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Abstract

TRIMSa is a potent anti-retroviral factor that interacts with viral capsid (CA) in a species-specific manner. Recently, we and others reported
generation of two distinct HIV-1 CAs that effectively overcome rhesus TRIMSa-imposed species barrier. In this study, to directly compare the
effect of different mutations in the two HIV-1 CAs on evasion from macaque TRIMS5-restriction, we newly generated macaque-tropic HIV-1
(HIV-1mt) proviral clones carrying the distinct CAs in the same genomic backbone, and examined their replication abilities in macaque TRIMS-
overexpressing human cells and in rhesus cells. Comparative analysis of amino acid sequences and homology modeling-based structures
revealed that, while both CAs gained some mutated amino acids with similar physicochemical properties, their overall appearances of N-ter-
minal domains were different. Experimentally, the two CAs exhibited incomplete TRIMSa.-resistance relative to SIVmac239 CA and different
degrees of susceptibility to various TRIMS5 proteins. Finally, two HIV-1mt clones carrying a different combination of the CA mutations were
found to grow to a comparable extent in established and primary rhesus cells. Our data show that there could be some distinct CA patterns to
confer significant TRIMS5-resistance on HIV-1.
© 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Keywords: HIV-1; HIV-1mt; Capsid; Gag-CA; Rhesus macaque; TRIMSa.

1. Introduction lattice [9]. Macaque TRIMS5a. is one of the major species-

barriers for HIV-1. Evasion from macaque TRIMS5a-restric-

TRIMS5a. interacts with retroviral Gag-capsid (CA) and
inhibits viral replication in a species-specific manner [1—6].
TRIMS5a acts as a pattern-recognition molecule via its C-ter-
minal B30.2/SPRY domain on diverse retroviral CAs [7—12].
It is proposed that retroviruses overcome TRIMS5a-restriction
either by mutating CA to abolish recognition by TRIM5a
B30.2/SPRY domain, or by altering a surface pattern of CA

* Corresponding author. Tel.: +81 88 633 7078; fax: +81 88 633 7080.
E-mail address: adachi@basic.med.tokushima-u.ac.jp (A. Adachi).

http://dx.doi.org/10.1016/j.micinf.2014.08.017

tion would facilitate establishing HIV-1/macaque models
useful for basic and clinical AIDS studies [13,14]. Recently,
we successfully generated rhesus macaque (RhM) TRIMS5a-
resistant HIV-1 CA, designated LSDQ (Fig. 1A), through
comparative sequence/structure analyses of HIV and SIV-
mac239 CAs [15]. Soll et al. also constructed RhM TRIMSa-
resistant HIV-1 CA, designated LNEIE (Fig. 1A), by “assisted
evolution” method [16]. Interestingly, LSDQ and LNEIE CAs
have different amino acid substitutions that contribute to
TRIMSa-resistance. Furthermore, a virus carrying LSDQ CA
or LNEIE CA grew best in RhM peripheral blood

1286-4579/© 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. Structure of CA NTD from two different HIV-1mt clones. (A) Alignment of CA sequences. Amino acid sequences in CA (amino acid residues 1 to 137/138/
139) of HIV-1y;.4.3 (GenBank: AF324493), LNEIE [16], LSDQ [15], and SIVmac239 (GenBank: M33262) were aligned by Genetix ver. 11. Dots show the same
amino acid residues with those of HIV-1np4.3. Hyphens indicate the gap. The domains of -hairpin and helices 1 to 7 are indicated based on the previous
publication [37]. (B) Structural models for CA NTD from two distinct HIV-1mt clones LSDQ and LNEIE. Molecular models were constructed by homology
modeling and were refined as previously described [15]. HIV-1 CA NTD at a resolution of 1.95A (PDB code: 4LQW) [20] was used as modeling template. (C)
Superimposition of the CA structures. Superposed structures of LNEIE/LSDQ CAs (left), SIVmac239 (modified structure of PDB code 4HTW)/LSDQ CAs
(middle), and NL4-3 (PDB code 3GV2)/LSDQ CAs (right) are shown using two different colors indicated.
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mononuclear cells (PBMCs) among the macaque-tropic HIV-1
(HIV-1mt) clones examined in each study [15,16]. In this
work, we aimed to gain virological and structural insights into
evasion from TRIMS5a-restriction using the two distinct HIV-1
CAs.

2. Materials and methods
2.1. Plasmid DNA

An HIV-1mt clone designated MN4/LSDQgtu and a stan-
dard SIVmac clone designated SIVmac239 used in this study
were described previously [15]. Clone pLNEIE was con-
structed by introduction of the five mutations [16] into the CA-
coding region of a sub-genomic clone derived from pNL4-3 by
QuickChange Site-Directed Mutagenesis kit (Agilent Tech-
nologies Inc., Santa Clara, CA). Clone pSCA was constructed
from the above sub-genomic clone by overlapping PCR and
QuickChange Site-Directed Mutagenesis kit to have Gag se-
quences as described for stHIV-1gca [16,17]. Proviral clones
designated LSDQ+4gtu, LNEIE+4gtu, and SCA-+4gtu were
generated by replacement of the BssHII-Sbfl DNA fragment of
MN4/LSDQgtu with the corresponding fragments of “MN4/
LSDQgtu”, pLNEIE, and pSCA clones, respectively.

2.2. Cell culture, virus preparation, and reverse
transcriptase (RT) assays

A human kidney cell line 293T, a RhM lymphocytic cell
line M1.3S and RhM PBMCs were cultured as described
previously [15]. The TRIMS genotypes of PBMCs, prepared
from RhM individuals and used for infection experiments,
were determined as described previously [15]. Virus stocks
were prepared from 293T cells transfected with proviral clones
on day 2 post-transfection. Virus stocks were assayed for RT
activities, and used for infection experiments as previously
described [15].

2.3. TRIMS susceptibility assays

TRIMS susceptibility assays in human MT4 cells were
done by the recombinant Sendai virus (SeV)-TRIMS expres-
sion system as described previously [15,18].

2.4. Multi-cycle virus replication assays

Infection of MI1.3S cells was ordinarily performed as
described previously [15]. For infection of RhM PBMCs, the
spinoculation method [19] was used. Virus replication was
monitored by RT activity released into the culture
supernatants.

2.5. Structural analysis
Molecular models for HIV-Imt CA N-terminal domain

(NTD) were constructed by homology modeling and were
refined as described previously [15]. HIV-1 CA NTD at a

resolution of 1.95A (PDB code: 4LQW) [20] was used as
modeling template. Superimpositions of the structures were
done using the Protein Superpose module in MOE (Chemical
Computing Group Inc., Quebec, Canada).

3. Results

3.1. Sequence and structure comparison of LSDQ and
LNEIE CAs

Determinants in retroviral CA to modulate TRIM5a-sus-
ceptibility have been mapped to CA surface domains including
(-hairpin, a loop between helices 4 and 5 (H4/5L), helix6, and
H6/7L (Fig. 1A) [15,18,21—29]. LSDQ and LNEIE, the two
RhM TRIMS5a-resistant HIV-1 CAs, have different amino acid
sequences, convergently in a cyclophillin A (CypA) binding
loop within H4/5L and in H6/7L. The loop regions in LSDQ
CA have been replaced with those in SIVmac239 CA
(Fig. 1A). As indicated in Fig. 1B, LSDQ and LNEIE CAs
commonly gained a negatively charged amino acid residue in
helix6 (110D for LSDQ and 116E for LNEIE) and paired
substitutions in helix6 and H4/5L (114Q/94L for LSDQ and
116E/961 for LNEIE). However, the overall appearance of CA
NTD was different between the two clones mainly due to
difference in H4/5L- and H6/7L-length, which could affect a
surface pattern of viral core (Fig. 1C, left). In addition, the
structure of LSDQ CA was different from those of its parental
CAs, ie., STVmac239 and NL4-3 CAs, especially in the H4/
5L region (Fig. 1C, middle and right). Moreover, the S-hairpin
domain of SIVmac239 CA was structurally distinct from those
of LSDQ, LNEIE, and NL4-3 CAs (Fig. 1C). Conclusively,
LSDQ and LNEIE CAs are structurally unique to each other
(Fig. 1), but both contribute to the TRIMSa-resistance [15,16].

3.2. LSDQ and LNEIE CAs exhibit different
susceptibilities to the restriction mediated by various
macaque TRIMS proteins

To examine potentials of the two distinct CAs for evading
TRIMS5a-restriction and for viral replication, we constructed
new proviral clones in the backbone of our best HIV-1mt
designated MN4/LSDQgtu (Fig. 2A) [15]. The BssHII-Sbf1
DNA fragment of MN4/LSDQgtu was replaced with the cor-
responding fragments of LNEIE [16] and LSDQ [15] to
generate LNEIE+4gtu and LSDQ+4gtu, respectively. The
sequence differences between the two clones reside only in the
CA NTD (Fig. 1A).

First, we determined susceptibility of LSDQ-+4gtu and
LNEIE+4gtu to various TRIMS proteins expressed by SeV
vectors. Ability of viral clones to evade TRIMS-restriction, in
comparison with that of SIVmac239, can be readily deter-
mined by this recombinant SeV-TRIMS overexpression system
[15,18]. Macaque TRIMS alleles are divided into three func-
tionally ~different groups: TRIMSa™™*, TRIMS5«2, and
TRIM5""* [30—32]. TRIMS5a. proteins of both RhM and
cynomolgus macaque (CyM), and CyM TRIMS5CypA inhibit
HIV-1 replication, but not RhM TRIMS5CypA [33,34]. Thus,
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Fig. 2. Susceptibility of viral clones to various macaque TRIMS proteins. (A) Proviral genome structure of an HIV-1mt clone MN4/LSDQgtu [15]. Blue and red
arcas show sequences from SIVmac239 and SIVgsn166 (SIV isolated from the greater spot-nosed monkey) (GenBank: AF468659), respectively. Green arrows
show the adaptive mutations that enhance the viral growth potential [38]. Four amino acid substitutions (M94L/R98S/Q110D/G114Q) in CA that increase RhM
TRIMS5a-resistance are indicated by black arrows [15]. The BssHII and Sbf1 sites used for construction of MN4/LSDQgtu-based viral clones carrying distinct CAs
are indicated. (B) TRIMS susceptibility assays. Human MT4 cells (1.0 x 10°) were infected with recombinant SeV expressing B30.2/SPRY (—) TRIMS, CyM
TRIMSa. (TRIMS5a?), RhM TRIMSa. (TRIMSa™"), CyM TRIMSCypA (TRIM5“**), or RhM TRIMSCypA (TRIMS5”*). B30.2/SPRY (—) TRIMS without the
ability to restrict viral replication served as a control. Nine hours after infection with recombinant SeVs, cells were super-infected with 20 ng (Gag-p24) of HIV-
Imt clones or 20 ng (Gag-p27) of SIVmac239. Virus replication was monitored by the amount of Gag-p24 (HIV-1mt clones) or Gag-p27 (SIVmac239) in the
culture supernatants. Error bars show fluctuations between duplicate samples. Representative data from two independent experiments are shown. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

we tested here four different TRIMS alleles, i.e.,
RhM TRIM5a (TRIM5a™7"), CyM TRIMS5a (TRIM509),
RhM TRIMS5CypA (TRIM5P*), and CyM TRIM5CypA
(TRIMS5*P), using B30.2/SPRY(—) TRIMS as a control. As
shown in Fig. 2B, SIVmac239 replicated similarly well in the
presence of RhM TRIMS5a, CyM TRIMSa, RhM TRIMS-
CypA, or CyM TRIMS5CypA as in control cells expressing
B30.2/SPRY(—) TRIMS. While not complete as compared

with the case of SIVmac239 [15], LSDQ+4gtu showed more
resistance to various RhM/CyM TRIMS proteins than
LNEIE+4gtu. In particular, consistent with previous obser-
vations, LSDQ+4gtu replicated well in the presence of CyM
TRIMCypA, but not at all LNEIE+4gtu [15,16]. Furthermore,
in the presence CyM/RhM TRIMS5a, LNEIE+4gtu appeared
to replicate (note the data in the presence of CyM TRIMS-
CypA in Fig. 2B) but clearly more poorly than LSDQ+-4gtu.
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Table 1

Lethal mutations in CA of MN4/LSDQgtu.*

Mutants CA mutations relative to LSDQ CA domains References
P37S-LSDQ P38S Helix2 [35]
LSVDQ L109V Helix6 [25]
LSDQY T117Y Helix6

LSVDQY L109V/T117Y Helix6

Mutants of S-hairpin domain Amino acid sequences in S-hairpin®

LSDQ (parental clone) PIVQONLQGOMVHQAT [15]
Wild-type SIVmac239 PVQQIGGNYVHLPL

MIOL-LSDQ PIVONLQGQLVHQAT [16]
QI3L-LSDQ PIVONLQGOMVHLAT

IGGN-LSDQ PIVQIGGNMVHQATI

Beta-1 PVQQIGGNMVHQATL

Beta-2 PIVQIGGNYVHLAI

Beta-3 PIVONLQGQOMVHLPL

Beta-4 PVQONLQGQMVHQAT

Beta-5 PIVQIGGNYVHQAT

Beta-6 PVQQIGGNYVHLAI

Beta-7 PVQQIGGNYVHLPL

Beta-8 PIVQIGGNYVHLPL

% Lethal mutations as judged by viral replication in M1.3S cells during the observation period (15 days).
b Bold letters show the mutations introduced into LSDQ CA. For alignment of four CA NTD sequences, see Fig. 1A.

These results show that LSDQ and LNEIE have intrinsically
different abilities to negotiate anti-viral effects of various
macaque TRIMS proteins.

Amino acid substitutions in CA contributing to escape from
RhM TRIMS5a-restriction have been identified by in vivo
adaptation of SIVsm (SIV from the sooty mangabey) in RhM
(P37S and R97S in SIVsm CA) [30,35], and by ‘“gain-of-
sensitivity assays” using SIVmac239 CA (L93M, S97R,
V108L, D109Q, and Q113G) [25]. TRIMS5-resistant LSDQ
CA already has M94L, R98S, Q110D, and G114Q mutations
corresponding to L93, S97, D109, and Q113 residues in
SIVmac239 CA [15]. Therefore, it was possible that amino
acid substitutions such as P38S (corresponding to P37S in
SIVsm and SIVmac239 CAs) and L109V (corresponding to
V108 in SIVmac239 CA) in LSDQ CA might enhance its
TRIMS5-resistance. The (-hairpin domain in retroviral CAs is
also an important determinant for evasion from TRIMSa.-re-
striction [18,25,27] (Fig. 1C). Based on these considerations,
we introduced various amino acid substitutions into the MN4/
LSDQgtu CA (Table 1) to increase TRIMSa-resistance,
hopefully up to the SIVmac239 CA level. Resultant proviral
clones were tested for their growth abilities in a RhM cell line
M1.3S. However, our extensive attempts to obtain biologically
active CAs, potentially more resistant to macaque TRIMS
proteins than MN4/LSDQgtu CA, were unsuccessful so far
(Table 1). Thus, some mutation(s) and/or combination(s) of
mutations in CA other than those in Table 1 may be necessary
to confer full resistance to TRIM5a on the HIV-1mt.

3.3. HIV-Imt clones carrying LSDQ/LNEIE CA replicate
well in RhM PBMCs

To compare the effects of a different spectrum of mutations
in CAs on viral growth potential, we examined LSDQ+4gtu

and LNEIE+4gtu for their replication in RhM cells. In M1.3S
cells (TRIM5a™™TFPy [36], LSDQ+4gtu replicated slightly
better than LNEIE+4gtu (Fig. 3A). In PBMCs prepared from
four RhM individuals (TRIM5a™%2), LSDQ+4gtu grew
better (Fig. 3B, upper panel) than or similarly to LNEIE-+4gtu
(Fig. 3B, lower panel). Next, to compare the competence of
the CAs to that of SIVmac239 CA in terms of multi-cycle
virus replication in RhM PBMCs, we newly constructed a
proviral HIV-1mt clone carrying SIVmac239 CA. Because
insertion of the entire CA-coding sequence of SIVmac into the
corresponding region of HIV-1 genome was lethal, we
generated a new Gag clone (SCA) exactly as previously re-
ported for stHIV-1gca [16,17] (Fig. 4A), and then made a
proviral clone designated SCA+4gtu as described to construct
LSDQ+4gtu and LNEIE+4gtu (Fig. 2A) for infection exper-
iments. Proviral clone SCA was more replication-competent
than LSDQ [15] (~3-fold) as determined in feline CRFK
cells stably expressing RhM-TRIM5a. (TRIM5a™" 777y, but
showed a lower titer (~2-fold—4-fold) in CRFK-naive cells
and TZM-bl indicator cells relative to LSDQ (our unpublished
results). As shown in Fig. 4B, while LSDQ+4gtu grew better
than SCA+4gtu in all four PBMC preparations tested (7RI-
M5a™2) LNEIE+4gtu did so in two preparations (PBMCs
from RhMs 610 and 611). In these two PBMC preparations,
LSDQ+4gtu and LNEIE+4gtu grew similarly well. In the
other two preparations, of note, LSDQ+4gtu grew better than
LNEIE+4gtu (PBMCs from RhMs 599 and 609 in Fig. 4B). It
remains to be elusive whether the observed difference in
growth potentials in some PBMC preparations of the two
clones are attributable to TRIMS5a-restriction, viral fitness
(infectivity of LNEIE determined in TZM-bl indicator cells
relative to that of LSDQ was 0.72 on average), unknown
cellular factor(s), and/or cellular physiological state/
environments.
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and viral replication was monitored by RT activity released into the culture supernatants. LSDQ, LSDQ+4gtu; LNEIE, LNEIE+4gtu. (A) Infection of M1.3S cells
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follows: 2.4 x 10° RT units/1.0 x 10° cells for monkey 605; 4.0 x 10° RT units/2.0 x 10° cells for monkeys 609, 610, and 611.

4. Discussion

In this study, we performed side by side comparative ana-
lyses of the TRIMS5-resistance/growth ability in RhM cells of
HIV-1mt viruses carrying distinct CAs (LSDQ and LNEIE in
Fig. 1) that are resistant to RhM TRIMS5¢, [15,16]. LSDQ and
LNEIE CAs exhibited various degrees of susceptibility to
macaque TRIMS proteins, and the former was generally more
resistant to TRIMS-restriction than the latter in our TRIMS-

overexpression system (Fig. 2). However, growth potentials
of HIV-1mt viruses carrying LSDQ or LNEIE CA were similar
in some preparations of RhM PBMCs, and varied among
PBMCs from RhM individuals with TRIM5™"2 (Figs. 3 and
4). These results may only reflect a low endogenous expres-
sion level of TRIMS proteins in PBMCs relative to that in cells
infected with recombinant SeVs. The expression levels of
TRIMS proteins in various cells, however, can not be
measured as yet due to the lack of appropriate anti-macaque
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TRIMS5 antibodies. Alternatively, the above results suggest
that overcoming TRIMS-restriction may not be enough for
maximal virus growth of the HIV-Imt clones in RhM cells.
Thus, a new generation of HIV-1mt clones that replicate
constantly well in PBMCs from any RhM individuals like
SIVmac239 would be necessary to establish the HIV-1-
infected RhM model system. Of similar importance, detailed
biological and structural analyses of the interaction between
LSDQ/LNEIE CA and macaque TRIMS proteins would
contribute to better understand the underlying molecular
mechanism for HIV-1 restriction by the proteins.

We previously suggested that R98S in HIV-1mt CA may be
a key residue to circumvent macaque TRIMSe-restriction
[15], since the corresponding residues in SIVsm and

SIVmac239 CAs have been shown to contribute to the alter-
ation of TRIMSa-susceptibility [25,30,35]. The coincidence of
four amino acid residues important for evasion of RhM
TRIMS5-restriction in two independent studies on HIV-1 [15]
and SIV [25] (L93, S97, D109, Q113 for SIVmac239 CA
and 194, S98, D110, Q114 for HIV-1mt CA as described
above) has raised a possible involvement of some specific
amino acids in the TRIMS-regulation. However, comparative
analysis of LSDQ and LNEIE clones here suggests that
combinations of mutations in an appropriate context in CA
rather than individual residues are critical for efficient escape
from TRIMS5a-restriction. As TRIM5a has evolved to target
diverse retroviral CAs by flexibility of its B30.2/SPRY domain
[7-9,12], HIV-1 can, in turn, gain RhM TRIMSa-resistance
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through several distinct CAs with different amino acid se-
quences and/or CA surface patterns.
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