
to elicit enhanced p38 MAPK activation. p38 MAPK, but not JNK, is
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involved in signal integration during costimulation of naive mouse
primary T cells. Indeed, the p38 MAPK inhibitor SB203580 blocks
CD28-dependent proliferation and IL-2 production in human T cells
[26]. We currently do not know how p38 modulates TCR signaling and
IL-2 production.

Studies using both pharmacological and genetic manipulations have
provided evidence that p38 is a crucial mediator of T cell development,
activation, and inflammation [27]. In addition, p38a function in T
and B cells has been addressed using the RAG-deficient blastocyst
complementation method. Surprisingly, p38a-deficient T and B cells
developed in normal numbers and proliferated normally in response to
various stimuli, such as antigen-receptor ligation [28]. Moreover, mice
that lack p38p appear to be completely normal with no obvious defects
in T cell development or LPS-induced cytokine production [29]. To
reconcile the genetic and pharmacological data with the paucity of
observable abnormalities in p38 isoform-specific knockouts, further
characterizations and detailed analyses of the p38 pathway in both
normal T cells and T cell malignancies will be necessary.

Signaling Pathways Linking to T cell Activation,
Development, and Disorder

In addition to TCR/CD28 engagements, several other signaling
inputs participate in the regulation of T cell fates. These comprise
pathways responsible for the development and differentiation of
several cell types. Of note, deregulation of these signaling pathways
lead to T cell disorders.

NF-«B signaling

In addition to TCR engagement-mediated NF-kB activation,
pathological studies have strongly demonstrated that NF-xB
activation is often sustained in T cell disorders. ATL cells show strong,
constitutive NF-kB activation that contributes to their prolonged
survival, proliferation, and invasiveness [30]. In particular, human T
cell leukemia virus type 1 (HTLV-1) Tax is an intracellular stimulator
of IKK. This stimulation is based on the physical interaction between
Tax and IKK, which leads to the persistent activation of NF-xB-
mediated transcription. Formation of the Tax/IKK complex relies on
the physical interaction between Tax and the IKK regulatory subunit
IKKYy. The Tax-IKKy interaction is required for recruiting Tax to IKK
catalytic subunits and for Tax-mediated IKK activation (Figure 4) [31].

In leukemic cells in which Tax is not expressed, a noncanonical
NF-«B cascade appears to be important for the cellular characteristics
of ATL. Both the canonical and noncanonical NF-xB pathways are
persistently activated because NIK is aberrantly expressed in ATL
cells [32]. NIK plays a central role in noncanonical NF-kB signaling
through IKKa phosphorylation [33], and its constitutive expression
leads to aberrant NF-«B activation in various malignancies, including
B cell lymphoma, multiple myeloma, breast cancer, pancreatic cancer,
and ATL [30].

Recently, we identified a novel molecular link between NF-xB
activation and miRNA deregulation. Comprehensive gene expression
analysis and in vitro experiments showed that miRNA-31 (miR-31)
could regulate NIK expression through the 3’ untranslated region (UTR)
in several cell types. In ATL cells, miR-31 expression was genetically
and epigenetically silenced, which in turn induced constitutive NF-xB
activation through NIK expression (Figure 4) [34]. Because current
evidence clearly indicates that miR-31 dominates NF-xB activity in
T cells, manipulating cellular miR-31 levels may be a novel molecular
approach to reduce NF-«B activity and induce cellular apoptosis.
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Figure 4: NF-kB signaling in T cell. Canonical and noncanonical pathways
contribute to gene expression required for apoptotic resistance, inflammatory
cytokine production, appropriate differentiation, and invasiveness. In HTLV-1
infected cells, viral protein Tax binds and drastically activates both pathways.
In transformed leukemic cells, loss of miR-31 leads to NIK accumulation and
persistent NF-kB activation.

Why is NE-xB signaling important for ATL cell survival? One of
the target genes is Bcl-xl, which is expressed when NF-«B is activated.
In HTLV-1-infected cell lines, Bcl-xl is expressed through the Tax-
NF-kB pathway. Interestingly, fresh ATL samples exhibit Bcl-xl
overexpression. Given that Bcl-xl is a principal anti-apoptotic protein
as a Bcl-2 family member, persistent Bcl-xl expression is one of the
molecular means to resist apoptosis, which may contribute to clinical
chemoresistance. Indeed, inhibition of the NF-kB pathway by NIK
depletion leads to impaired Bcl-xl expression and apoptotic death of
ATL cells [34].

Because prevention of NF-«B activation showed good results in
a xenograft model of cell lines with and without Tax [30], molecular
targeting therapy based on the NF-kB pathway is a promising new
treatment for ATL. Of note, we found that specific inhibition of NF-
kB by DHMEQ could also remove virus-carrying cells from carrier
peripheral blood mononuclear cell (PBMC) samples [35].

mTOR pathway

The signaling pathway target of rapamycin (TOR) is at the
intersection between cell growth and starvation. The evolutionarily
conserved kinase mammalian TOR (mTOR; officially known as the
mechanistic target of rapamycin) controls cell growth and metabolism-
related response to environmental inputs by regulating gene
expression, which has been implicated in disease states, such as cancer,
metabolic diseases and ageing. In T cell regulation, mTOR signaling
is also involved in immune signals and metabolic cues for the proper
maintenance and activation of T cells. Under resting conditions, nTOR
signaling is strictly controlled by multiple inhibitory mechanisms,
which enforces normal T cell homeostasis. T cell activation through
antigen recognition triggers mTOR activation, which in turn influences
the differentiation patterns of these cells.

mTOR, which belongs to the family of PI3K-related protein kinases
(PIKK), is a conserved serine/threonine kinase and plays a central
role in the regulation of cell growth and metabolism [36]. Diverse
environmental signals, such as nutrients and growth factors, deliver
their signaling inputs to the PI3K-Akt axis. Many upstream signals
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activate the mTOR complex 1 (mTORCI) via the GTP-loaded small
GTPase RHEB. The activated PI3K-Akt pathway phosphorylates the
Thr1462 residue of tuberous sclerosis 2 (TSC2), which in turn inhibits
the TSC1/2 complex. Because RHEB is tightly regulated by the TSC1/2
complex, TCR/CD28 engagement activates RHEB/mTORCI via the
PI3K-Akt pathway. Recent studies have shown that RHEB deficiency
in T cells reduced mTORCI activation in response to TCR stimulation
[37]. In addition, loss of TSC1 disrupts the TSC1/2 complex and
enhances basal and TCR-induced mTORC! activity [38,39]. Therefore,
these results suggest a crucial role for the TSC-RHEB axis in T cell
responses.

TCR engagement can activate both mTORC1 and mTORC2 within
minutes. The strength of mTOR activation appears to be directly
correlated with the duration of T cell-APC interaction and the cognate
antigen dose. It should also be noted that mTOR activity is further
conferred by costimulatory signals. CD28-mediated costimulation
is a major driving force for the PI3K-AKT axis (described above),
which in turn upregulates TCR-induced mTOR activity to facilitate
productive T cell activation (Figure 5) [40,41]. In addition to CD28,
another costimulatory receptor, OX40, which is a member of the tumor
necrosis factor receptor (I'NFR) family, assembles a signaling complex
by recruiting PI3K-AKT to augment TCR-dependent Akt signaling;
this may also affect mTOR signaling in T cells [42].

Several genetic studies have strongly suggested that the mTOR
pathway is closely associated with T cell differentiation and homeostasis
{43]. In particular, CD8" T cell differentiation is strictly regulated by
mTOR signaling [44]. In addition, mTOR signaling appears to be
involved in T helper (Th) cell differentiation and proliferation [43]. In
sum, mTOR dictates the cell fate decisions of effector and regulatory
T cells.

A common hematological malignancy, T-ALL, frequently harbors
activating mutations in NOTCHI and/or loss-of-function mutations
in a gene encoding phosphatase and tensin homolog deleted on
chromosome 10 (PTEN). PTEN plays critical roles in cell growth,
migration, and death because it can inhibit the PI3K~Akt pathway by
catalyzing PIP3 dephosphorylation. It is noteworthy that both of these
mutations can activate mTOR signaling, which suggests a pivotal role
for mTOR in T-ALL development. Taken together, mTOR-mediated
T cell fate decisions are of particular importance because of the unique
functions of the mTOR pathway. Recent experimental advances
have established that mTOR is a fundamental determinant of T cell
homeostatic and functional fates. In addition, therapeutic targeting of
mTOR may have beneficial effects for treating T cell disorders.

/4
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Figure 5: PI3K-Akt-mTOR axis. After TCR/CD28 stimulation, activated
PI3K enhances phosphorylation of PDK1 and Akt. The Phosphorylated Akt

in turn inhibits tumor suppressor TSC2, resulting in activation of mTORC1. In
addition, Akt supports NF-kB signaling through CBM complex.
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Notch pathway

Notch proteins are cell-surface receptors and their expression
is widely conserved in numerous species. It has been shown that
Notch signaling is essential for T cell lineage development, thymocyte
survival, and proliferation of T cell progenitors [45]. In addition, Notch
signaling has been extensively studied in T-ALL because several lines
of genetic evidence highlight the Notch signaling cascade as a central
player in T-ALL pathogenesis [46].

Notch proteins are synthesized as a single polypeptide
(approximately 300 kDa). After intracellular modifications that
include fucosylation, glysocylation, and cleavage, a Notch heterodimer
associates with the plasma membrane. Signaling is triggered by the
interaction of Notch with Delta-like ligands (DLLs) or Jagged ligands
on the surface of instructing cells. This ligation induces proteolytic
cleavage of the Notch receptor by disintegrin and metalloproteinase
(ADAM) and mono-ubiquitination of the intracellular portion of the
transmembrane Notch fragment. This final cleavage leads to the release
of the Notch intracellular domain from the plasma membrane and its
translocation to the nucleus.

CBF1/suppressor of hairless/Lagl (CSL) represses transcription of
Notch target genes. Following activation by Notch, CSL is converted
into a transcriptional activator and activates the transcription of the
same genes. Intracellular Notch displaces the corepressors from CSL
and recruits coactivators, such as Mastermind-like 1 (MAML1), to
activate the expression of target genes (Figure 6). Intracellular Notch is
then degraded by a polyubiquitination-proteasome pathway.

A landmark study published in 2004 changed our perspectives
dramatically by showing that more than 50% of T-ALL cases harbored
Notchl mutations, which resulted in the hyperactivation of the Notch
pathway. This finding implicated Notchl has a very important role
in the pathogenesis of T-ALL [47]. This suggests that Notch likely
interacts with several important cellular pathways and can cooperate
with other oncogenes during leukemogenesis.

Although the importance of Notch signaling activation in T-ALL
is well established, the detailed molecular mechanisms by which
NOTCHI induces T cell transformation remain unclear. The best-
characterized direct target genes are the bHLH transcriptional repressor
Hesl and the transcription factor c-Myc. Recently, Hesl was shown to
be a key regulator in the induction and maintenance of T-ALL. Notch-
mediated c-Myc expression is also crucial for maintaining T-ALL.

Recently, activating mutations in Notch were identified in
more than 30% of ATL patients [48]. Of note, compared with the
activating frameshift mutations observed in T-ALL, ATL showed
single substitution mutations activating the Notch pathway. These
gene mutations could reduce CDC4/Fbw7-mediated degradation,
which resulted in stabilization of the intracellular NOTCHL. They
also resulted in Hesl expression in ATL patient samples. In addition,
y-secretase inhibitors reduced tumor cell proliferation and tumor
formation in ATL-engrafted mice. Collectively, these findings suggest
that activated Notch may be important for ATL leukemogenesis.

There is mounting evidence that Notch signaling is also an
important pathway for mediating cell fate decisions in developing
thymocytes and peripheral T cells. Strong Notch signaling restricts
the multilymphoid progenitors of the T cell lineage and promotes
thymocyte development [49]. Results from several studies support a
role for Notch in the generation of single-positive cells from double-
positive precursor thymocytes [50].
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Notch proteins are now emerging as potentiators of TCR/CD28
signaling in mature T cells. Some studies have confirmed the roles
for Notch receptors in T cell activation, proliferation, and cytokine
production. Pharmacological inhibition of the Notch pathway in CD4*
and CD8* T cells significantly inhibited their proliferation and IFNy
production after TCR stimulation [51]. In addition, Notch signaling
was shown to be involved in a positive-feedback loop of IL2-IL2R
that regulated T cell proliferation [52]. Important pathways activated
through Notch1 signaling include the PI3K-Akt and mTOR signaling
cascades. In addition, NF-«B signaling, which can be activated through
TCR/CD28 signaling, appears to be sustained by the Notch pathway.
These details are discussed in a later chapter.

Wnt pathway

Wnt signaling is subject to strict molecular control. Thus,
deregulated Wnt signaling has been implicated in the development of
several malignancies, including the leukemias and lymphomas [53].
To date, at least three different Wnt pathways have been identified:
the canonical Wnt pathway, which involves p-catenin and the T cell
factor (TCF)/lymphocyte-enhancer-binding factor (LEF) family; the
planar cell polarity pathway; and the Wnt/Ca?* pathway. Among these,
the canonical (Wnt/B-catenin) pathway is primarily involved in T cell
development and proliferation [54].

One important study demonstrated that a T cell-specific defect in
What signaling by deletion of B-catenin impaired T cell development at
the B-selection checkpoint, which resulted in a decrease in splenic T
cells. In addition, B-catenin appeared to be a target of TCR signals in
thymocytes and mature T cells. These results indicate that B-catenin-
mediated signals are required for normal T cell development [55].

TCF1 is highly expressed in T cells. A recent study showed that
B-catenin expression was stabilized after TCR-mediated T cell
stimulation, resulting in the upregulation of TCF1-dependent gene
expression in T cells [56]. It also suggested that TCF1 initiated Th2
differentiation of activated CD4* T cells by promoting GATA-3
expression and suppressing IFN-y expression. In addition, during
T cell development, TCR signaling was shown to stabilize B-catenin
and regulate the response to apTCR engagement [57]. In sum, several
genetic studies have suggested that the canonical Wnt pathway
participates in T cell development. In CD8* T cells, activation of Wnt/

Target gene expression

Figure 6: Notch signaling. After intracellular modifications, the Notch
heterodimer associates with the plasma membrane. Signaling is triggered by
the interaction with Notch ligands, which induces proteolytic cleavage of the
Notch and leads to the nuclear translocation of the Notch intracellutar domain
(ICN). The intracellular Notch displaces the co-repressors (CoR) from CSL
and recruits co-activators (CoA) to activate the expression of target genes.
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