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APs also correct for the confounding influences of viral phylogeny, HIV
codon covariation, and linkage disequilibrium (LD) between HLA class
alleles (2, 16, 17, 21).

Associations between HLA class I alleles and HIV-1 amino acid poly-
morphisms in the Japanese and THAC data sets were identified using a
published phylogenetically corrected logistical-regression model that cor-
rects for HLA LD, HIV phylogeny, and HIV codon covariation as poten-
tial confounders (17, 20). Briefly, maximum-likelihood phylogenetic
trees were constructed using Gag, Pol, and Nef sequences (one tree per
gene), and a model of conditional adaptation was inferred for each ob-
served amino acid at each codon. Amino acids are assumed to evolve
independently along the phylogeny to the tree tips (representing the pres-
ent host). In each host, HLA-mediated selection and HIV amino acid
covariation are directly modeled using weighted logistical regression, in
which the individual’s HLA repertoire and covarying HIV amino acids are
used as binary predictors and the bias is determined by the possible trans-
mitted sequences as inferred from the phylogeny (17). To identify which
factors (HLA and/or HIV covariation) contribute to selection pressure,
we employ a forward-selection procedure where the most significant as-
sociation is iteratively added to the model, with P values computed using
the likelihood ratio test. We performed post hoc filtering of the resulting
HLA-associated-polymorphism list, restricting our output to instances in
which at least 10 individuals carried the allele or polymorphism and at
least 10 individuals did not carry the allele or polymorphism. Multiple
tests were accounted for using g values, the P value analog of the false-
discovery rate (FDR) (22). The FDR is the expected proportion of false
positives among results deemed significant at a given threshold; for exam-
ple, at a g value of <0.2, we expect 20% of identified associations to be
false positives. In the analyses identifying HLA-APs, a significance thresh-
old of a g value of <0.2 was employed.

Statistical analysis. Correlations between the total number of HLA-
associated substitutions in each individual and clinical parameters (pVL
and CD4 count) were performed using Spearman’s correlation. To deter-
mine the total number of HLA-associated substitutions within a given
HIV-1 sequence, we first identified all HIV-1 sites within that sequence
known to be associated with any HLA allele. The specific residue at each
site was counted as “HLA associated” if it matched any HLA-associated
adapted form or any residue other than a nonadapted form identified at
that position. The HLA alleles expressed by the individual were not con-
sidered (unless specifically stated); rather, our goal was to enumerate the
HLA-APs associated with any HLA allele in each viral sequence. In anal-
yses where host HLA alleles were not considered, HIV sites harboring
residues that simultaneously represented a nonadapted and an adapted
form associated with different HLA alleles were excluded from consider-
ation.

Detection of differential escape between closely related HLA alleles
and between cohorts. Two types of differential escape were investigated.
First, we investigated differential escape between closely related HLA class
I alleles, defined here as (four-digit) HLA subtype members belonging to
the same (two-digit) allele group in the Japanese cohort. Specifically,
seven HLA allele groups (A*02, A*26, B*15, B*40, C*03, C*08, and C*14)
for which a minimum of two subtype members were represented in the
Japanese cohort were investigated. For example, the HLA-A*02 allele
group featured subtypes A*02:01, A*02:06, and A*02:07, while the A*26
allele group featured subtypes A¥26:01 and A*26:03. For each allele group,
we took the union of all HLA-APs identified for all subtype members of
the group. Then, in a pairwise manner, we compared their strengths of
selection between all HLA subtype members using a previously described
phylogenetically corrected interaction test (17). In this analysis, thresh-
olds of a P value of <0.05 and a g value of <0.2 were used to define
significance.

Second, we investigated differential HLA-driven escape pathways be-
tween Japanese and IHAC cohorts. As outlined in the introduction, HLA-
APs identified in human populations differ to some extent due to the
presence (or enrichment) of certain HLA alleles in one population versus
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another. However, in this analysis, we were specifically interested in iden-
tifying cases where the same HLA allele drove significantly different escape
pathways in the two cohorts. To do this, we took the union of all HLA-APs
identified in the Japan and THAC cohorts that were restricted by HLA
subtypes observed a minimum of 10 times in both cohorts. We then com-
pared the strength of selection of each HLA-AP in a pairwise manner
between cohorts. The statistical methods used to investigate differential
escape between the Japanese and IHAC cohorts are similar to those used
to investigate differential escape between HLA subtype members (17),
with some modifications, as follows. Briefly, a phylogenetically corrected
logistical-regression model was constructed using a single HLA allele as a
predictor. Using a likelihood ratio test, we then compared this model to a
more expressive one that included an additional interaction term that was
1if the individual expressed the HLA allele and was in the ITHAC cohort or
0 otherwise. In this way, we could obtain a P value, testing the hypothesis
that selection is the same in both cohorts (the null hypothesis) or whether
selection differs across cohorts (alternative hypothesis). In contrast to the
HLA-AP analyses described thus far, the present one does not feature
corrections for HLA LD or HIV codon covariation and therefore yields
odds ratios of association and P values that differ slightly from the original
cohort-specific values. In the intercohort differential-escape analysis, sig-
nificance was defined as a P value of <0.01 and a g value of <0.05.
Nucleotide sequence accession numbers. The accession numbers for
the sequences determined in this study are AB873205 to AB873601 (Gag),
AB873908 to AB874270 (Pol), and AB873602 to AB873907 (Nef).

RESULTS

Identification of HLA-associated polymorphisms in chronically
HIV-1 clade B-infected Japanese individuals. The first objective
of our study was to identify and characterize HLA-APs in Japan, a
unique population in terms of its HLA class I distribution and
predominantly HIV clade B epidemic. Toward this end, we ana-
lyzed linked HIV-HLA genotypes from 430 antiretroviral-thera-
py-naive Japanese individuals chronically infected with HIV-1
clade B. A total of 78 unique HLA class I alleles, defined at subtype
level (four-digit) resolution, were observed in our cohort (see Fig.
S1 in the supplemental material) at frequencies consistent with
those in the published literature (23). Of these, 37 (including 9
HLA-A, 17 HLA-B, and 11 HLA-C alleles) were observed in at
least 10 individuals and thus were included in the statistical anal-
ysis of HLA-APs (see Materials and Methods). Amplification and
sequencing of HIV-1 Gag, Pol without the transframe (TF) pro-
tein, and Nefwas successful for 397 (92.3%), 363 (84.4%), and 306
(71.2%) individuals, respectively, As described in Materials and
Methods, HLA-APs within these three genes were identified using
a phylogenetically corrected logistical-regression model that cor-
rects for the confounding effects of viral phylogeny, HIV-1 codon
covariation, and linkage disequilibrium between host HLA class I
alleles (16, 17, 20). A false-discovery rate (g value) approach was
employed to address multiple tests.

At a threshold of a g value of <0.2, a total of 284 HLA-APs,
comprising 143 adapted and 141 nonadapted associations, were
identified in Gag (n = 94 associations), Pol (1 = 86 associations),
and Nef (n = 104 associations) (Fig. 1; see Table S1 in the supple-
mental material). HLA-APs were more frequently detected in Nef
(occurring at 45 of 206 codons [21.8%]) compared to Gag (51 of
500 codons [10.2%]) or Pol (51 of 947 codons [5.1%]). Although
HLA class I allele frequencies in Japan are somewhat distinct glob-
ally, the distribution of HLA-APs across HIV-1 proteins was con-
sistent with that reported in previous studies of other populations
infected with clade B or C (1, 2, 6, 7, 16). Broken down by HLA
locus, the numbers of HLA-A-, HLA-B-, and HLA-C-associated
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Nef

HLA-Associated Polymorphisms in Japanese

Pol

FIG 1 Escape map of HLA-APs for Gag, Pol, and Nef in the Japanese cohort. The escape maps indicate the locations, specific residues, and FILA restrictions of
HLA-APs (all g <0.2). The global HIV-1 clade B consensus amino acid sequence is used as a reference. The shaded vertical bars separate blocks of 10 amino acids.
Adapted amino acids (those significantly overrepresented in the presence of a given HLA allele) are red. Nonadapted amino acids (those significantly under-
represented in the presence of a given HLA allele) are blue. Polymorphisms associated with the same HLA allele that occur in proximity to one another are
grouped together in yellow boxes. A list of all HLA-APs is provided in Table S1 in the supplemental material.

polymorphisms were 78, 140, and 66, respectively, numbers that
were also consistent with previous reports from Caucasian and
African cohorts that HLA-B alleles restrict more associations than
HLA-A or HLA-C alleles (1, 6, 18).

Correlation between the total number of HLA-associated
substitutions and clinical parameters in Japanese individuals.
We next wished to investigate the relationship between the pres-
ence of HLA-associated substitutions in each gene and the patient
HIV-1 pVLand CD4 count in the Japanese cohort. As described in
Materials and Methods, substitutions within a given HIV-1 se-
quence were counted as HLA associated if they had been identified
as being associated with any HLA class I allele in our study, regard-
less of the HLA alleles expressed by the patient. For example,
Gag-9S is an HLA-B*15:01-associated nonadapted polymor-
phism (Fig. 1; see Table S1 in the supplemental material); as such,
any amino acid other than S at codon 9 was counted as an HLA-
associated substitution. Similarly, Gag-123G is an HLA-C*01:02-
associated adapted polymorphism (but no specific nonadapted
forms, restricted by C*01:02 or others, were identified at this po-
sition); as such, any sequence harboring G at codon 123 was
counted as having an HLA-associated substitution at this site.

A weak yet statistically significant inverse correlation was ob-
served between pVL and the total number of HLA-associated sub-
stitutions in Pol (Spearman’s R = —0.11; P = 0.04) (Fig. 2A).
However, no such correlations were observed for Gag (Spear-
man’s R = —0.056; P = 0.3) or Nef (Spearman’s R = —0.029; P =
0.6) (Fig. 2A). Moreover, no significant correlations were ob-
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served between the total number of HLA-associated substitutions
in any HIV protein and the CD4 count (Fig. 2A). Though the
overall association is weak, the results raise the intriguing hypoth-
esis that selection of certain HLA-driven substitutions in Pol could
modulate the pVL in the Japanese population.

We next wondered whether the observed correlation between
Pol polymorphisms and lower pVL could be attributed to poly-
morphisms restricted by HLA alleles that are protective in Japa-
nese populations. HLA-B*67:01 and the HLA-B*52:01-HLA-
C*12:02 haplotype are examples of such protective alleles (24). As
such, we investigated whether they could play a role in the ob-
served pVL correlation. No HLA-B*67:01-associated substitution
was identified in Pol, whereas four HLA-B*52:01-associated and
one HLA-C*12:02-associated substitutions were detected in the
protein (see Table S1 in the supplemental material). Exclusion of
the single HLA-C*12:02-associated substitution from analysis did
not affect the relationship between the number of HLA-associated
substitutions in Pol and pVL (data not shown). In contrast, exclu-
sion of the four HLA-B*52:01-associated Pol substitutions sub-
stantially weakened the overall relationship between the number
of HLA-associated Pol substitutions and pVL (Spearman’s R =
—0.057; P = 0.3) (Fig. 2B). Similarly, specific consideration of
only HLA-B*52:01-associated Pol substitutions revealed a highly
significant inverse correlation with pVL (Spearman’s R = —0.18;
P =10.0007) (Fig. 2C) that represented the strongest such relation-
ship detected in Pol for common HLA alleles observed in our
cohort (see Fig. S2 in the supplemental material). We therefore
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FIG 2 Correlations between HLA-associated substitutions in Gag, Pol, and Nef and viral load or CD4 count. The total number of HLA-associated substitutions
in each subject’s Gag, Pol, and Nef sequence was determined (see Materials and Methods). (A) Correlation between the number of HLA-associated substitutions
in Gag, Pol, or Nefand pVL or CD4 count. (B) Correlation between pVL and the number of HLA-associated substitutions in Pol, with HLA-B*52:01-associated
substitutions excluded. (C) Correlation between pVL and the number of HLA-B*52:01-associated substitutions in Pol (all patients). (D) Correlation between the
number of HLA-B*52:01-associated substitutions in Pol in HLA-B*52:01-positive individuals (left) and HLA-B*52:01-negative individuals (right). Analyses
were performed using Spearman’s correlation. Linear regression lines are included in the plots.

reasoned that B*52:01-restricted substitutions were likely to be
critical mediators of the observed pVL effect.

Finally, stratification of B*52:01-associated Pol substitutions
by host B*52:01 expression revealed that the inverse correlation
with pVL remained strongly detectable in HLA-B*52:01 " individ-
uals (Spearman’s R = —0.18; P = 0.003), but not in HLA-B*52:
017" individuals (Spearman’s R = 0.026; P = 0.8) (Fig. 2D). We
interpret our observations as suggesting that HLA-B*52:01-re-
stricted Pol substitutions possess fitness costs that manifest them-
selves in terms of lower pVL upon transmission to, and persistence
in, HLA-B*52:017 individuals. In contrast, no such pVL effects
are detectable in B*52:01% individuals, likely because the fitness
costs of these substitutions are outweighed by the advantages con-
ferred by immune escape.

Differential escape between HLA subtypes in Japanese indi-
viduals. Our final goal in characterizing HLA-APs in Japan was to
investigate the extent of differential escape between closely related
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HLA subtypes. In particular, we hypothesized that HLA subtype
members differing with respect to the amino acids located within
in the peptide-binding groove of the HLA molecule may differ
with respect to the nature (or binding affinity) of the specific HIV
epitopes presented (25-28), and therefore, that they may exhibit
differential escape pathways. In contrast, we hypothesized that
HLA subtype members that differ with respect to amino acids
located outside the peptide-binding groove may be more likely to
present the same epitopes (29-31) and therefore will generally
exhibit less evidence for differential escape between them. Of the
284 HLA-APsidentified in our cohort, 128 were restricted by HLA
allele groups (A*02, A*26, B*15, B*40, C*03, C*08, and C*14)
containing two or more subtype members (see Table S1 in the
supplemental material). For five of these allele groups (A*02,
A*26, B¥15, B*40, and C*08), subtype members differed by sub-
stitutions within the peptide-binding groove (see Fig. S3 in the
supplemental material), supporting their potential as candidates
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FIG 3 Polymorphic positions in HLA class I molecules and differential escape between pairs of HLA subtypes. In each ribbon diagram depicting the HLA-
peptide-binding groove, the locations of residues differing among subtype members of the HLA-A*26 (A), HLA-C*03 (B), and HLA-C*14 (C) allele groups are
highlighted in red and labeled with their locations and amino acids. HLA-AP comparisons between subtype members are shown in the corresponding plot below.
The horizontal bars represent the InORs, with colors indicating the restricting allele. Infinite InORs are set to values of *4. Boldface type indicates HLA-APs
whose strengths of sclection are statistically significantly different between the two subtype members (P < 0.05; g < 0.2). a.a., amino acid.

for differential HLA-AP selection. In contrast, members of the
C*03 and C*14 subtypes differed by substitutions outside the pep-
tide-binding groove (see Fig. S3 in the supplemental material),
suggesting that their epitope repertoires (and thus escape path-
ways) would be more similar to one another.

We began by simply comparing HLA-APs identified in the
context of the different HLA subtypes. As expected, viral polymor-
phisms associated with HLA subtype members differing within
their peptide-binding grooves appeared to be quite specific to each
HLA subtype (see Fig. S3A to D and F in the supplemental mate-
rial). Surprisingly, however, viral polymorphisms associated with
HLA subtype members differing only with respect to amino acids
located outside their peptide-binding grooves also appeared to be
quite specific to each HLA subtype (see Fig. S3E and G in the
supplemental material). For example, HLA-C*03:03 and C*03:04,
which differ only by substitutions at position 91 that have no
contact with the groove (29-31), were associated with a total of 11
HLA-APs, none of which appeared to be shared (see Fig. S2E in the
supplemental material). Similarly, HLA-C*14:02 and C*14:03,
which differ only by a substitution at position 21 located outside
the floor of the peptide-binding groove (see Fig. S2G in the sup-
plemental material), shared only 10 of the 24 HLA-APs identified
between them.

However, qualitative comparisons of HLA-APs meeting a spe-
cific significance threshold, such as those described above, are not
statistically robust (since individual associations may fail to meet
the threshold and thus not be detected, or variations in allele
frequency may limit the power to detect associations). Thus, to
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explicitly investigate whether the above-mentioned examples rep-
resent statistically significant instances of differential escape be-
tween subtype members, we applied a phylogenetically corrected
interaction test to compare their strengths of selection between
subtypes (17). For each HLA allele group, we took the union of all
HLA-APs identified for all subtype members and compared their
strengths of selection between all subtype members in a pairwise
manner. Representative examples of our results are shown in Fig.
3. For example, HLA-A*26:01 and -A*26:03 differ with respect to
substitutions at amino acids 74, 76, and 77, located within the
peptide-binding groove of the HLA molecule (see Fig. S3B in the
supplemental material). A total of 10 HLA-APs, located at 8 HIV
codons, were originally identified as associated with either HLA-
A*26:01 or -A*26:03 (see Fig. S3B in the supplemental material).
Although qualitatively, all 10 HLA-APs appear to be differentially
selected by HLA-A*26:01 or -A*26:03 (see Fig. S3B in the supple-
mental material), the phylogenetically corrected interaction test
revealed only 3 of them (located at Pol residues 276 and 551 and
Nef residue 85) to be significantly differentially selected in terms
of their natural logarithms of the odds ratios (InORs) of associa-
tion (P < 0.05; g < 0.2) (Fig. 3A). Surprisingly, significant differ-
ential escape was also observed between subtype members that
differed only with respect to substitutions outside their peptide-
binding grooves: 3 of 9 (33.3%) sites restricted by HLA-C*03 allele
group members and 5 of 14 (35.7%) sites restricted by C*14 allele
group members similarly exhibited statistically significant evi-
dence of differential selection (Fig. 3B and C).

To determine whether the extent of differential escape between
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