monomeric and trimeric gp120, respectively. The effect of sCD4 $(2 \mu g/ml)$ over binding to gp120 and binding to V3 peptide allowed classifying the MAbs into four groups: V3, CD4bs, CD4i and "other epitopes" MAbs. Reactivity of V3 MAbs against a panel of known V3 epitopes was performed using a peptide-based ELISA as described elsewhere (Eda et al., 2006b). Briefly, synthetic V3 peptides in PBS (1 μ g/ml) were pre-coated in polyvinyl chloride flexible 96 well plates (BD Falcon, Franklin Lakes, NJ) and incubated overnight at 4 °C; later plates were blocked with 2% bovine serum albumin-0.1% Tween 20 in PBS. V3 MAbs (1 μ g/ml) were added and incubated for 1 h at room temperature. lgG bound to V3 peptides was detected with alkaline phosphatase-conjugated goat antihuman lgG (Sigma, St. Luis MO) followed by addition of phosphatase substrate (Sigma, St. Luis MO). A405 measurements were taken using a microplate reader (Biorad, Hercules, CA). Binding activity of MAbs to HIV-1 Env by flow cytometry analysis The ability of MAbs to bind virus-infected cells was analyzed by flow cytometric analysis. Briefly, PM1/CCR5 cells were chronically infected with HIV-1 $_{\rm JR-FL}$ as previously described (Yoshimura et al., 2006). Infected and uninfected cells were washed with PBS and adjusted to 5×10^6 cells/ml. For cell surface staining, 100 μl cells in PBS containing 0.2% BSA were incubated with 50 μl of 5 $\mu g/ml$ MAbs for 60 min at room temperature (RT). After washing with PBS containing 0.2% BSA, cells were incubated with 50 μl of allophycocyanin (APC)-conjugated AffiniPure F(ab')2 Fragment Goat Anti-Human IgG (H+L) (Jackson ImmunoResearch, West Grove, PA) for 30 min at RT. Cells were fixed with PBS containing 10% formalin, and analyzed by FACSCalibur instrument (Becton Dickinson, Franklin Lakes, NJ). Data analysis was performed using FlowJo (TreeStar, San Carlos, CA). Binding to Env from various HIV-1 strains was determined using the 293T cells transfected with plasmids that expressed both Env and enhanced green fluorescent protein (EGFP). The transfected cells were incubated with antibody (5 μ g/ml) for 1 h at RT. The antibody binding was detected using APC-conjugated Affini-Pure F(ab')2 Fragment Goat Anti-Human lgG (H+L) and FACSCalibur as described above. ## Determination of neutralization activity Neutralization activity was measured with a modified version of an assay described previously (Montefiori, 2009). Briefly, serial dilutions of MAbs and virus (400 Tissue Culture Infectious Dose [TCID]50) were pre-incubated for 1 h. TZM-bl cells solution containing DEAE-dextran (25 $\mu g/ml$) were added and incubated for 48 h (37 °C and 5% CO2), washed with PBS and lysed with lysis buffer (Galacto-star system, Life technologies, Carlsbad, CA). Lysate was transferred to an opaque plate containing β -galactosidase substrate (Galacto-star system, Life technologies, Carlsbad, CA) and incubated for 1 h. The β -galactosidase activity was measured in relative light units (RLU) using a Centro XS³ LB960 luminometer (Berthold technologies, Bad Wildbad, Germany). The reduction of infectivity was determined by comparing the RLU in the presence and absence of antibody and was expressed as a percentage of neutralization. Antibody-dependent cell-mediated cytotoxicity (ADCC) assay ADCC activity was addressed using the rapid fluorometric assessment of ADCC (RFADCC) previously reported elsewhere (Gómez-Román et al., 2006). Target cells were CEM.NKr.CCR5 cells which were chronically infected with different strains of HIV-1. The gp120 coated cells were prepared by incubating 5×10^6 cells with 15 µg of gp120 for 1 h. Cells were washed twice in ice-cold medium and coating was confirmed by binding of VRC01 to Env using flow cytometry. The infected cells were prepared by infection 7 days prior to the assay by spinoculation (O'Doherty et al., 2000). Briefly, a mixture of 5×10^5 cells, viral inoculum and polybrene were centrifuged for 2 h at $1200 \times g$ at 25 °C. Then, cells were cultured in RPMI supplemented with 10% FCS and media was exchanged every 48 h. Envelope expression was confirmed by binding of VRC01 using flow cytometry. PBMC or NK enriched-PBMC were used as effector cells. The NK enriched-PBMC fraction was prepared by using the NK cell isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany). Target cells were stained with carboxyfluorescein succinimidyl ester (CFSE; (Invitrogen, Life Technologies, Carlsbad, CA) and PKH-26 (Sigma, St. Luis, MO) according to the manufacturer's instructions. Stained cells were re-suspended and 50 μ l (5000 cells) were incubated with 100 μ l of antibody for 1 h at room temperature. Different concentrations were tested for each antibody in order to determine the optimal concentration for each antibody-virus combination. Then, 50 µl of effector cells were added to reach an Effector: Target ratio of 50:1 for PBMC and 5:1 for NK-enriched PBMC. Plates were centrifuged for 3 min at $400 \times g$ and incubated for 6 h (37 °C and 5% CO₂). Finally, cells were washed with PBS, and fixed with PBS containing 10% formalin. Data was acquired with a FACSCalibur instrument and analyzed with FlowJo software. ADCC activity was calculated as follows: first PKH-26 positive cells were gated (target cells), later the percentage of death dead cells (i.e. that have lost the CFSE dye, CFSE-) was determined. In each experiment, the percentage of killing obtained from target and effector cells without antibody was denoted as "background killing" and was subtracted from all the samples. Representative dot plots can be found in the supplementary data section (Supplementary Figs. 3 and 4) Differences in the ADCC activity of the negative control (8D11) and the samples were evaluated using the Mann-Whitney U test (Wilcoxon ranksum test) with a 95% confidence interval. Differences were considered significant if p was < 0.05. The test was performed using the GraphPad Prism 6 software (GraphPad Software, La Jolla, CA). # Evaluation of MAbs synergistic effect We first tested the binding activity of MAbs in the presence or absence of 0.5δ using a gp120 capture ELISA as described above. Briefly, plates covered with gp120 SF2 were incubated for 30 min with 50 μl of 0.5δ. Later, 50 μl of biotin-conjugated MAbs at a concentration of 1 µg/m were dispensed in each well. We also tested the combination effect of MAbs over neutralization by using the neutralization assay described above. Briefly, serial dilutions of MAbs and 0.5δ in 1:1 combination ratio and virus (400 TCID₅₀) were pre-incubated for 1 h. TZM-bl cells solution containing DEAE-dextran (25 μ g/ml) were added and incubated for 48 h (37 °C and 5% CO₂), washed with PBS and lysed with lysis buffer (Galacto-star system, Life technologies, Carlsbad, CA). Lysate was transferred to an opaque plate containing β -galactosidase substrate (Galacto-star system, Life technologies, Carlsbad, CA) and incubated for 1 h. The β -galactosidase activity was measured in relative light units (RLU) using a Centro XS³ LB960 luminometer (Berthold technologies, Bad Wildbad, Germany). The reduction of infectivity was determined by comparing the RLU in the presence and absence of antibody and was expressed as a percentage of neutralization. Combination and synergistic effect of 0.5y with 0.5δ was analyzed by the Chou and Talaly (1977) method and 3 dimensional analyses. Using the CalcuSyn version 2 software, combination indices (CI) were calculated using the MAbs Inhibitory Concentrations (IC) and interpreted as follows: CI < 0.9 synergy, 0.9 < CI < 1.1 additivity and CI > 1.1 antagonism (Maeda et al., 2001; Yoshimura et al., 2006). ### Competitive binding assay Selected MAbs 0.5γ (V3), 3E4 (V3), 0.5δ (CD4bs) and 4C11 (CD4i) were conjugated with biotin and subjected for evaluation of epitope-competing antibodies in plasma samples from HIV-1 infected patients, using a gp120 capture ELISA as described above. Briefly, plates covered with gp120 SF2 were incubated for 30 min with 50 μ l of 3 fold serial dilution of plasma samples. Later, 50 μ l of biotin-conjugated MAbs at a concentration of 1 μ g/m were dispensed in each well. The competition in binding of each biotin-conjugated MAb was detected by ALP- conjugated Avidin (Sigma, St. Luis MO) and substrate. We evaluated the existence of epitope-competing antibodies in patients' plasma samples including 47 from ordinary progressors, 25 from slow-progressors, 20 from non-progressors, 11 from non-subtype B virus infection and 7 from seronegative donors in this competition assay using 1:50 dilution of the plasma. Plasma samples of non-progressors were collected from hemophiliac patients in Japan who kept CD4+ cells counts higher than 350/μl without antiviral treatment at 2005, the time frame estimated for 23 years of HIV-infection. Plasma samples of slow progressors were collected from hemophiliac patients in Japan who started antiviral treatment with CD4+ cell counts at 350–200/μl after 1997, the time estimated for more than 15 years of HIV-infection. Ordinary progressors are patients with subtype B infection who had initiated antiviral treatment with CD4+ cells counts less than 200/μl. # Acknowledgments We thank Yoko Kawanami, Ikumi Enomoto, Yoshitatsu Nishida, Junji Shibata, Chisato Narahara, and Akiko Honda-Shibata for their assistance for development of the antibody panel, Miki Tsukiashi for her kind administrative assistance, and Todd Armitstead and Mariele Pellecer for reading and commenting on the manuscript. We are grateful to Dr. J. Robinson and Dr. D. Burton for their generous gifts of 17b and b12, respectively. TZM-bl cells, CEM,NKr. CCR5 cells, VRC01 plasmid, SPVB and SPVC Env plasmids, and T/F plasmids were obtained through the NIH AIDS Reagent program, Division of AIDS, NIAID, NIH, by the kind contribution from Dr. John
C. Kappes, Dr. Xiaoyun Wu, Tranzyme Inc., Dr. D. Montefiori, Dr. F. Gao and Dr. Christina Ochsenbauer. This work was supported in part by the Global COE program Global Education and Research Center Aiming at the Control of AIDS, a Joint Research Grant with the Institute of Tropical Medicine, Nagasaki University and by a grant-in-aid for scientific research (C-24591484) supported by the Ministry of Education, Science, Sports and Culture, Japan; and a grant from the Ministry of Health, Welfare and Labour of Japan (H22-RPEDMD-G-007 and H24-AIDS-007). # Appendix A. Supporting information Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.virol.2014.11.011. # References Alpert, M.D., Heyer, L.N., Williams, D.E.J., Harvey, J.D., Greenough, T., Allhorn, M., Evans, D.T., 2012. A novel assay for antibody-dependent cell-mediated cytotoxicity against HIV-1- or SIV-infected cells reveals incomplete overlap with antibodies measured by neutralization and binding assays. J. Virol. 86, 12039– 12052. http://dx.doi.org/10.1128/JVI.01650-12. - Andrabi, R., Williams, C., Wang, X.-H., Li, L., Choudhary, A.K., Wig, N., Biswas, A., Luthra, K., Nadas, A., Seaman, M.S., Nyambi, P., Zolla-Pazner, S., Gorny, M.K., 2013. Cross-neutralizing activity of human anti-V3 monoclonal antibodies derived from non-B clade HIV-1 infected individuals. Virology 439, 81–88. http://dx.doi.org/10.1016/j.virol.2012.12.010. - Banerjee, K., Klasse, P.J., Sanders, R.W., Pereyra, F., Michael, E., Lu, M., Walker, B.D., Moore, J.P., 2010. IgG subclass profiles in infected HIV type 1 controllers and chronic progressors and in uninfected recipients of Env vaccines. AIDS Res. Hum. Retroviruses 26. 445–458. http://dx.doi.org/10.1089/aid.2009.0223. - Bar, K.J., Tsao, C., Iyer, S.S., Decker, J.M., Yang, Y., Bonsignori, M., Chen, X., Hwang, K.-K., Montefiori, D.C., Liao, H.-X., Hraber, P., Fischer, W., Li, H., Wang, S., Sterrett, S., Keele, B.F., Ganusov, V.V., Perelson, A.S., Korber, B.T., Georgiev, I., McLellan, J.S., Pavlicek, J.W., Gao, F., Haynes, B.F., Hahn, B.H., Kwong, P.D., Shaw, G.M., 2012. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLoS Pathog, 8, e1002721. http://dx.doi.org/10.1371/journal.ppat.1002721. - Barbas III, C.F., Burton, D.R., Scott, J.K., Silverman, G.J., 2001. Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. - Barouch, D.H., Whitney, J.B., Moldt, B., Klein, F., Oliveira, T.Y., Liu, J., Stephenson, K.E., Chang, H.-W., Shekhar, K., Gupta, S., Nkolola, J.P., Seaman, M.S., Smith, K.M., Borducchi, E.N., Cabral, C., Smith, J.Y., Blackmore, S., Sanisetty, S., Perry, J.R., Beck, M., Lewis, M.G., Rinaldi, W., Chakraborty, A.K., Poignard, P., Nussenzweig, M.C., Burton, D.R., 2013. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503, 224–228. - Binley, J.M., Lybarger, E.A., Crooks, E.T., Seaman, M.S., Gray, E., Davis, K.L., Decker, J.M., Wycuff, D., Harris, L., Hawkins, N., Wood, B., Nathe, C., Richman, D., Tomaras, G.D., Bibollet-Ruche, F., Robinson, J.E., Morris, L., Shaw, G.M., Montefiori, D.C., Mascola, R., 2008. Profiling the specificity of neutralizing antibodies in a large period of plasmar from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J. Virol. 82, 11651–11668. http://dx.doi.org/10.1128/jVl.01762-08. - Bonsignori, M., Hwang, K.-K., Chen, X., Tsao, C.-Y., Morris, L., Gray, E., Marshall, D.J., Crump, J.A., Kapiga, S.H., Sam, N.E., Sinangil, F., Pancera, M., Yongping, Y., Zhang, B., Zhu, J., Kwong, P.D., O'Dell, S., Mascola, J.R., Wu, L., Nabel, G.J., Phogat, S., Seaman, M. S., Whitesides, J.F., Moody, M.A., Kelsoe, G., Yang, X., Sodroski, J., Shaw, G.M., Montefiori, D.C., Kepler, T.B., Tomaras, G.D., Alam, S.M., Liao, H.-X., Haynes, B.F., 2011. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J. Virol. 85, 9998–10009. http://dx.doi.org/10.1128/JVI.05045-11. - Boyer, S., 2009. Financial barriers to HIV treatment in Yaounde, Cameroon: first results of a national cross-sectional survey. Bull. World Health Organ., 87; , pp. 279–287. http://dx.doi.org/10.2471/BLT.07.049643. - Burton, D.R., Barbas, C.F., Persson, M.a., Koenig, S., Chanock, R.M., Lerner, R.a., 1991. A large array of human monoclonal antibodies to type 1 human immunode-ficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. U.S.A. 88, 10134–10137. - Buzon, M.J., Massanella, M., Llibre, J.M., Esteve, A., Dahl, V., Puertas, M.C., Gatell, J.M., Domingo, P., Paredes, R., Sharkey, M., Palmer, S., Stevenson, M., Clotet, B., Blanco, J., Martinez-Picado, J., 2010. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat. Med. 16, 460-465. - Med. 16, 460–465. Choe, H., Li, W., Wright, P.L., Vasilieva, N., Venturi, M., Huang, C.-C., Grundner, C., Dorfman, T., Zwick, M.B., Wang, L., Rosenberg, E.S., Kwong, P.D., Burton, D.R., Robinson, J.E., Sodroski, J.G., Farzan, M., 2003. Tyrosine sulfation of human antibodies contributes to recognition of the CCR5 binding region of HIV-1 gp120. Cell 114, 161–170. - Chou, T.C., Talaly, P., 1977. A simple generalized equation for the analysis of multiple inhibitions of Michaelis–Menten kinetic systems. J. Biol. Chem. 252, 6438–6442. - Corti, D., Langedijk, J.P.M., Hinz, A., Seaman, M.S., Vanzetta, F., Fernandez-Rodriguez, B.M., Silacci, C., Pinna, D., Jarrossay, D., Balla-Jhagjihoorsingh, S., Willems, B., Zekveld, M.J., Dreja, H., O'Sullivan, E., Pade, C., Orkin, C., Jeffs, S.a., Montefiori, D.C., Davis, D., Weissenhorn, W., McKnight, A., Heeney, J.L., Sallusto, F., Sattentau, Q.J., Weiss, R.a., Lanzavecchia, A., 2010. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One 5, e8805. http://dx.doi.org/10.1371/journal.pone.0008805. - Decker, J.M., Bibollet-Ruche, F., Wei, X., Wang, S., Levy, D.N., Wang, W., Delaporte, E., Peeters, M., Derdeyn, C.A., Allen, S., Hunter, E., Saag, M.S., Hoxie, J.A., Hahn, B.H., Kwong, P.D., Robinson, J.E., Shaw, G.M., 2005. Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J. Exp. Med. 201, 1407–1419 http://dx.doi.org/10.1084/jem.20042510. - Deeks, S.G., Schweighardt, B., Wrin, T., Galovich, J., Hoh, R., Sinclair, E., Hunt, P., McCune, J.M., Martin, J.N., Petropoulos, C.J., Hecht, F.M., 2006. Neutralizing antibody responses against autologous and heterologous viruses in acute versus chronic human immunodeficiency virus (HIV) infection: evidence for a constraint on the ability of HIV to completely evade neutralizing antibody responses. J. Virol. 80, 6155–6164. http://dx.doi.org/10.1128/IVJ.00093-06 - responses. J. Virol. 80, 6155–6164. http://dx.doi.org/10.1128/JVI.00093-06. Derdeyn, C.A., Decker, J.M., Sfakianos, J.N., Wu, X., Brien, W.A.O., Ratner, L., John, C., Shaw, G.M., Hunter, E., O'Brien, W.A., Kappes, J.C., 2000. Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J. Virol. 74, 8358–8367. http://dx.doi.org/10.1128/JVI.74.18.8358-8367.2000. DeVico, A., Fouts, T., Lewis, G.K., Gallo, R.C., Godfrey, K., Charurat, M., Harris, I., - DeVico, A., Fouts, T., Lewis, G.K., Gallo, R.C., Godfrey, K., Charurat, M., Harris, I., Galmin, L., Pal, R., 2007. Antibodies to CD4-induced sites in HIV gp120 correlate with the control of SHIV challenge in macaques vaccinated with subunit - immunogens. Proc. Natl. Acad. Sci. U.S.A 104, 17477-17482. http://dx.doi.org/ 10.1073/pnas.0707399104. - Dhillon, A.K., Donners, H., Pantophlet, R., Johnson, W.E., Decker, J.M., Shaw, G.M., Lee, F.-H., Richman, D.D., Doms, R.W., Vanham, G., Burton, D.R., 2007. Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. J. Virol. 81, 6548–6562. http://dx.doi.org/10.1128/IVI.02749-06. - //dx.doi.org/10.1128/JVI.02749-06. Doria-Rose, N.A., Klein, R.M., Daniels, M.G., O'Dell, S., Nason, M., Lapedes, A., Bhatta-charya, T., Migueles, S.a., Wyatt, R.T., Korber, B.T., Mascola, J.R., Connors, M., 2010. Breadth of human immunodeficiency virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables. J. Virol. 84, 1631–1636. http://dx.doi.org/10.1128/JVI.01482-09. - http://dx.doi.org/10.1128/JVI.01482-09. Doria-Rose, N.A., Klein, R.M., Manion, M.M., O'Dell, S., Phogat, A., Chakrabarti, B., Hallahan, C.W., Migueles, S.a., Wrammert, J., Ahmed, R., Nason, M., Wyatt, R.T., Mascola, J.R., Connors, M., 2009. Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J. Virol. 83, 188-199. http://dx.doi.org/10.1128/JVI.01583-08. - annodies, J. Virol. 83, 188–199. http://dx.doi.org/10.1128/JVI01583-0-8. Eda, Y., Murakami, T., Ami, Y., Nakasone, T., Takizawa, M., Someya, K., Kaizu, M., Izumi, Y., Yoshino, N., Matsushita, S., Higuchi, H., Matsui, H., Shinohara, K., Takeuchi, H., Koyanagi, Y., Yamamoto, N., Honda, M., 2006a. Anti-V3 humanized antibody KD-247 effectively suppresses ex vivo generation of human immunodeficiency virus type 1 and affords sterile protection of monkeys against a heterologous simian/human immunodeficiency virus infection. J. Virol. 80, 5563–5570. http://dx.doi.org/10.1128/JVI.02095-05. - Eda, Y., Takizawa, M., Murakami, T., Maeda, H., Kimachi, K., Yonemura, H., Koyanagi, S., Shiosaki, K., Higuchi, H., Makizumi, K., Nakashima, T., Osatomi, K., Tokiyoshi, S., Matsushita, S., Yamamoto, N., Honda, M., 2006b. Sequential immunization with V3
peptides from primary human immunodeficiency virus type 1 produces cross-neutralizing antibodies against primary isolates with a matching narrowneutralization sequence motif. J. Virol. 80, 5552–5562. http://dx.doi.org/10.1128/JVI.02094-05. - Gnanakaran, S., Daniels, M.G., Bhattacharya, T., Lapedes, A.S., Sethi, A., Li, M., Tang, H., Greene, K., Gao, H., Haynes, B.F., Cohen, M.S., Shaw, G.M., Seaman, M.S., Kumar, A., Gao, F., Montefiori, D.C., Korber, B., 2010. Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies. PLoS Comput. Biol. 6, e1000955. http://dx.doi.org/10.1371/journal.pcbi.1000955. Gómez-Román, V.R., Florese, R.H., Patterson, L.J., Peng, B., Venzon, D., Aldrich, K., - Gómez-Román, V.R., Florese, R.H., Patterson, L.J., Peng, B., Venzon, D., Aldrich, K., Robert-Guroff, M., 2006. A simplified method for the rapid fluorometric assessment of antibody-dependent cell-mediated cytotoxicity. J. Immunol. Methods 308, 53–67. http://dx.doi.org/10.1016/j.jim.2005.09.018. Gorny, M.K., Sampson, J., Li, H., Jiang, X., Totrov, M., Wang, X.-H., Williams, C., - Gorny, M.K., Sampson, J., Li, H., Jiang, X., Totrov, M., Wang, X.-H., Williams, C., O'Neal, T., Volsky, B., Li, L., Cardozo, T., Nyambi, P., Zolla-Pazner, S., Kong, X.-P., 2011. Human anti-V3 HIV-1 monoclonal antibodies encoded by the VH5-51/VL lambda genes define a conserved antigenic structure. PLoS One 6, e27780. http://dx.doi.org/10.1371/journal.pone.0027780. - Gorny, M.K., Wang, X.-H., Williams, C., Volsky, B., Revesz, K., Witover, B., Burda, S., Urbanski, M., Nyambi, P., Krachmarov, C., Pinter, A., Zolla-Pazner, S., Nadas, A., 2009. Preferential use of the VH5-51 gene segment by the human immune response to code for antibodies against the V3 domain of HIV-1. Mol. Immunol. 46, 917–926. http://dx.doi.org/10.1016/j.molimm.2008.09.005. - Graham, F.L., Smiley, J., Russell, W.C., Nairn, R., 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74 - Gray, E.S., Madiga, M.C., Hermanus, T., Moore, P.L., Wibmer, C.K., Tumba, N.L., Werner, L., Mlisana, K., Sibeko, S., Williamson, C., Abdool Karim, S.S., Morris, L., Team, the C.S. 2011. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J. Virol 85, 4828-4840. http://dx.doi.org/10.1128/IVI.00198-11. - Han, Y., Wang, X., Dang, Y., Zheng, Y.-H., 2008. Demonstration of a novel HIV-1 restriction phenotype from a human T cell line. PLoS One 3, e2796. - Haynes, B.F., Gilbert, P.B., McElrath, M.J., Zolla-Pazner, S., Tomaras, G.D., Alam, S.M., Evans, D.T., Montefiori, D.C., Karnasuta, C., Sutthent, R., Liao, H.-X.X., DeVico, A.L., Lewis, G.K., Williams, C., Pinter, A., Fong, Y., Janes, H., DeCamp, A., Huang, Y., Rao, M., Billings, E., Karasavvas, N., Robb, M.L., Ngauy, V., de Souza, M.S., Paris, R., Ferrari, G., Bailer, R.T., Soderberg, K.A., Andrews, C., Berman, P.W., Frahm, N., De Rosa, S.C., Alpert, M.D., Yates, N.L., Shen, X., Koup, R.A., Pitisuttithum, P., Kaewkungwal, J., Nitayaphan, S., Rerks-Ngarm, S., Michael, N.L., Kim, J.H., 2012a. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366 1275–1286 http://dx.doi.org/10.1056/NEJMoa1113425. - Haynes, B.F., Kelsoe, G., Harrison, S.C., Kepler, T.B., 2012b. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat. Biotechnol. 30, 423-433. http://dx.doi.org/10.1038/nbt.2197. - Hessell, A.J., Hangartner, L., Hunter, M., Havenith, C.E.G., Beurskens, F.J., Bakker, J.M., Lanigan, C.M.S., Landucci, G., Forthal, D.N., Parren, P.W.H.I., Marx, P.A., Burton, D.R., 2007. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449, 101–104. http://dx.doi.org/10.1038/nature06106. - Hessell, A.J., Poignard, P., Hunter, M., Hangartner, L., Tehrani, D.M., Bleeker, W.K., Parren, P.W.H.I., Marx, P.A., Burton, D.R., 2009a. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat. Med. 15, 951–954. http://dx.doi.org/10.1038/nm.1974. - Hessell, A.J., Rakasz, E.G., Poignard, P., Hangartner, L., Landucci, G., Forthal, D.N., Koff, W.C., Watkins, D.I., Burton, D.R., 2009b. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog. 5, e1000433. http://dx.doi. org/10.1371/journal.ppat.1000433. - Hessell, A.J., Rakasz, E.G., Tehrani, D.M., Huber, M., Weisgrau, K.L., Landucci, G., Forthal, D.N., Koff, W.C., Poignard, P., Watkins, D.I., Burton, D.R., 2010. Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. J. Virol. 84, 1302–1313. http://dx.doi.org/10.1128/jVI.01272-09. - Howell, D., Andreotti, J., Cresswell, P., 1985. Natural killing target antigens as inducers of interferon; studies with an immunoselected, natural-killingresistant human T-lymphoblastoid cell line. J. Immunol. 134, 971–976. - Huang, C., Tang, M., Zhang, M.-Y., Majeed, S., Montabana, E., Stanfield, R.L., Dimitrov, D.S., Korber, B., Sodroski, J., Wilson, I.A., Wyatt, R., Kwong, P.D., 2005. Structure of a V3-containing HIV-1 gp120 core. Science 310, 1025–1028. http://dx.doi.org/10.1126/science.1118398. - Huang, C., Venturi, M., Majeed, S., Moore, M.J., Phogat, S., Zhang, M.-Y., Dimitrov, D.S., Hendrickson, W.A., Robinson, J., Sodroski, J., Wyatt, R., Choe, H., Farzan, M., Kwong, P.D., 2004. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc. Natl. Acad. Sci. U.S.A. 101, 2706–2711. http://dx.doi.org/10.1073/pnas.0308527100. - Huber, M., Le, K.M., Doores, K.J., Fulton, Z., Stanfield, R.L., Wilson, I.a., Burton, D.R., 2010. Very few substitutions in a germ line antibody are required to initiate significant domain exchange. J. Virol. 84, 10700-10707. http://dx.doi.org/ 10.1128/JVI.01111-10. - Javaherian, K., Langlois, A.J., McDanal, C., Ross, K.L., Eckler, L.I., Jellis, C.L., Profy, A.T., Rusche, J.R., Bolognesi, D.P., Putney, S.D., 1989. Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proc. Natl. Acad. Sci. U.S.A 86, 6768–6772. - Jiang, X., Burke, V., Totrov, M., Williams, C., Cardozo, T., Gorny, M.K., Zolla-Pazner, S., Kong, X.-P., 2010. Conserved structural elements in the V3 crown of HIV-1 gp120. Nat. Struct. Mol. Biol. 17, 955–961. http://dx.doi.org/10.1038/nsmb.1861. - Keele, B.F., Giorgi, E.E., Salazar-Gonzalez, J.F., Decker, J.M., Pham, K.T., Salazar, M.G., Sun, C., Grayson, T., Wang, S., Li, H., Wei, X., Jiang, C., Kirchherr, J.L., Gao, F., Anderson, J.A., Ping, L.-H., Swanstrom, R., Tomaras, G.D., Blattner, W.A., Goepfert, P.a., Kilby, J.M., Saag, M.S., Delwart, E.L., Busch, M.P., Cohen, M.S., Montefiori, D.C., Haynes, B.F., Gaschen, B., Athreya, G.S., Lee, H.Y., Wood, N., Seoighe, C., Perelson, A.S., Bhattacharya, T., Korber, B.T., Hahn, B.H., Shaw, G.M., 2008. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. U.S.A 105, 7552–7557. http://dx.doi.org/10.1073/pnas.0802203105. - Klein, F., Diskin, R., Scheid, J.F., Gaebler, C., Mouquet, H., Georgiev, I.S., Pancera, M., Zhou, T., Incesu, R.-B., Fu, B.Z., Gnanapragasam, P.N.P., Oliveira, T.Y., Seaman, M.S., Kwong, P.D., Bjorkman, P.J., Nussenzweig, M.C., 2013. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 153. 126–138. http://dx.doi.org/10.1016/j.cell.2013.03.018. - neutralization. Cell 153, 126–138. http://dx.doi.org/10.1016/j.cell.2013.03.018. Klein, F., Halper-Stromberg, A., Horwitz, J.A., Gruell, H., Scheid, J.F., Bournazos, S., Mouquet, H., Spatz, L.A., Diskin, R., Abadir, A., Zang, T., Dorner, M., Billerbeck, E., Labitt, R.N., Gaebler, C., Marcovecchio, P.M., Incesu, R.-B., Eisenreich, T.R., Bieniasz, P.D., Seaman, M.S., Bjorkman, P.J., Ravetch, J.V., Ploss, A., Nussenzweig, M.C., 2012. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 492, 118–122. http://dx.doi.org/10.1038/nature11604. - Kuwata, T., Katsumata, Y., Takaki, K., Miura, T., Igarashi, T., 2011. Isolation of potent neutralizing monoclonal antibodies from an SIV-infected rhesus macaque by phage display. AIDS Res. Hum. Retroviruses 27, 487–500. http://dx.doi.org/ 10.1089/aid.2010.0191. - Kwong, P.D., Doyle, M.L., Casper, D.J., Cicala, C., Leavitt, S.A., Majeed, S., Steenbeke, T.D., Venturi, M., Chaiken, I., Fung, M., Katinger, H., Parren, P.W.I.H., Robinson, J., Ryk, D., Van, Wang, L., Burton, D.R., Freire, E., Wyatt, R., Sodroski, J., Hendrickson, W.A., Arthos, J., 2002. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 http://dx.doi.org/10.1038/nature01272.Published. - Kwong, P.D., Wyatt, R., Robinson, J., Sweet, R.W., Sodroski, J., Hendrickson, W.A., 1998. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659. http://dx.doi.org/10.1038/31405. - Lambotte, O., Ferrari, G., Moog, C., Yates, N.L., Liao, H.-X., Parks, R.J., Hicks, C.B., Owzar, K., Tomaras, G.D., Montefiori, D.C., Haynes, B.F., Delfraissy, J.-F., 2009. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. AIDS 23, 897–906. http://dx.doi.org/ 10.1097/QAD.0b013e328329f97d. - Lee, H.Y., Giorgi, E.E., Keele, B.F., Gaschen, B., Athreya, G.S., Salazar-Gonzalez, J.F., Pham, K.T., Goepfert, R.P.A., Kilby, J.M., Saag, M.S., Delwart, E.L., Busch, M.P., Hahn, B.H., Shaw, G.M.,
Korber, B.T., Bhattacharya, T., Perelson, A.S., 2009. Modeling sequence evolution in acute HIV-1 infection. J. Theor. Biol. 261, 341–360. http://dx.doi.org/10.1016/j.jtbi.2009.07.038. - Lewis, G.K., Fouts, T.R., Ibrahim, S., Taylor, B.M., Salkar, R., Guan, Y., Kamin-Lewis, R., Robinson, J.E., Devico, A.L., 2011. Identification and characterization of an immunogenic hybrid epitope formed by both HIV gp120 and human CD4 proteins. J. Virol. 85, 13097–13104. http://dx.doi.org/10.1128/JVI.05072-11. - Li, M., Gao, F., Mascola, J.R., Stamatatos, L., Polonis, V.R., Koutsoukos, M., Voss, G., Goepfert, P., Gilbert, P., Greene, K.M., Bilska, M., Kothe, D.L., Salazar-gonzalez, J.F., Wei, X., Decker, J.M., Hahn, B.H., Montefiori, D.C., 2005. Human immuno-deficiency virus type 1 Env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 79, 10108-10125. http://dx.doi.org/10.1128/JV1.79.16.10108. Li, M., Salazar-Gonzalez, J.F., Derdeyn, C.A., Morris, L., Williamson, C., Robinson, J.E., - Li, M., Salazar-Gonzalez, J.F., Derdeyn, C.A., Morris, L., Williamson, C., Robinson, J.E., Decker, J.M., Li, Y., Salazar, M.G., Polonis, V.R., Mlisana, K., Karim, S.A., Hong, K., Greene, K.M., Bilska, M., Zhou, J., Allen, S., Chomba, E., Mulenga, J., Vwalika, C., - Gao, D.C., Zhang, M., Korber, B.T.M., Hunter, E., Hahn, B.H., Montefiori, D.C., 2006. Genetic and neutralization properties of subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in Southern Africa. J. Virol. 80, 11776–11790. http://dx.doi.org/10.1128/JVI.01730-06. - Liao, H., Guo, J., Lange, M.D., Fan, R., Zemlin, M., Su, K., Guan, Y., Zhang, Z., 2013. Contribution of VH replacement products to the generation of anti-HIV anti-bodies. Clin. Immunol. 146, 46–55. http://dx.doi.org/10.1016/j.clim.2012.11.003. Liu. I., Bartesaghi, A., Borgnia, M.J., Sapiro, G., Subramaniam, S., 2008. Molecular - Liu, J., Bartesaghi, A., Borgnia, M.J., Sapiro, G., Subramaniam, S., 2008. Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109–113. http://dx.doi. org/10.1038/nature07159. - Lusso, P., Earl, P.L., Sironi, F., Santoro, F., Ripamonti, C., Scarlatti, G., Longhi, R., Berger, E.A., Burastero, S.E., 2005. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains. J. Virol. 79, 6957–6968. http://dx.doi.org/10.1128/JVI.79.11.6957-6968 2005. - Lyerly, H., Reed, D., Matthews, T., Langlois, A., Ahearne, P., Petteway, S., Weinhold, K., 1987. Anti-gp120 antibodies from HIV seropositive individuals mediate broadly reactive anti-HIV ADCC. AIDS Res. Hum. Retroviruses 3, 409–422. Madhavi, V., Wren, L.H., Gonelli, C., Winnall, W.R., Parsons, M.S., Kramski, M., Kent, - Madhavi, V., Wren, L.H., Gonelli, C., Winnall, W.R., Parsons, M.S., Kramski, M., Kent, S.J., Stratov, I., 2014. Breadth of HIV-1 Env-specific antibody-dependent cellular cytotoxicity: relevance to global HIV vaccine design. AIDS 28, 1859–1870. http://dx.doi.org/10.1097/QAD.0000000000000310. - Maeda, K., Yoshimura, K., Shibayama, S., Habashita, H., Tada, H., Sagawa, K., Miyakawa, T., Aoki, M., Fukushima, D., Mitsuya, H., 2001. Novel low molecular weight spirodiketopiperazine derivatives potently inhibit R5 HIV-1 infection through their antagonistic effects on CCRS. J. Biol. Chem. 276, 35194–35200. http://dx.doi.org/10.1074/jbc.M105670200. - Marasco, W.A., Sui, J., 2007. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat. Biotechnol. 25, 1421–1434. http://dx.doi.org/ 10.1038/nbt1363. - Mascola, J.R., Lewis, M.G., Stiegler, G., Vancott, T.C., Hayes, D., Louder, M.K., Brown, C.R., Sapan, C.V., Frankel, S.S., Lu, Y., Robb, M.L., Katinger, H., Birx, L., Harris, D., Cott, T.C.V.A.N., Birx, D.L., 1999. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73. 4009–4018. - ing antibodies. J. Virol. 73, 4009–4018. Mascola, J.R., Stiegler, G., VanCott, T.C., Katinger, H., Carpenter, C.B., Hanson, C.E., Beary, H., Hayes, D., Frankel, S.S., Birx, D.L., Lewis, M.G., 2000. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med 6, 207–210. http://dx.doi.org/10.1038/72318. - Matsushita, S., Robert-Guroff, M., Trepel, J., Cossman, J., Mitsuya, H., Broder, S., 1986. Human monoclonal antibody directed against an envelope glycoprotein of human T-cell leukemia virus type I. Proc. Natl. Acad. Sci. 83, 2672–2676. - Mbah, H.A., Burda, S., Gorny, M.K., Williams, C., Revesz, K., Zolla-Pazner, S., Nyambi, P.N., 2001. Effect of soluble CD4 on exposure of epitopes on primary, intact, native human immunodeficiency virus type 1 virions of different genetic clades. J. Virol. 75, 7785–7788. http://dx.doi.org/10.1128/JVI.75.16.7785-7788.2001. - McGuire, A.T., Glenn, J.A., Lippy, A., Stamatatos, L., 2014. Diverse recombinant HIV-1 Envs fail to activate B cells expressing the germline B cell receptors of the broadly neutralizing anti-HIV-1 antibodies PG9 and 447-52D. J. Virol. 88, 2645–2657. http://dx.doi.org/10.1128/JVI.03228-13. - Moldt, B., Rakasz, E.G., Schultz, N., Chan-Hui, P.-Y., Swiderek, K., Weisgrau, K.L., Piaskowski, S.M., Bergman, Z., Watkins, D.I., Poignard, P., Burton, D.R., 2012. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc. Natl. Acad. Sci. U.S.A 109, 18921–18925. http://dx.doi.org/10.1073/pnas.1214785109. - Monde, K., Maeda, Y., Tanaka, Y., Harada, S., Yusa, K., 2007. Gp120 V3-dependent impairment of R5 HIV-1 infectivity due to virion-incorporated CCR5. J. Biol. Chem. 282, 36923–36932. http://dx.doi.org/10.1074/jbc.M705298200. - Montefiori, D.C., 2009. Measuring HIV neutralization in a luciferase reporter gene assay. In: Prasad, V., Kalpana, G. (Eds.), HIV Protocols SE-26, Methods in Molecular BiologyTM. Humana Press, pp. 395–405. http://dx.doi.org/10.1007/978-1-59745-170-3 26. - Humana Press, pp. 395–405. http://dx.doi.org/10.1007/978-1-59745-170-3_26. Montessori, V., Press, N., Harris, M., Akagi, L., Montaner, J.S.G., 2004. Adverse effects of antiretroviral therapy for HIV infection. CMAJ 170, 229–238. - Moore, J.P., Cao, Y., Ho, D.D., Koup, R.A., 1994. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J. Virol. 68, 5142–5155. - Moulard, M., Phogat, S.K., Shu, Y., Labrijn, A.F., Xiao, X., Binley, J.M., Zhang, M.-Y., Sidorov, I.A., Broder, C.C., Robinson, J., Parren, P.W.H.I., Burton, D.R., Dimitrov, D.S., 2002. Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes. Proc. Natl. Acad. Sci. U.S.A 99, 6913–6918. http://dx.doi.org/10.1073/pnas.102562599. - Nag, P., Kim, J., Sapiega, V., Landay, A.L., Bremer, J.W., Mestecky, J., Reichelderfer, P., Kovacs, A., Cohn, J., Weiser, B., Baum, L.L., 2004. Women with cervicovaginal antibody-dependent cell-mediated cytotoxicity have lower genital HIV-1 RNA loads. J. Infect. Dis. 190, 1970-1978. http://dx.doi.org/10.1086/425582. Naik, E., Casanas, B., Pazare, A., Wabale, G., Sinnott, J., Salihu, H., 2009. Cost of - Naik, E., Casanas, B., Pazare, A., Wabale, G., Sinnott, J., Salihu, H., 2009. Cost of treatment: the single biggest obstacle to HIV/AIDS treatment adherence in lower-middle class patients in Mumbai. India. Indian J. Sex. Transm. Dis. AIDS 30, 23–27. http://dx.doi.org/10.4103/0253-7184.55476. - Ng, C.T., Jaworski, J.P., Jayaraman, P., Sutton, W.F., Delio, P., Kuller, L., Anderson, D., Landucci, G., Richardson, B.a., Burton, D.R., Forthal, D.N., Haigwood, N.L., 2010. Passive neutralizing antibody controls SHIV viremia and enhances B cell - responses in infant macaques. Nat. Med. 16, 1117-1119. http://dx.doi.org/10.1038/nm.2233. - Nkolola, J.P., Bricault, C.a., Cheung, A., Shields, J., Petry, J., Kovacs, J.M., Giorgi, E., van Winsen, M., Apetri, A., Brinkman-van der Linden, E.C.M., Chen, B., Korber, B., Seaman, M.S., Barouch, D.H., 2014. Characterization and immunogenicity of a novel mosaic M HIV-1 gp140 trimer. J. Virol. 88, 9538–9552. http://dx.doi.org/10.1128/JVI.01739-14. - O'Doherty, U., Swiggard, W.J., Malim, M.H., 2000. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J. Virol. 74, 10074–10080. http://dx.doi.org/10.1128/JVI.74.21.10074-10080.2000. - Ochsenbauer, C., Edmonds, T.G., Ding, H., Keele, B.F., Decker, J., Salazar, M.G., Salazar-Gonzalez, J.F., Shattock, R., Haynes, B.F., Shaw, G.M., Hahn, B.H., Kappes, J.C., 2012. Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J. Virol. 86, 2715–2728. http://dx.doi.org/10.1128/JVI.06157-11. - Overbaugh, J., Morris, L., 2012. The antibody response against HIV-1. Cold Spring Harb, Perspect. Med 2, a007039. http://dx.doi.org/10.1101/cshperspect.a007039. - Palmer, S., Maldarelli, F., Wiegand, A., Bernstein, B., Hanna, G.J., Brun, S.C., Kempf, D.J., Mellors, J.W., Coffin, J.M., King, M.S., 2008. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. U.S. A 105, 3879–3884. http://dx.doi.org/10.1073/pnas.0800050105. - Parren, P.W.H.I., Marx, P.A., Hessell, A.N.N.J., Harouse, J., Cheng-mayer, C., John, P., Burton, D.R., Luckay, A., Moore, J.P., 2001. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J. Virol. 75, 8340–8347. http://dx.doi.org/10.1128/JVI.75.17.8340-8347.2001. - Platt, E.J.,
Wehrly, K., Kuhmann, S.E., Chesebro, B., Kabat, D., 1998. Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J. Virol. 72, 2855–2864. Pollara, J., Bonsignori, M., Moody, M.A., Liu, P., Alam, S.M., Hwang, K.-K., Gurley, T.C., Kozink, D.M., Armand, L.C., Marshall, D.J., Whitesides, J.F., Kaewkungwal, J., - Pollara, J., Bonsignori, M., Moody, M.A., Liu, P., Alam, S.M., Hwang, K.-K., Gurley, T.C., Kozink, D.M., Armand, L.C., Marshall, D.J., Whitesides, J.F., Kaewkungwal, J., Nitayaphan, S., Pitisuttithum, P., Rerks-Ngarm, S., Robb, M.L., O'Connell, R.J., Kim, J.H., Michael, N.L., Montefiori, D.C., Tomaras, G.D., Liao, H.-X., Haynes, B.F., Ferrari, G., 2014. HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities. J. Virol. 88, 7715–7726. http://dx.doi. org/10.1128/JVI.00156-14. - Rader, C., Popkov, M., Neves, J.A., Barbas III, C.F., 2002. Integrin avb3-targeted therapy for Kaposi's sarcoma with an in vitro-evolved antibody. FASEB J. 10.1096/fj.02-0281fje. - Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., Premsri, N., Namwat, C., de Souza, M., Adams, E., Benenson, M., Gurunathan, S., Tartaglia, J., McNeil, J.G., Francis, D.P., Stablein, D., Birx, D.L., Chunsuttiwat, S., Khamboonruang, C., Thongcharoen, P., Robb, M.L., Michael, N.L., Kunasol, P., Kim, J.H., 2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220. http://dx.doi.org/10.1056/NEJMoa0908492. - Reust, C.E., 2011. Common adverse effects of antiretroviral therapy for HIV disease. Am. Fam. Phys. 83, 1443–1451. - Richman, D.D., Margolis, D.M., Delaney, M., Greene, W.C., Hazuda, D., Pomerantz, R.J., 2009. The challenge of finding a cure for HIV infection. Science 80, 1304–1307323, 1304–1307. - Roederer, M., Keele, B.F., Schmidt, S.D., Mason, R.D., Welles, H.C., Fischer, W., Labranche, C., Foulds, K.E., Louder, M.K., Yang, Z.-Y., Todd, J.-P.M., Buzby, A.P., Mach, L.V., Shen, L., Seaton, K.E., Ward, B.M., Bailer, R.T., Gottardo, R., Gu, W., Ferrari, G., Alam, S.M., Denny, T.N., Monteflori, D.C., Tomaras, G.D., Korber, B.T., Nason, M.C., Seder, R.A., Koup, R.A., Letvin, N.L., Rao, S.S., Nabel, G.J., Mascola, J.R., 2014. Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature 505, 502–508. http://dx.doi.org/10.1038/nature12893. - Salazar-Gonzalez, J.F., Bailes, E., Pham, K.T., Salazar, M.G., Guffey, M.B., Keele, B.F., Derdeyn, C.a., Farmer, P., Hunter, E., Allen, S., Manigart, O., Mulenga, J., Anderson, J.A., Swanstrom, R., Haynes, B.F., Athreya, G.S., Korber, B.T.M., Sharp, P.M., Shaw, G.M., Hahn, B.H., 2008. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J. Virol. 82, 3952–3970. http://dx.doi.org/10.1128/JVI.02660-07. - Salazar-Gonzalez, J.F., Salazar, M.G., Keele, B.F., Learn, G.H., Giorgi, E.E., Li, H., Decker, J.M., Wang, S., Baalwa, J., Kraus, M.H., Parrish, N.F., Shaw, K.S., Guffey, M.B., Bar, K.J., Davis, K.L., Ochsenbauer-Jambor, C., Kappes, J.C., Saag, M.S., Cohen, M.S., Mulenga, J., Derdeyn, C.A., Allen, S., Hunter, E., Markowitz, M., Hraber, P., Perelson, A.S., Bhattacharya, T., Haynes, B.F., Korber, B.T., Hahn, B.H., Shaw, G.M., 2009. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 206, 1273–1289. http://dx.doi.org/10.1084/jem.20090378. - Sather, D.N., Armann, J., Ching, L.K., Mavrantoni, A., Sellhorn, G., Caldwell, Z., Yu, X., Wood, B., Self, S., Kalams, S., Stamatatos, L., 2009. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J. Virol. 83, 757-769. http://dx.doi.org/10.1128/ JVI.02036-08. - Scheid, J.F., Mouquet, H., Ueberheide, B., Diskin, R., Klein, F., Oliveira, T.Y.K., Pietzsch, J., Fenyo, D., Abadir, A., Velinzon, K., Hurley, A., Myung, S., Boulad, F., Poignard, P., Burton, D.R., Pereyra, F., Ho, D.D., Walker, B.D., Seaman, M.S., Bjorkman, P. J., Chait, B.T., Nussenzweig, M.C., 2011. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 80, 1633–1637. - http://dx.doi.org/10.1126/science.1207227333, 1633–1637. http://dx.doi.org/10.1126/science.1207227. - Seaman, M.S., LeBlanc, D.F., Grandpre, L.E., Bartman, M.T., Montefiori, D.C., Letvin, N.L., Mascola, J.R., 2007. Standardized assessment of NAb responses elicited in rhesus monkeys immunized with single- or multi-clade HIV-1 envelope immunogens. Virology 367, 175–186. - Seaman, M.S., Xu, L., Beaudry, K., Kristi, L., Beddall, M.H., Miura, A., Sambor, A., Chakrabarti, B.K., Huang, Y., Bailer, R., Richard, A., Mascola, J.R., Nabel, G.J., Letvin, N.L., 2005. Multiclade human immunodeficiency virus type 1 envelope immunogens elicit broad cellular and humoral immunity in rhesus monkeys. J. Virol. 79, 2956–2963. http://dx.doi.org/10.1128/JVI.79.5.2956. - Shibata, R., Igarashi, T., Haigwood, N., Buckler-White, A., Ogert, R., Ross, W., Willey, R., Cho, M.W., Martin, M.A., 1999. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med 5, 204–210. http://dx.doi.org/10.1038/5568. - Simek, M.D., Rida, W., Priddy, F.H., Pung, P., Carrow, E., Laufer, D.S., Lehrman, J.K., Boaz, M., Tarragona-Fiol, T., Miiro, G., Birungi, J., Pozniak, A., McPhee, D.A., Manigart, O., Karita, E., Inwoley, A., Jaoko, W., DeHovitz, J., Bekker, L.-G., Pitisuttithum, P., Paris, R., Walker, L.M., Poignard, P., Wrin, T., Fast, P.E., Burton, D.R., Koff, W.C., 2009. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83 (7337–7348), http://dx.doi.org/10.1128/JVI.00110-09. - Smalls-Mantey, A., Doria-Rose, N., Klein, R., Patamawenu, A., Migueles, S.A., Ko, S.-Y., Hallahan, C.W., Wong, H., Liu, B., You, L., Scheid, J., Kappes, J.C., Ochsenbauer, C., Nabel, G.J., Mascola, J.R., Connors, M., 2012. Antibody-dependent cellular cyto-toxicity against primary HIV-infected CD4+ T cells is directly associated with the magnitude of surface IgG binding. J. Virol. 86, 8672–8680. http://dx.doi.org/10.1128/JVI.00287-12. - Sok, D., Laserson, U., Laserson, J., Liu, Y., Vigneault, F., Julien, J.-P., Briney, B., Ramos, A., Saye, K.F., Le, K., Mahan, A., Wang, S., Kardar, M., Yaari, G., Walker, L.M., Simen, B.B., St. John, E.P., Chan-Hui, P.-Y., Swiderek, K., Kleinstein, S.H., Alter, G., Seaman, M.S., Chakraborty, A.K., Koller, D., Wilson, I.A., Kleinstein, S.H., Burton, D.R., Poignard, P., 2013. The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies. PLoS Pathog 9, e1003754. - Stamatatos, L., Morris, L., Burton, D.R., Mascola, J.R., 2009. Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine. Nat. Med. 15, 866–870. http://dx.doi.org/10.1038/nm.1949. - Takeuchi, Y., McClure, M.O., Pizzato, M., 2008. Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research. J. Virol. 82, 12585–12588. http://dx.doi.org/10.1128/JVI.01726-08. - Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. http://dx.doi.org/10.1093/molbev/msr121. - Thali, M., Moore, J.P., Furman, C., Charles, M., Ho, D.D., Robinson, J., Sodroski, J., 1993. Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. J. Virol. 67. 3978-3988. - Trkola, A., Matthews, J., Gordon, C., Ketas, T., Moore, J.P., 1999. A cell line-based neutralization assay for primary human immunodeficiency virus type 1 isolates that use either the CCR5 or the CXCR4 coreceptor. J. Virol. 73, 8966–8974. - Veazey, R., Shattock, R.J., Pope, M., Kirijan, J.C., Jones, J., Qinxue, H., Ketas, T., Preston, M., Klasse, P.J., Burton, D.R., Moore, J.P., 2003. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat. Med. 9, 343–346. http://dx.doi.org/10.1038/nm. - Veillette, M., Désormeaux, A., Medjahed, H., Gharsallah, N.-E., Coutu, M., Baalwa, J., Guan, Y., Lewis, G., Ferrari, G., Hahn, B.H., Haynes, B.F., Robinson, J.E., Kaufmann, D.E., Bonsignori, M., Sodroski, J., Finzi, A., 2014. Interaction with cellular CD4 exposes HIV-1 envelope epitopes targeted by antibody-dependent cell-mediated cytotoxicity. J. Virol. 88, 2633–2644. http://dx.doi.org/10.1128/JVI.03230-13. - Walker, L.M., Huber, M., Doores, K.J., Falkowska, E., Pejchal, R., Julien, J.-P., Wang, S.-K., Ramos, A., Chan-Hui, P.-Y., Moyle, M., Mitcham, J.L., Hammond, P.W., Olsen, O.A., Phung, P., Fling, S., Wong, C.-H., Phogat, S., Wrin, T., Simek, M.D., Principal Investigators, P.G., Koff, W.C., Wilson, I.A., Burton, D.R., Poignard, P., 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466-470. - Walker, L.M., Phogat, S.K., Chan-Hui, P.-Y., Wagner, D., Phung, P., Goss, J.L., Wrin, T., Simek, M.D., Fling, S., Mitcham, J.L., Lehrman, J.K., Priddy, F.H., Olsen, O.a., Frey, S.M., Hammond, P.W., Kaminsky, S., Zamb, T., Moyle, M., Koff, W.C., Poignard, P., Burton, - D.R., 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 80, 285–289. http://dx.doi.org/10.1126/science.1178746326, 285–289. http://dx.doi.org/10.1126/science.1178746. - Wei,
X., Decker, J.M., Liu, H., Zhang, Z., Arani, R.B., Kilby, J.M., Saag, M.S., Wu, X., Shaw, G.M., Kappes, J.C., 2002. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob. Agents Chemother. 46, 1896–1905. http://dx.doi.org/10.1128/AAC.46.6.1896. - Wren, L., Parsons, M.S., Isitman, G., Center, R.J., Kelleher, A.D., Stratov, I., Bernard, N.F., Kent, S.J., 2012. Influence of cytokines on HIV-specific antibody-dependent cellular cytotoxicity activation profile of natural killer cells. PLoS One 7, e38580. - Wren, L.H., Chung, A.W., Isitman, G., Kelleher, A.D., Parsons, M.S., Amin, J., Cooper, D.A., Stratov, I., Navis, M., Kent, S.J., 2013. Specific antibody-dependent cellular cytotoxicity responses associated with slow progression of HIV infection. Immunology 138, 116–123. http://dx.doi.org/10.1111/imm.12016. - Wu, X., Sambor, A., Nason, M.C., Yang, Z.-Y., Wu, L., Zolla-Pazner, S., Nabel, G.J., Mascola, J. R., 2008. Soluble CD4 broadens neutralization of V3-directed monoclonal antibodies and guinea pig vaccine sera against HIV-1 subtype B and C reference viruses. Virology 380, 285–295. http://dx.doi.org/10.1016/j.virol.2008.07.007. - Willogy Sab, 263–253. http://dx.adi.org/fo.to/oj.rvio.2008.07.007. Wu, X., Zhou, T., Zhu, J., Zhang, B., Georgiev, I., Wang, C., Chen, X., Longo, N.S., Louder, M., McKee, K., O'Dell, S., Perfetto, S., Schmidt, S.D., Shi, W., Wu, L., Yang, Y., Yang, Z.-Y.Z., Zhang, Z., Bonsignori, M., Crump, J.A., Kapiga, S.H., Sam, N.E., Haynes, B.F., Simek, M., Burton, D.R., Koff, W.C., Doria-Rose, N.A., Connors, M., Program, N.C.S., Mullikin, J.C., Nabel, G.J., Roederer, M., Shapino, L., Kwong, P.D., Mascola, J.R., O'Dell, S., 2011. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333, 1593–1602. http://dx.doi.org/10.1126/science.1207532. - Xiang, S., Doka, N., Choudhary, R.K., Sodroski, J., Robinson, J.E., 2002. Characterization of CD4-induced epitopes on the HIV type 1 gp120 envelope glycoprotein recognized by neutralizing human monoclonal antibodies. AIDS Res. Hum. Retroviruses 18, 1207-1217. - Xiao, P., Zhao, J., Patterson, L.J., Brocca-Cofano, E., Venzon, D., Kozlowski, P.A., Hidajat, R., Demberg, T., Robert-Guroff, M., 2010. Multiple vaccine-elicited nonneutralizing antienvelope antibody activities contribute to protective effcacy by reducing both acute and chronic viremia following simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J. Virol. 84, 7161–7173. http://dx.doi.org/10.1128/JVI.00410-10. - Xiao, X., Chen, W., Feng, Y., Zhu, Z., Prabakaran, P., Wang, Y., Zhang, M.-Y., Longo, N.S., Dimitrov, D.S., 2009. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem. Biophys. Res. Commun. 390, 404–409. http://dx.doi.org/10.1016/j.bbrc.2009.09.029. - Yoshimura, K., Shibata, J., Kimura, T., Honda, A., Maeda, Y., Koito, A., Murakami, T., Mitsuya, H., Matsushita, S., 2006. Resistance profile of a neutralizing anti-HIV monoclonal antibody, KD-247, that shows favourable synergism with anti-CCR5 inhibitors. AIDS 20, 2065–2073. http://dx.doi.org/10.1097/01.aids.0000247587.31320.fe. - Zhou, T., Georgiev, I., Wu, X., Yang, Z.-Y., Dai, K., Finzi, A., Do Kwon, Y., Scheid, J.F., Shi, W., Xu, L., Yang, Y., Zhu, J., Nussenzweig, M.C., Sodroski, J., Shapiro, L., Nabel, G.J., Mascola, J.R., Kwong, P.D., 2010. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811–817. http://dx.doi.org/10.1126/science.1192819. - Zhu, J., Wu, X., Zhang, B., McKee, K., O'Dell, S., Soto, C., Zhou, T., Casazza, J.P., Program, N.C.S., Mullikin, J.C., Kwong, P.D., Mascola, J.R., Shapiro, L., 2013. De novo identification of VRC01 class HIV-1-neutralizing antibodies by next-generation sequencing of B-cell transcripts. Proc. Natl. Acad. Sci. 110, E4088-E4097. http://dx.doi.org/10.1073/pnas.1306262110. - Zolla-Pazner, S., 2004. Identifying epitopes of HIV-1 that induce protective antibodies. Nat. Rev. Immunol. 4, 199–210. http://dx.doi.org/10.1038/nri1307. Zolla-Pazner, S., 2014. A critical question for HIV vaccine development: which - Zolla-Pazner, S., 2014. A critical question for HIV vaccine development: which antibodies to induce. Science 80, 167–168. http://dx.doi.org/10.1126/ science.1256526345, 167–168. http://dx.doi.org/10.1126/science.1256526. - Zolla-Pazner, S., Kong, X.-P., Jiang, X., Cardozo, T., Nádas, A., Cohen, S., Totrov, M., Seaman, M.S., Wang, S., Lu, S., 2011. Cross-clade HIV-1 neutralizing antibodies induced with V3-scaffold protein immunogens following priming with gp120 DNA. J. Virol. 85, 9887–9898. http://dx.doi.org/10.1128/JVI.05086-11. - Zuo, T., Shi, X., Liu, Z., Guo, L., Zhao, Q., Guan, T., Pan, X., Jia, N., Cao, W., Zhou, B., Goldin, M., Zhang, L., 2011. Comprehensive analysis of pathogen-specific antibody response in vivo based on an antigen library displayed on surface of yeast. J. Biol. Chem. 286, 33511–33519. http://dx.doi.org/10.1074/jbc.M111.270553. # Impact of antiretroviral pressure on selection of primary human immunodeficiency virus type 1 envelope sequences *in vitro* Shigeyoshi Harada,^{1,2} Kazuhisa Yoshimura,^{1,2} Aki Yamaguchi,¹ Samatchaya Boonchawalit,^{1,2} Keisuke Yusa³ and Shuzo Matsushita¹ The initiation of drug therapy results in a reduction in the human immunodeficiency virus type 1 (HIV-1) population, which represents a potential genetic bottleneck. The effect of this druginduced genetic bottleneck on the population dynamics of the envelope (Env) regions has been addressed in several in vivo studies. However, it is difficult to investigate the effect on the env gene of the genetic bottleneck induced not only by entry inhibitors but also by non-entry inhibitors, particularly in vivo. Therefore, this study used an in vitro selection system using unique bulk primary isolates established in the laboratory to observe the effects of the antiretroviral druginduced bottleneck on the integrase and env genes. Env diversity was decreased significantly in one primary isolate [KP-1, harbouring both CXCR4 (X4)- and CCR5 (R5)-tropic variants] when passaged in the presence or absence of raltegravir (RAL) during in vitro selection. Furthermore, the RAL-selected KP-1 variant had a completely different Env sequence from that in the passage control (particularly evident in the gp120, V1/V2 and V4-loop regions), and a different number of potential N-glycosylation sites. A similar pattern was also observed in other primary isolates when using different classes of drugs. This is the first study to explore the influence of anti-HIV drugs on bottlenecks in bulk primary HIV isolates with highly diverse Env sequences using in vitro selection. Correspondence Kazuhisa Yoshimura ykazu@nih.go.jp Received 15 August 2012 Accepted 20 December 2012 # INTRODUCTION Human immunodeficiency virus type 1 (HIV-1) shows a high degree of genetic diversity owing to its high rates of replication and recombination and the high mutation rate of the HIV-1 reverse transcriptase (Nájera et al., 2002). Even in a single infected individual, the virus can best be described as a population of distinct, but closely related, genetic variants or 'quasi-species' (Eigen, 1993; Nijhuis et al., 1998). The quasi-species behaviour of viruses is recognized as a key element in our understanding and modelling of viral evolution and disease control (Vignuzzi et al., 2006). The GenBank/EMBL/DDBJ accession numbers for the $\it env$ sequences of HIV-1 KP-1, KP-2 and KP-4, are AB640872-AB640881, AB641341-AB641351 and AB641335-AB641340, respectively. Two supplementary figures are available with the online version of this paper. Combination antiretroviral (ARV) therapy results in a contraction of the viral population, which represents a potential genetic bottleneck (Charpentier *et al.*, 2006; Delwart *et al.*, 1998; Ibáñez *et al.*, 2000; Kitrinos *et al.*, 2005; Nijhuis *et al.*, 1998; Nora *et al.*, 2007; Sheehy *et al.*, 1996; Zhang *et al.*, 1994). Whilst this bottleneck has a direct effect on the region that is being targeted by the drugs (e.g. protease or reverse transcriptase), it also affects other regions of the viral genome. Indeed, the effect of the druginduced genetic bottleneck on the population dynamics of the envelope (Env) regions has been addressed in several *in vivo* studies (Charpentier *et al.*, 2006; Delwart *et al.*, 1998; Ibáñez *et al.*, 2000; Kitrinos *et al.*, 2005; Nijhuis *et al.*, 1998; Nora *et al.*, 2007; Sheehy *et al.*, 1996; Zhang *et al.*, 1994). Virus bottleneck evolution of the HIV-1 *env* gene might be important when choosing the optimal drugs to treat a particular patient. Indeed, a CCR5 antagonist (maraviroc, MVC) and a fusion inhibitor (enfuvirtide, T-20) have now ¹Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan ²AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan ³Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 1-18-1 Kami-youga, Setagaya-ku, Tokyo 158-8501, Japan been approved for use as HIV-1 entry inhibitors. Analysing the dynamics of drug-induced genetic bottlenecks and studying drug-resistant mutation profiles in response to HIV-1-specific ARV drugs are both important if we are to understand fully HIV-1 drug resistance and pathogenesis. The aim of the present study was to understand better the effect of *in vivo* drug-induced genetic bottlenecks. *In vitro* selection of different primary HIV-1 isolates was performed using the recently approved HIV integrase inhibitor raltegravir (RAL) (Steigbigel *et al.*, 2008). Two R5-, one X4-, one dual- and one mixed R5/X4-tropic isolates were passaged through a RAL-induced genetic
bottleneck. We also performed *in vitro* selection of the R5/X4 isolate using lamivudine (3TC), saquinavir (SQV) and MVC, and compared the results with those from the RAL-selected isolate. # **RESULTS** # Genotypic profiles of the HIV-1 primary isolates Four genetically heterogeneous HIV-1 primary isolates (KP-1-4) from Japanese drug-naïve patients were used to assess the extent to which RAL affected the selection of bulk primary viruses in vitro. A laboratory isolate, strain 89.6, was also used in the study (rather than a molecular clone) to allow escape mutants to be selected from each quasi-species pool and to be generated de novo. First, the sequences of the integrase (IN) regions of the four primary isolates were determined. Table 1 shows the detailed evaluation of the R5/ X4 mixture subtype B (KP-1), R5-CRF08_BC (KP-2), R5 subtype B (KP-3) and X4-CRF01_AE (KP-4) primary isolates, and the dual-tropic subtype B laboratory virus (89.6). Although some naturally occurring polymorphisms were observed within the IN regions of these isolates compared with the subtype B consensus sequence available from the Los Alamos National Laboratory HIV sequence database, we did not identify any primary resistant mutations to RAL. Three baseline viruses (KP-1, KP-4 and 89.6) were sensitive to RAL, with IC₅₀ values ranging from 1.2 to 4 nM, which are comparable with those reported previously (Kobayashi et al., 2008). However, KP-2 and KP-3 showed minor resistance to RAL, with IC_{50} values of 16 and 32 nM, respectively. These two isolates contained amino acid mutations at positions 72, 125 and 201 within the IN region [previously reported as L-870,810 and S-1360 resistance mutations (Hombrouck et al., 2008; Rhee et al., 2008), but not as RAL-resistance mutations]. KP-2 also contained a unique insertion at position 288 (NQDME) at the C-terminal end of the IN region. # In vitro selection of variants of the primary isolates and 89.6 using RAL To induce RAL-selected HIV-1 variants in vitro, PM1/CCR5 cells, a T-cell line expressing high levels of CCR5, were exposed to the four primary isolates and strain 89.6. The viruses were then serially passaged in the presence of RAL. As a control, each isolate was passaged under the same conditions, but without RAL, to allow monitoring of spontaneous changes occurring in the viruses during prolonged PM1/CCR5 cell passage (the passage control). The selected viruses were initially propagated at a RAL concentration equal to each IC_{50} value. The RAL concentrations were then increased from 20 to 85 nM during the course of the selection procedure (Table 1). Only small shifts in the IC₅₀ to RAL were observed in four of the five isolates (KP-1, KP-2, KP-4 and 89.6), with fold changes in IC₅₀ values of 3.4, 6.5, 16 and 9.2, respectively. KP-3 did not show resistance to RAL. IC₅₀ values in all the passage controls were comparable with those of the baseline viruses (Table 1). # IN region sequences in RAL-selected variants The full-length *IN* genes were amplified and cloned to determine the genetic basis of selection in the presence or absence of RAL. Ten to 12 clones from each sample were sequenced. Substitutions within IN were observed at passages 30 (G189R) and 29 (T210I) in two RAL-selected isolates (KP-2 and KP-4, respectively). Neither of these has been reported as IN inhibitor-resistant mutations. No substitutions in the IN regions of KP-3 and 89.6 were found. However, A125T and V180I substitutions were observed in the KP-3 and 89.6 control variants at the last passage. No previously reported mutations were identified in the IN region of KP-1 (an R5/X4 mixture isolate) after 17 passages. However, four amino acids (K7/K111/H216/D278) were selected by RAL from the baseline quasi-species, whereas different amino acids (R7/R111/Q216/N278) were selected in the control-passage variants (Table 1). Taken together, these findings showed that RAL-induced selection pressure causes adaptation within the IN regions of bulk primary viruses during *in vitro* passage in the target cells, and confirmed that this system can be used to analyse drug-selected variants *in vitro*. # Comparison of env gene sequences in RALselected and passage-control isolates A highly diverse gp120 region was observed in the baseline R5/X4 mixture isolate, KP-1; however, the viral diversity of variants passaged in the presence or absence of RAL decreased significantly during *in vitro* selection (overall mean distance after RAL selection of 0.056 at baseline to 0.007 after passage 17; mean overall distance in the passage control of 0.01 after 20 passages, Table 2). Moreover, the RAL-selected and control variants utilized CCR5 to enter the target cell; neither variant used CXCR4 (Table 3). Interestingly, the low-diversity RAL-selected variant contained a completely different Env sequence from that of the passage-control variant (Fig. 1a). Different regions spanning Table 1. Susceptibility of HIV-1 isolates to RAL and distinct differences in IN region sequences between RAL-selected and control-passaged viruses | Isolate | Subtype | Tropism | Passage no. | Concn (nM) | RAL-selected variant* | | Passage control | | |---------|----------|---------|-------------|------------|------------------------------|---------------------------|------------------------------|---------------------------| | | | | | | IN sequence | RAL IC ₅₀ (nM) | IN sequence | RAL IC ₅₀ (nM) | | KP-1 | В | Mix | 0 | 0 | K/R7, K/R111, Q/H216, D/N278 | 4 | K/R7, K/R111, Q/H216, D/N278 | 4 | | | | | 8 | 20 | K111, H216, D278 | 31 (7.8) | R7, R111, Q216, N278 | 4.5 (1.2) | | | | | 17† | 20 | K7, K111, H216, D278 | 26 (6.5) | R7, R111, Q216, N278 | 0.4 (0.1) | | KP-2 | CRF08_BC | R5 | 0 | 0 | I201, ins289NQDME | 16 | I201, ins289NQDME | 16 | | | | | 18 | 40 | G189G/R, I201, ins289NQDME | 32 (2) | I201, ins289NQDME | 16 (1) | | | | | 30 | 85 | G189R, I201, ins289NQDME | 55 (3.4) | I201, ins289NQDME | 25 (1.6) | | KP-3 | В | R5 | 0 | 0 | V72, A125 | 32 | V72, A125 | 32 | | | | | 11 | 25 | V72, A125 | 25 (0.78) | V72, A125 | 33 (1) | | | | | 22 | 27.5 | V72, A125 | 37 (1.2) | <i>V72</i> , A125T | 13 (0.41) | | KP-4 | CRF01_AE | X4 | 0 | 0 | _ | 2.1 | _ | 2.1 | | | | | 8 | 40 | _ | 33 (16) | R166R/K, D279N | 4.4 (2.1) | | | | | 29 | 40 | T210I | 22 (10) | G163E, R166R/K, D279N/S | 4.1 (2) | | 89.6 | В | R5X4 | 0 | 0 | _ | 1.2 | _ | 1.2 | | | | | 8 | 15 | _ | 34 (28) | _ | 4.4 (3.7) | | | | | 34 | 20 | _ | 11 (9.2) | V180I | 1.2 (1) | ^{*}Amino acid changes in each passage variant are shown. Italicized letters represent mutations relative to the consensus subtype BC or B present in the baseline isolates. Bold letters represent amino acids selected out of the quasi-species cloud. The fold increase in RAL IC₅₀ values is shown in parentheses for *in vitro*-selected variants compared with those in the baseline isolates. †The RAL variant selected after 17 passages was compared with the control selected after 20 passages. Table 2. Comparison of amino acid length and number of PNGs between RAL-selected and control-passage KP-1 variants | | Passage no. | Passage no. Genetic diversity* | Mean ENV _{1–474} length
(range)† | Mean ENV 1-474 length Mean V1/V2 length (range) Mean V3 length (range) (range) † | Aean V3 length (range) | Mean V4 length
(range) | Mean V4 length Mean PNGs (range) (range) | |--------------------|-------------|--------------------------------|--|--|------------------------|---------------------------|--| | Baseline | 0 | 0.056 | 472 (461–480) | 69 (60–74) | 34 (33–34) | 30 (29–31) | 24 (22–28) | | RAL-selected virus | 2 | 0.038 | 479 (472–480)‡ | 74 (71–74)‡ | 34 (33-34)‡ | 31 (29-31)‡ | 27 (25–28) ‡ | | | ∞ | 0.0070 | 480 | 74 | 34 | 31 | 28 (26–29) | | | 17 | 0.0070 | 480 | 74 | 34 | 31 | 27 (26–27)§ | | Passage control | 2 | 0.045 | 464 (461–466)‡ | 64 (60–74)‡ | 34 (33–34)‡ | 29 (29-31)‡ | 24 (22–27)‡ | | | 8 | 0.0070 | 463 (462–463) | 62 | 34 | 29 | 23 (22–23) | | | 10 | 0.0080 | 462 (459–463) | 62 | 34 | 29 | 23 (22–23) | | | 20 | 0.010 | 463 | 62 | 34 | 29 | 23 (22–23)§ | | P value | | | <0.0001‡ | <0.0001‡ | 0.91‡ | 0.0048‡ | 0.0019‡ | | | | | | | | | <0.0001§ | | | | | | | | | | *Overall mean distance. †Sequence from gp120 SP to the V5 region (aa 1–474). t, § P values were calculated using the homoscedastic t-test between the RAL-selected and the passage-control variants indicated by the same symbols above. the whole envelope sequence [from the signal peptide (SP) to V5] were compared in the RAL-selected and passage-control viruses. The results showed that, after only two passages, the gp120, V1/V2 and V4-loop regions within RAL-selected variants were longer than those in the control variants, and the number of putative *N*-linked glycosylation sites (PNGs) was significantly higher than that in the control-passage viruses (Table 2). This phenomenon was seen consistently in two independent experiments. We also analysed the gp120 sequences in the other four isolates. Although the number of positional differences between the RAL-selected and passage-control variants for these four isolates was lower than that in KP-1 (between three and nine, compared with >40), there was a similar pattern of separation between the Env sequences (Fig. 1). In three of the four isolates (KP-2, KP-3 and KP-4), positional differences were observed in SP, C1 and all the variable regions of gp120 (Fig. 1b-d). In strain 89.6, differences were observed in the C2, C3 and V4 regions (Fig. 1e). These results suggested that RAL treatment of target cells causes a decrease in viral diversification within quasi-species Env regions via a route different from that in untreated target cells. # In vitro induction of RAL-selected V3-loop library virus variants To investigate further the effects of RAL on viral Env
sequences, we used the V3-loop library virus (IR-FL-V3Lib) developed by Yusa et al. (2005), which carries a set of random combinations from zero to ten substitutions (27 648 possibilities) in the V3 loop (residues 305, 306, 307, 308, 309, 317, 319, 322, 323 and 326; V3 loop from Cys²⁹⁶ to Cys³³¹). The variants contained in the library were polymorphic mutations derived from 31 R5 clinical isolates (Yusa et al., 2005). PM1/CCR5 cells were exposed to the JR-FL-V3Lib and serially passaged in the presence of RAL. After two passages, the V3 sequence within the RALselected variant was completely different from that in the passage control (Fig. 1f). This suggested that, under pressure from RAL, the infectious clone harbouring different V3 region sequence from the passage control had adapted to the target cells, despite containing the same IN sequences. # Phylogenetic analysis of the Env regions after passage with or without RAL To confirm the temporal and spatial differences observed in each of the RAL-selected and passage-control viruses, phylogenetic analyses were conducted using complete SP–V5 sequences. The neighbour-joining phylogenetic tree showed a clear and distinct branching between RAL-selected and passage-control KP-1 viruses (Fig. 2a). We also identified a similar pattern in all the other isolates tested (Fig. 2b–e). Table 3. Comparison of amino acid length, number of potential N-linked glycosylation sites, V3 sequences and co-receptor usage between anti-retroviral drug-selected and control-passaged KP-1 variants | | Passage
no. | Genetic
diversity* | Mean ENV ₁₋₄₇₄
length (range)† | | Mean V3
length (range) | Mean V4
length (range) | Mean
PNGs
(range) | | V3 region | Geno2
pheno
(%)§ | |---------------------------|----------------|-----------------------|--|------------|---------------------------|---------------------------|-------------------------|-------------------|------------------------------------|------------------------| | | | | | | | | (- ······ 6 · / | Prevalence
(%) | e Sequence‡ | _ (//// | | Baseline | 0 | 0.056 | 472 (461–480) | 69 (60–74) | 34 (33–34) | 30 (29–31) | 24 (22–28) | 41.9 | CTRPNNNTRKGIHIGPGKFYATGAIIGDIRQAHC | 41.2 | | | | | | | | | | 22.6 | V | 41.2 | | | | | | | | | | 16.1 | IT.RT.RDNK | 1.7 | | | | | | | | | | 13.0 | IT.RT.KTN.KK | 2.9 | | | | | | | | | | 3.2 | I | 7.4 | | | | | | | | | | 3.2 | | 55.3 | | Passage
control | 8 | 0.0070 | 463 (462–463) | 62 | 34 | 29 | 23 (22–23) | 100.0 | | 41.2 | | RAL-
selected
virus | 8 | 0.0070 | 480 | 74 | 34 | 31 | 28 (26–29) | 100.0 | | 41.2 | | 3TC-
selected
virus | 6 | 0.020 | 478 (475–480) | 74 | 34 | 31 (29–31) | 27 (25–28) | 83.3 | | 41.2 | | SQV-
selected
virus | 11 | 0.0040 | 474 | 71 | 34 | 31 | 26 | 100.0 | | 41.2 | | MVC-
selected
virus | 7 | 0.0080 | 469 (468–469) | 69 | 33 | 29 | 24 (23–24) | 100.0 | IRT.RT.KTN.KK | 1.7 | ^{*}Overall mean distance. [†]Sequence from gp120 SP to the V5 region (aa 1–474). [‡]V3 sequences of each variant are shown. Dots denote sequence identity and dashes indicate a deletion mutation. \$Prediction of viral co-receptor tropism using Geno2pheno based on a selectable 'false positive rate'. **Fig. 1.** Comparison of the gp120 sequences between RAL-selected and control-passaged viruses. The gp120 sequences of baseline, RAL-selected and the passage-control viruses were aligned for KP-1 (a), KP-2 (b), KP-3 (c), KP-4 (d) and strain 89.6 (e). Each amino acid in (a)–(e) is numbered relative to the HIV-1 HXB₂ reference sequence. The V3 sequences from the JR-FL-V3Lib baseline library, RAL-selected and passage-control viruses were aligned (f). Filled cells denote the most dominant amino acids observed in RAL-selected variants at the latest passage, open cells denote the most dominant amino acids observed in the passage-control variants at the latest passage and shaded cells show amino acids deleted by the end of both passages, whilst '–' indicates a deletion mutation. The number of passages is indicated, e.g. 17p for passage 17. 938 Journal of General Virology 94 # In vitro selection of KP-1 variants by 3TC, SQV and MVC To determine whether other HIV drugs also changed the route of adaptation to the target cells, we attempted to select KP-1 variants using a reverse transcriptase inhibitor (3TC), a protease inhibitor (SQV) and a CCR5 inhibitor (MVC). As shown in Fig. 2(f), the pattern of clustering at distinct positions between the selected isolates and the passage-control variants was similar to that observed for the RAL-selected variants. The selected variants showed decreased diversity in the gp120 sequences; however, the length of the gp120, V1/V2 and V4 sequences increased (apart from in the MVC-selected variants). In addition, the number of PNGs within gp120 was higher than that in the control (Table 3). We also compared the V3 sequences between the passage-control and each of the drug-selected variants. The V3 sequences in all the SQV-selected variants and 83.3% of those in the 3TC-selected variants, were comparable with those in the RAL-selected variants. This was not the case for the passage controls. Comparison of variants passaged with RAL and 3TC showed that the length of the V1/V2 and V4 regions and the number of PNGs was similar; however, these parameters were different in the SQV-selected variants (Table 3). This indicated that the time at which a drug acts (e.g. during the early or late phase of the HIV life cycle) influences the selection of Env sequences. During selection with MVC, CXCR4-tropic variants were selected from the baseline mixture after seven passages. Taken together, these results suggested that, in treated cells, different classes of anti-HIV drugs may suppress the variability of quasi-species during *in vitro* selection via a route different from that in untreated cells. # DISCUSSION This study evaluated the impact of anti-HIV drugs on the Env bottleneck in bulk HIV-1 primary isolates during selection *in vitro*. RAL-, 3TC- and SQV-selected variants of the unique viral isolate, KP-1, harbouring both X4 and R5 variants and with a very high level of baseline viral diversity, were used to study the final destination (genetic bottleneck) of a large variety of Env sequences. Interestingly, the phylogenetic clustering of RAL-selected KP-1 variants was completely different from that of non-drug-treated controls (Fig. 2). Our results also confirmed differences in the length of the gp120, V1/V2 and V4-loop regions and in the number of PNGs (Tables 2 and 3). It is not clear why viruses cultured under pressure from the non-Env-directed drug RAL result in different *env* genotypes compared with those without the drug. Thus, we cloned the *IN-env* region of the proviral genome from passaged viruses and sequenced the *env* and *IN* regions on the same cloned plasmid, and compared them among the baseline and passages 1, 2, 8 and 17 of the KP-1 virus. Under low concentrations of the IN inhibitor RAL, K7 was selected for at a late passage after accumulation of the other three amino acids, K111, D278 and H216, in IN. During the sequential accumulation of these four amino acids (K111, D278, H216 and K7), the RAL-selected Env sequences at passage 17 (the Env sequences shown as filled boxes in Fig. 1) sequentially accumulated mutations in the same proviral genome (Fig. S1, available in JGV Online). However, we did not find a clone including both the RAL-selected Env at passage 17 and RAL-selected IN at passage 17 in the baseline or each passaged virus, except for in the last passage. We also examined the gp120 and IN sequences of the 3TC- and SQV-selected KP-1 variants. Compared with the RALselected region, the variable regions of gp120 in these selected variants were very similar to each other, except for the V1/V2 region (Fig. S2). However, the passage-control variant was very different from the drug-selected variants (Fig. 1a). Furthermore, the IN sequences were different in each passaged virus: K111/D278/H216/K7 in RAL-selected, R111/D278/Q216/R7 in 3TC-selected, K111/D278/H216/R7 in SQV-selected and R111/N278/Q216/R7 in virus without drug treatment (underlined residues indicate amino acids different from those in viruses without drug treatment). To explain these results, we believe that, under pressure from anti-HIV drugs (non-entry ARVs), the virus might show a primitive reaction to select for the Env sequence and recombine from quasi-species to gain advantage for entry and/or enhance replication in target cells. Meanwhile, IN was selected from quasi-species by a direct and/or indirect effect of RAL-induced pressure. The combination of both selective pressures may affect the selection for Env and IN during adaptation in drug-treated conditions (Figs 1a and S2). These results suggest that non-entry inhibitors, such as RAL, 3TC and SQV, might also affect cell adaptation to PM1/CCR5 cells. Many in vivo studies have reported the effects of the anti-HIV drug-induced bottleneck on the *env* gene (Charpentier et al., 2006; Delwart et al., 1998; Ibáñez et al., 2000; Kitrinos et al., 2005; Nijhuis et al., 1998; Nora et al., 2007; Sheehy et al., 1996; Zhang et al., 1994). However, these studies had several limitations. Because viruses were placed under in vivo selective pressure using at least two anti-HIV drugs and by the host immune response, it is difficult to separate the different effects and to draw clear conclusions, particularly in vivo. Delwart et al. (1998) and Kitrinos et al. (2005) avoided some of these limitations by employing a heteroduplex tracking assay, although in vivo peculiarities still remained. Therefore, we used an *in vitro* selection system using unique bulk primary isolates established in our laboratory (Hatada et al., 2010; Shibata et al., 2007; Yoshimura et al., 2006, 2010b) to observe the effects of the anti-retroviral druginduced bottleneck on the IN and
env genes. This selection provides a sensitive approach for analysing virus population dynamics. The effectiveness of ARV drugs can be examined during the *in vitro* passage of a single variant or mixture of variants without being affected by many of the factors encountered *in vivo*. In addition, http://vir.sgmjournals.org Fig. 2. Phylogenetic analyses of the Env regions from *in vitro*-passaged viruses selected with or without ARV drugs. (a–e) Phylogenetic trees were constructed using gp120 SP–V5 sequences from RAL-selected and passage-control variants of KP-1 (a), KP-2 (b), KP-3 (c), KP-4 (d) and strain 89.6 (e). An 'x' represents baseline (BL) variants, and closed and open symbols represent RAL-selected (RAL) and passage-control (PC) variants, respectively. In (a), the results of the second experiment are indicated as RAL2 and PC2, respectively. (f) A phylogenetic tree was constructed using gp120 SP–V5 sequences from RAL-, 3TC-, SQV-, MVC-selected and control-passaged variants of KP-1. ○, Control variants after eight passages; ♠, RAL-selected variants after eight passages; ♠, SQV-selected variants after seven passages. The trees were constructed using the neighbour-joining algorithm embedded within the MEGA software. differences in the Env sequences between the baseline and selected variants can be compared after any number of passages. The results of the present study provide important information that will enhance our understanding of the drug-induced genetic bottleneck. This phenomenon can be examined *in vitro* using bulk primary isolates treated with or without drugs. Recently, several new ARV drugs have been licensed for use in HIV-1-infected patients. MVC, approved in 2006, is the first CCR5 inhibitor (Gulick et al., 2008). One important advantage associated with this drug is the absence of cross-resistance with previously available ARV compounds (Gulick et al., 2008; Steigbigel et al., 2008). However, as is usual with anti-HIV drugs, resistant variants with mutations in the Env, gp120 and gp41 sequences are induced both in vivo and in vitro (Anastassopoulou et al., 2009; Berro et al., 2009; Tilton et al., 2010; Yoshimura et al., 2009, 2010a). As shown in the present study, distinct Env sequences from each quasispecies might be selected by the different anti-HIV drugs (e.g. length of the V1/2 and/or V4 regions, V3 region depletion and the number of PNGs). Moreover, many of the novel anti-retroviral drugs in pre-clinical trials are viral entry inhibitors (e.g. PRO140, ibalizumab, BMS-663068 and PF-232798; Jacobson et al., 2010; McNicholas et al., 2010; Nettles et al., 2011; Stupple et al., 2011; Toma et al., 2011). Therefore, it is necessary to examine whether such entry inhibitors are effective when used alongside conventional drugs. In conclusion, we studied the genetic bottleneck in bulk primary HIV-1 isolates from untreated patients and drugs targeting the Env (and other) regions. The results showed, for the first time, the presence of drug-selected Env sequences in these isolates. Although our observations were based on a limited number of HIV-1 isolates and need to be confirmed by independent studies, we believe that they provide a new paradigm for HIV-1 evolution in the new combination ARV therapy era. # **METHODS** Patients and isolates. Primary HIV-1 isolates were isolated from four drug-naïve patients in our laboratory (KP-1-4) and passaged in phytohaemagglutinin-activated PBMCs. Infected PBMCs were then co-cultured for 5 days with PM1/CCR5 cells (a kind gift from Dr Y. Maeda; Maeda *et al.*, 2008; Yusa *et al.*, 2005) and the culture supernatants were stored at -150 °C (Hatada *et al.*, 2010; Shibata *et al.*, 2007; Yoshimura *et al.*, 2006, 2010b). After isolation of the primary viruses, we checked the sensitivity of each primary isolate to MVC. The KP-1 isolate was relatively MVC-resistant compared with KP-2 and KP-3 (54 vs 5.9 and 8.7 nM, respectively). KP-1 became MVC sensitive after eight passages in PM1/CCR5 cells [IC $_{50}$, 3.4 nM; Geno2pheno value (see below), 41.2 %], whilst under the pressure of MVC, KP-1 became highly resistant to MVC after eight passages (IC $_{50}$, >1000 nM; Geno2pheno value, 1.7 %). These results indicated that the bulk KP-1 isolate used in this study harboured primarily R5 viruses with X4- or dual-tropic viruses as a minor population. Cells, culture conditions and reagents. PM1/CCR5 cells were maintained in RPMI 1640 (Sigma) supplemented with 10% heatinactivated FCS (HyClone Laboratories), 50 U penicillin ml^{-1} , 50 $\mu\mathrm{g}$ streptomycin ml^{-1} and 0.1 mg G418 (Nacalai Tesque) ml^{-1} . MVC, RAL and SQV were kindly provided by Pfizer, Merck & Co. and Roche Products, respectively. 3TC was purchased from Wako Pure Chemical Industries. http://vir.sgmjournals.org The laboratory-adapted HIV-1 strain 89.6, which was obtained through the NIH AIDS Research and Reference Reagent Program, was propagated in phytohaemagglutinin-activated PBMCs. The viral-competent library pJR-FL-V3Lib, which contains 176 bp V3-loop DNA fragments with 0–10 random combinations of amino acid substitutions, was introduced into pJR-FL, as described previously (Yusa *et al.*, 2005). In vitro selection of HIV-1 variants using anti-HIV drugs. The four primary HIV isolates (KP-1-4), strain 89.6 and JR-FL-V3Lib were treated with various concentrations of RAL and used to infect PM1/CCR5 cells to induce the production of RAL-selected HIV-1 variants, as described previously, with minor modifications (Hatada et al., 2010; Shibata et al., 2007; Yoshimura et al., 2006, 2010b). Briefly, PM1/CCR5 cells $(4 \times 10^4 \text{ cells})$ were exposed to 500 TCID₅₀ HIV-1 isolates and cultured in the presence of RAL. Virus replication in PM1/CCR5 cells was monitored by observing the cytopathic effects. The culture supernatant was harvested on day 7 and used to infect fresh PM1/CCR5 cells for the next round of culture in the presence of increasing concentrations of RAL. When the virus began to propagate in the presence of the drug, the compound concentration was increased further. Proviral DNA was extracted from lysates of infected cells at different passages using a QIAamp DNA Blood Mini kit (Qiagen). The proviral DNAs obtained were then subjected to nucleotide sequencing. In vitro selection of the KP-1 isolate using SQV, 3TC and MVC was also performed using the procedure described above. Amplification of proviral DNA and nucleotide sequencing. Proviral DNA was subjected to PCR amplification using PrimeSTAR GXL DNA polymerase and Ex-Taq polymerase (Takara), as described previously (Hatada et al., 2010; Shibata et al., 2007; Yoshimura et al., 2006, 2010b). The primers used were 1B and H for the gp120 region (Hatada et al., 2010; Shibata et al., 2007; Yoshimura et al., 2006, 2010b), IN 1F (5'-CAGACTCACAATAT-GCATTAGG-3') and IN 1R (5'-CCTGTATGCAGACCCCAATATG-3') for the IN region, and IN 1F and H for the IN-gp120 region. The first-round PCR products were used directly in a second round of PCR using primers 2B and F (Hatada et al., 2010; Shibata et al., 2007; Yoshimura et al., 2006, 2010b) for gp120, IN 2F (5'-CTGGCATGG-GTACCAGCACACAA-3') and IN 2R (3'-CCTAGTGGGATGTGT-ACTTCTGAACTTA-3') for IN, and IN 2F and F for IN-gp120. The PCR conditions used were as described above. The second-round PCR products were purified and cloned into a pGEM-T Easy Vector (Promega) or pCR-XL-TOPO Vector (Invitrogen), and the env and IN regions in both the passaged and selected viruses were sequenced using an Applied Biosystems 3500xL Genetic Analyzer and a BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems). Phylogenetic reconstructions were generated using the neighbour-joining method embedded in the MEGA software (http://www.megasoftware.net) (Tamura et al., 2007). Overall, mean distances for viral diversity were also calculated using MEGA software. The number and location of putative PNGs were estimated using N-GlycoSite (http://www.hiv.lanl.gov/content/ sequence/GLYCOSITE/glycosite.html) from the Los Alamos National Laboratory database. **Susceptibility assay.** The sensitivity of the passaged viruses to various drugs was determined as described previously with minor modifications (Hatada *et al.*, 2010; Shibata *et al.*, 2007; Yoshimura *et al.*, 2006, 2010b). Briefly, PM1/CCR5 cells $(2 \times 10^3 \text{ cells per well})$ in 96-well round-bottomed plates were exposed to 100 TCID₅₀ of the viruses in the presence of various concentrations of drugs and incubated at 37 °C for 7 days. The IC₅₀ values were then determined using a Cell Counting Kit-8 assay (Dojindo Laboratories). All assays were performed in duplicate or triplicate. Predicting co-receptor usage by the V3 sequence. HIV-1 tropism was inferred using Geno2pheno [coreceptor] program, with a false rate positive (FPR) value of 5.0 %, which is freely available (http://coreceptor.bioinf.mpi-inf.mpg.de/index.php). This genotyping tool more accurately predicts virological responses to the CCR5 antagonist MVC in ARV-naïve patients than a reference phenotypic tropism test (Sing et al., 2007). **Statistical analyses.** Pairwise comparisons of the different parameters between variants in the two groups was calculated using the homoscedastic t-test. A P value of <0.05 was considered statistically significant. # **ACKNOWLEDGEMENTS** We are grateful to Dr Yosuke Maeda for providing the PM1/CCR5 cells. We also thank Syoko Yamashita, Yoko Kawanami, Noriko Shirai and Akiko Shibata for technical assistance. This study was supported in part by the Ministry of Education, Culture, Sports, Science and Technology, Japan, by a Grant-in-Aid for Young Scientists (B-22790163); grants from the Ministry of Health, Labour and Welfare; the Program of Founding Research Centers for Emerging and Reemerging Infectious Diseases; and the Global COE program Global Education and Research Center Aiming at the Control of AIDS. # REFERENCES
Anastassopoulou, C. G., Ketas, T. J., Klasse, P. J. & Moore, J. P. (2009). Resistance to CCR5 inhibitors caused by sequence changes in the fusion peptide of HIV-1 gp41. *Proc Natl Acad Sci U S A* 106, 5318–5323. Berro, R., Sanders, R. W., Lu, M., Klasse, P. J. & Moore, J. P. (2009). Two HIV-1 variants resistant to small molecule CCR5 inhibitors differ in how they use CCR5 for entry. *PLoS Pathog* 5, e1000548. Charpentier, C., Nora, T., Tenaillon, O., Clavel, F. & Hance, A. J. (2006). Extensive recombination among human immunodeficiency virus type 1 quasispecies makes an important contribution to viral diversity in individual patients. *J Virol* 80, 2472–2482. **Delwart, E. L., Pan, H., Neumann, A. & Markowitz, M. (1998).** Rapid, transient changes at the *env* locus of plasma human immunodeficiency virus type 1 populations during the emergence of protease inhibitor resistance. *J Virol* 72, 2416–2421. **Eigen, M. (1993).** The origin of genetic information: viruses as models. *Gene* 135, 37–47. Gulick, R. M., Lalezari, J., Goodrich, J., Clumeck, N., DeJesus, E., Horban, A., Nadler, J., Clotet, B., Karlsson, A. & other authors (2008). Maraviroc for previously treated patients with R5 HIV-1 infection. *N Engl J Med* 359, 1429–1441. Hatada, M., Yoshimura, K., Harada, S., Kawanami, Y., Shibata, J. & Matsushita, S. (2010). Human immunodeficiency virus type 1 evasion of a neutralizing anti-V3 antibody involves acquisition of a potential glycosylation site in V2. J Gen Virol 91, 1335–1345. Hombrouck, A., Voet, A., Van Remoortel, B., Desadeleer, C., De Maeyer, M., Debyser, Z. & Witvrouw, M. (2008). Mutations in human immunodeficiency virus type 1 integrase confer resistance to the naphthyridine L-870,810 and cross-resistance to the clinical trial drug GS-9137. Antimicrob Agents Chemother 52, 2069–2078. **Ibáñez, A., Clotet, B. & Martínez, M. A. (2000).** Human immuno-deficiency virus type 1 population bottleneck during indinavir therapy causes a genetic drift in the env quasispecies. *J Gen Virol* **81**, 85–95. - Jacobson, J. M., Thompson, M. A., Lalezari, J. P., Saag, M. S., Zingman, B. S., D'Ambrosio, P., Stambler, N., Rotshteyn, Y., Marozsan, A. J. & other authors (2010). Anti-HIV-1 activity of weekly or biweekly treatment with subcutaneous PRO 140, a CCR5 monoclonal antibody. *J Infect Dis* 201, 1481–1487. - Kitrinos, K. M., Nelson, J. A., Resch, W. & Swanstrom, R. (2005). Effect of a protease inhibitor-induced genetic bottleneck on human immunodeficiency virus type 1 *env* gene populations. *J Virol* 79, 10627–10637. - Kobayashi, M., Nakahara, K., Seki, T., Miki, S., Kawauchi, S., Suyama, A., Wakasa-Morimoto, C., Kodama, M., Endoh, T. & Oosugi, E. (2008). Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. *Antiviral Res* 80, 213–222. - Maeda, Y., Yusa, K. & Harada, S. (2008). Altered sensitivity of an R5X4 HIV-1 strain 89.6 to coreceptor inhibitors by a single amino acid substitution in the V3 region of gp120. *Antiviral Res* 77, 128–135 - McNicholas, P., Wei, Y., Whitcomb, J., Greaves, W., Black, T. A., Tremblay, C. L. & Strizki, J. M. (2010). Characterization of emergent HIV resistance in treatment-naive subjects enrolled in a vicriviroc phase 2 trial. *J Infect Dis* 201, 1470–1480. - Nájera, R., Delgado, E., Pérez-Alvarez, L. & Thomson, M. M. (2002). Genetic recombination and its role in the development of the HIV-1 pandemic. *AIDS* 16 (Suppl. 4), S3–S16. - Nettles, R., Schurmann, D., Zhu, L., Stonier, M., Huang, S. P., Chien, C., Krystal, M., Wind-Rotolo, M., Bertz, R. & Grasela, D. (2011). Pharmacodynamics, safety, and pharmacokinetics of BMS-663068: a potentially first-in-class oral HIV attachment inhibitor. In 18th Conference on Retroviruses and Opportunistic Infections, abstract 49. Boston, MA. - Nijhuis, M., Boucher, C. A., Schipper, P., Leitner, T., Schuurman, R. & Albert, J. (1998). Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy. *Proc Natl Acad Sci U S A* 95, 14441–14446. - Nora, T., Charpentier, C., Tenaillon, O., Hoede, C., Clavel, F. & Hance, A. J. (2007). Contribution of recombination to the evolution of human immunodeficiency viruses expressing resistance to antiretroviral treatment. *J Virol* 81, 7620–7628. - Rhee, S.-Y., Liu, T. F., Kiuchi, M., Zioni, R., Gifford, R. J., Holmes, S. P. & Shafer, R. W. (2008). Natural variation of HIV-1 group M integrase: implications for a new class of antiretroviral inhibitors. *Retrovirology* 5, 74. - Sheehy, N., Desselberger, U., Whitwell, H. & Ball, J. K. (1996). Concurrent evolution of regions of the envelope and polymerase genes of human immunodeficiency virus type 1 observed during zidovudine (AZT) therapy. *J Gen Virol* 77, 1071–1081. - Shibata, J., Yoshimura, K., Honda, A., Koito, A., Murakami, T. & Matsushita, S. (2007). Impact of V2 mutations on escape from a potent neutralizing anti-V3 monoclonal antibody during in vitro selection of a primary human immunodeficiency virus type 1 isolate. *J Virol* 81, 3757–3768. - Sing, T., Low, A. J., Beerenwinkel, N., Sander, O., Cheung, P. K., Domingues, F. S., Büch, J., Däumer, M., Kaiser, R. & other authors - (2007). Predicting HIV coreceptor usage on the basis of genetic and clinical covariates. *Antivir Ther* 12, 1097–1106. - Steigbigel, R. T., Cooper, D. A., Kumar, P. N., Eron, J. E., Schechter, M., Markowitz, M., Loutfy, M. R., Lennox, J. L., Gatell, J. M. & other authors (2008). Raltegravir with optimized background therapy for resistant HIV-1 infection. *N Engl J Med* 359, 339–354. - Stupple, P. A., Batchelor, D. V., Corless, M., Dorr, P. K., Ellis, D., Fenwick, D. R., Galan, S. R., Jones, R. M., Mason, H. J. & other authors (2011). An imidazopiperidine series of CCR5 antagonists for the treatment of HIV: the discovery of N-(1S)-1-(3-fluorophenyl)-3-[(3-endo)-3-(5-isobutyryl-2-methyl-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-1-yl)-8-azabicyclo[3.2.1]oct-8-yl]propylacetamide (PF-232798). *J Med Chem* 54, 67–77. - Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol Biol Evol* 24, 1596–1599. - Tilton, J. C., Wilen, C. B., Didigu, C. A., Sinha, R., Harrison, J. E., Agrawal-Gamse, C., Henning, E. A., Bushman, F. D., Martin, J. N. & other authors (2010). A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5. *J Virol* 84, 10863–10876. - Toma, J., Weinheimer, S. P., Stawiski, E., Whitcomb, J. M., Lewis, S. T., Petropoulos, C. J. & Huang, W. (2011). Loss of asparagine-linked glycosylation sites in variable region 5 of human immunodeficiency virus type 1 envelope is associated with resistance to CD4 antibody ibalizumab. *J Virol* 85, 3872–3880. - Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. (2006). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. *Nature* 439, 344–348. - Yoshimura, K., Shibata, J., Kimura, T., Honda, A., Maeda, Y., Koito, A., Murakami, T., Mitsuya, H. & Matsushita, S. (2006). Resistance profile of a neutralizing anti-HIV monoclonal antibody, KD-247, that shows favourable synergism with anti-CCR5 inhibitors. *AIDS* 20, 2065–2073. - Yoshimura, K., Harada, S., Hatada, M. & Matsushita, S. (2009). Mutations in V4 and C4 regions of the HIV-1 CRF08-BC envelope induced by the in vitro selection of Maraviroc Confer cross-resistance to other CCR5 inhibitors. In 16th Conference on Retroviruses and Opportunistic Infections, p. 640. Montreal, Canada. - Yoshimura, K., Harada, S. & Matsushita, S. (2010a). Two step escape pathway of the HIV-1 subtype C primary isolate induced by the in vitro selection of Maraviroc. In 17th Conference on Retroviruses and Opportunistic Infections, abstract 535. San Francisco, CA. - Yoshimura, K., Harada, S., Shibata, J., Hatada, M., Yamada, Y., Ochiai, C., Tamamura, H. & Matsushita, S. (2010b). Enhanced exposure of human immunodeficiency virus type 1 primary isolate neutralization epitopes through binding of CD4 mimetic compounds. *J Virol* 84, 7558–7568. - Yusa, K., Maeda, Y., Fujioka, A., Monde, K. & Harada, S. (2005). Isolation of TAK-779-resistant HIV-1 from an R5 HIV-1 GP120 V3 loop library. *J Biol Chem* 280, 30083–30090. - Zhang, Y. M., Dawson, S. C., Landsman, D., Lane, H. C. & Salzman, N. P. (1994). Persistence of four related human immunodeficiency virus subtypes during the course of zidovudine therapy: relationship between virion RNA and proviral DNA. *J Virol* 68, 425–432. http://vir.sgmjournals.org 943 # EFdA, a Reverse Transcriptase Inhibitor, Potently Blocks HIV-1 *Ex Vivo* Infection of Langerhans Cells within Epithelium Journal of Investigative Dermatology advance online publication, 2 January 2014; doi:10.1038/jid.2013.467 ### TO THE EDITOR Despite increasing access to antiretroviral drugs, sexual transmission of HIV-1 remains a significant public health threat. A recent clinical trial, CAPRISA 004, of a vaginally administered microbicide using a nucleoside reverse transcriptase inhibitor (NRTI), tenofovir (TDF), has demonstrated that 1% TDF gel reduced HIV-1 acquisition by an estimated 39% overall (Abdool Karim et al., 2010), indicating a potential utility of NRTI-based microbicides. In the VOICE study, however, a once-daily dosing regimen with TDF gel failed to demonstrate protective effects in at-risk women. These studies demonstrate the need to develop additional more potent microbicide candidates to potentially increase the activity to protect women from HIV-1 transmission. We previously reported that a series of 4'-substituted NRTIs have excellent antiviral properties (Ohrui, 2006), and through optimization of such 4'substituted NRTIs, 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) was found to exert extremely potent activity against a wide spectrum of HIV-1 strains
including highly multidrug-resistant clinical HIV-1 isolates, with favorable in vitro cell toxicities (Nakata et al., 2007; Ohrui et al., 2007). EFdA inhibited HIV-1 replication in activated peripheral blood mononuclear cells with an EC50 of 0.05 nm, a potency several orders of magnitude greater than any of the current clinically available NRTIs (Michailidis et al., 2009). As the prevalence of new infections with drug-resistant HIV-1 variants could increase in the coming years (Nichols *et al.*, 2011), EFdA may be useful as a topical microbicide. Langerhans cells (LCs) are dendritic cells located, among other sites, within genital skin and mucosal epithelium (Lederman et al., 2006). In female rhesus macaques exposed intravaginally to simian immunodeficiency virus, up to 90% of initially infected target cells were LCs (Hu et al., 2000). Ex vivo experiments with human foreskin explants show that epidermal LCs in inner foreskin are primary target cells for HIV-1 infection, providing a plausible explanation for why circumcision greatly reduces the probability of acquiring HIV-1 (Ganor et al., 2010; Zhou et al., 2011). LCs also express CD4 and CCR5, but not CXCR4, and demonstrate the distinctive characteristics of emigrating from tissue to draining lymph nodes in order to interact with T cells following contact with pathogens (Lederman et al., 2006). Indeed, epidermal LCs are readily infected ex vivo with R5-HIV-1, but not with X4-HIV-1, and initiate and promote high levels of infection upon interactions with cocultured CD4+ T cells (Kawamura et al., 2000; Ogawa et al., 2009, 2013), consistent with previous epidemiologic observations that the majority of HIV-1 strains isolated from newly infected patients are R5-HIV-1 strains (Zhu et al., 1993). Thus, LCs likely have an important role in disseminating HIV-1 soon after exposure to the virus. To understand how HIV-1 traverses skin and genital mucosa, an *ex vivo* model was developed in which resident LCs within epithelial tissue explants obtained from suction blisters are exposed to HIV-1 and then allowed to emigrate from the tissue, thus mimicking conditions that occur following mucosal exposure to HIV (Kawamura et al., 2000; Ogawa et al., 2009, 2013). In this model, although relatively few productively infected LCs are identified, these cells induce high levels of HIV-1 infection when cocultured with resting autologous CD4⁺ T cells (Kawamura et al., 2000; Ogawa et al., 2013). As expected, when epidermal tissue explants were pretreated with various concentrations of TDF, EFdA, and CCR5 inhibitor, maraviroc (MVC), prior to R5-tropic HIV-1_{Ba-I} exposure, HIV-1 infection of resident LCs within epidermis as well as subsequent virus transmission from emigrated LCs to cocultured CD4+ T cells was decreased in a dose-dependent manner (Figure 1a and c; for detailed methods, see Supplementary Material). The blocking was confirmed by repeated experiments using skin explants from three additional randomly selected individuals (Figure 1b and d). Strikingly, although the blocking efficiency of TDF or MVC even at 5,000 nm was partial, EFdA demonstrated complete blocking of R5-HIV-1 replication in LCs as well as subsequent virus transmission from emigrated LCs to CD4+ T cells at doses of 100-5,000 nм (Figure 1a-d). Furthermore, EFdA blocked ex vivo virus infection of LCs as well as subsequent virus transmission when two strains of R5-HIV-1, HIV-1_{IR-FL} and HIV-1_{AD8}, were utilized in experiments (n=3, Supplementary)Figure S1 online). Similar to the results in epidermal LCs, preincubation of monocyte-derived LCs (mLCs) with 100–5,000 nm of EFdA Abbreviations: EFdA, 4'-ethynyl-2-fluoro-2'-deoxyadenosine; LC, Langerhans cell; mLC, monocyte-derived LC; MVC, maraviroc; NRTI, nucleoside reverse transcriptase inhibitor; TDF, tenofovir Accepted article preview online 11 November 2013 Figure 1. Preincubation of skin explants with EFdA blocks R5-HIV-1 infection in LCs and subsequent virus transmission to cocultured CD4⁺ T cells. LCs within skin explants were preincubated with no drug (O) or the indicated concentrations of EFdA (♠), TDF (♠), and MVC (☒) for 30 minutes, exposed to HIV-1_{Ba-L} for 2 hours, and then floated on culture medium to allow migration of LCs from the explants. Emigrating cells from the epidermal sheets were collected 3 days following HIV-1 exposure. HIV-1-infected LCs were assessed by HIV-1 p24 intracellular staining in langerin⁺ CD11c⁺ LCs (a, b), or further cocultured with autologous CD4⁺ T cells and culture supernatants were assessed for p24 content by ELISA on the indicated days (c, d). Summary of percent inhibition of LC infection (b) and virus transmission to CD4⁺ T cells (d) of 12 experiments using skin explants from 12 individuals with the indicated each concentration of EFdA (♠), TDF (♠), and MVC (☒) are shown. Mean values obtained from different donors are shown as horizontal marks (b, d). EFdA, 4'-ethynyl-2-fluoro-2'-deoxyadenosine; LCs, Langerhans cells; MVC, maraviroc; TDF, tenofovir. completely blocked HIV-1 replication in mLCs as well as subsequent virus transmission from mLCs to cocultured CD4+ T cells, whereas both TDF and MVC at the same doses only partially inhibited the transmission (Figure 2a and b; for detailed methods, see Supplementary Material online). Intriguingly, even in 1–3 days following the removal of EFdA (1,000 nm), EFdA completely blocked HIV-1 infection of mLCs as well as subsequent virus transmission from mLCs to cocultured CD4 ⁺ T cells, whereas TDF and MVC rapidly lost their anti-HIV-1 activity within days (Figure 2c–f). No cellular toxicity was noted for any of these drugs at the doses used in these experiments (Supplementary Figure S2 online). When similar experiments were conducted using peripheral blood mononuclear cell as target cells, virtually identical favorable persistency of EFdA in antiviral activity compared with that of TDF was observed (data not shown). In the present work, we demonstrated that EFdA exerted extremely more potent anti-HIV-1 activity in LCs than did TDF and MVC, and the potent anti-HIV-1 activity of EFdA persisted for at least 3 days. Of note, the efficacy of TDF gel in CAPRISA 004 has been linked to its long intracellular half-life (Abdool Karim *et al.*, 2010; Rohan *et al.*, 2010). Our data strongly Figure 2. Preincubation of skin explants with EFdA blocks subsequent R5-HIV-1 infection in LC in a dose-dependent manner. mLCs were preincubated with no drug (○) or the indicated concentrations of EFdA (❸), TDF (▲) and MVC (圖) for 30 minutes, and then immediately exposed to HIV-1Ba-L for 2 hours (a, b), or thoroughly washed to remove the extracellular drug and further cultured for 1, 2, or 3 days prior to exposure to HIV-1Ba-L for 2 hours (c-f). After 7 days of HIV-1 exposure, HIV-1-infected mLCs were assessed by HIV-1 p24 intracellular staining in langerin⁺ CD11c⁺ mLCs (a, c, e), or further cocultured with autologous CD4⁺ T cells and culture supernatants were assessed for p24 content by ELISA on the indicated days (b, d, f). Summary of percent inhibition of mLC infection (a, e) and virus transmission to CD4⁺ T cells (b, f) of three independent experiments are shown. Mean values are shown as horizontal marks (a, b, e, f). EFdA, 4'-ethynyl-2-fluoro-2'-deoxyadenosine; LCs, Langerhans cells; mLCs, monocyte-derived LCs; MVC, maraviroc; TDF, tenofovir. indicate that EFdA may serve as a promising microbicide to block sexual transmission of HIV-1 because of its potent anti-HIV-1 activity, low cytotoxicity, and superior persistence of antiviral activity against HIV-1 in LCs. # CONFLICT OF INTEREST HM is among coinventors on a patent for EFdA; all rights, title, and interest to the patent have been assigned to Yamasa Corporation, Chiba, Japan. The other authors state no conflict of interest. # **ACKNOWLEDGMENTS** Financial support was provided by the Ministry of Health Science of the Japanese Government (201029002), the Intramural Research Program of Center for Cancer Research, National Cancer Institute, National Institutes of Health, and a grant for global education and research center aiming at the control of AIDS (Global Center of Excellence supported by Monbu-Kagakusho). Takamitsu Matsuzawa¹, Tatsuyoshi Kawamura¹, Youichi Ogawa¹, Kenji Maeda², Hirotomo Nakata³, Kohji Moriishi⁴, Yoshio Koyanagi⁵, Hiroyuki Gatanaga⁶, Shinji Shimada¹ and Hiroaki Mitsuya^{2,3} ¹Faculty of Medicine, Department of Dermatology, University of Yamanashi, Yamanashi, Japan; ²Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; ³Department of Infectious Diseases and Hematology, Kumamoto University School of Medicine, Kumamoto, Japan; ⁴Faculty of Medicine, Department of Microbiology, University of Yamanashi, Yamanashi, Japan: ⁵Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan and ⁶AIDS Clinical Center, National Center for Global Health and Medicine, Tokvo, Japan # E-mail: tkawa@yamanashi.ac.jp # SUPPLEMENTARY MATERIAL Supplementary material is linked to the online version of the paper at http://www.nature.com/jid ### REFERENCES Abdool Karim Q, Abdool Karim SS, Frohlich JA et al. (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329:1168–74 Ganor Y, Zhou Z, Tudor D *et al.* (2010) Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans-T cell conjugates. *Mucosal Immunol* 3:506–22 Hu J, Gardner MB, Miller CJ (2000) Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J Virol 74:6087–95 Kawamura T, Cohen SS, Borris DL *et al.* (2000) Candidate microbicides block HIV-1 infection of human immature Langerhans cells within - epithelial tissue
explants. *J Exp Med* 192: 1491–500 - Lederman MM, Offord RE, Hartley O (2006) Microbicides and other topical strategies to prevent vaginal transmission of HIV. *Nat Rev Immunol* 6:371–82 - Michailidis E, Marchand B, Kodama EN *et al.* (2009) Mechanism of inhibition of HIV-1 reverse transcriptase by 4'-Ethynyl-2-fluoro-2'-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor. *I Biol Chem* 284:35681–91 - Nakata H, Amano M, Koh Y et al. (2007) Activity against human immunodeficiency virus type 1, intracellular metabolism, and effects on human DNA polymerases of 4'-ethynyl-2-fluoro-2'-deoxyadenosine. Antimicrob Agents Chemother 51:2701–8 - Nichols BE, Boucher CA, van de Vijver DA (2011) HIV testing and antiretroviral treatment - strategies for prevention of HIV infection: impact on antiretroviral drug resistance. *J Intern Med* 270:532–49 - Ogawa Y, Kawamura T, Kimura T et al. (2009) Gram-positive bacteria enhance HIV-1 susceptibility in Langerhans cells, but not in dendritic cells, via Toll-like receptor activation. Blood 113:5157–66 - Ogawa Y, Kawamura T, Matsuzawa T *et al.* (2013) Antimicrobial peptide LL-37 produced by HSV-2-infected keratinocytes enhances HIV infection of Langerhans cells. *Cell Host Microbe* 13:77–86 - Ohrui H (2006) 2'-deoxy-4'-C-ethynyl-2-fluoroadenosine, a nucleoside reverse transcriptase inhibitor, is highly potent against all human immunodeficiency viruses type 1 and has low toxicity. *Chem Rec* 6:133–43 - Ohrui H, Kohgo S, Hayakawa H *et al.* (2007) 2'-Deoxy-4'-C-ethynyl-2-fluoroadenosine: a - nucleoside reverse transcriptase inhibitor with highly potent activity against wide spectrum of HIV-1 strains, favorable toxic profiles, and stability in plasma. *Nucleosides, Nucleotides Nucleic Acids* 26: 1543–6 - Rohan LC, Moncla BJ, Kunjara Na Ayudhya RP et al. (2010) In vitro and ex vivo testing of tenofovir shows it is effective as an HIV-1 microbicide. PLoS One 5:e9310 - Zhou Z, Barry de Longchamps N, Schmitt A et al. (2011) HIV-1 efficient entry in inner foreskin is mediated by elevated CCL5/RANTES that recruits T cells and fuels conjugate formation with Langerhans cells. PLoS Pathog 7:e1002100 - Zhu T, Mo H, Wang N *et al.* (1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. *Science* 261: 1179–81