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ABSTRACT

Background: Synthetic hemozoin (sHZ, also known as 3-hematin) from monomeric heme is a particle
adjuvant which activates antigen-presenting cells (APCs), such as dendritic cells and macrophages, and
enhances humoral immune responses to several antigens, including ovalbumin, human serum albumin,
and serine repeat antigen 36 of Plasmodium falciparum. In the present study, we evaluated the adjuvan-
ticity and pyrogenicity of sHZ as an adjuvant for seasonal trivalent hemagglutinin split vaccine (SV) for
humans using the experimental ferret model.
Method: Ferrets were twice immunized with trivalent SV, SV with sHZ (SV/sHZ) or Fluad, composed of
trivalent SV with MF59. Serum hemagglutination inhibition (HI) titers against three viral hemagglutinin
(HA) antigens were measured at every week after the immunization. The pyrogenicity of SV/sHZ was
examined by monitoring the body temperature of the immunized ferrets. To evaluate the protective
efficacy of SV/sHZ, the immunized ferrets were challenged with influenza virus B infection, followed by
measurement of viral titers in the nasal cavity and body temperature.
Results: sHZ enhanced HI titers against three viral HA antigens in a dose-dependent manner, to an extent
comparable to that of Fluad. The highest dose of sHZ (800 pg) immunized with SV conferred sterile
protection against infection with heterologous Influenza B virus, without causing any pyrogenic reaction
such as high fever.
Conclusion: In the present study, sHZ enhanced the protective efficacy of SV against influenza infection
without inducing pyrogenic reaction, suggesting sHZ to be a promising adjuvant candidate for human
SV.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA

license (hittp://creativecommons.org ses/by-nc-5a/3.0/).

1. Introduction

the protein 3 (NALP3) inflammasome signaling pathway [4]. Syn-
thetic hemozoin (sHZ, also known as 3-hematin) from monomeric

Hemozoin (HZ) is a detoxification product of heme molecules
persisting in the food vacuoles of Plasmodium parasite | 1,2]. Puri-
fied HZ activates innate immune responses via Toll-like receptor
(TLR)9 in antigen-presenting cells (APCs), including myeloid and
plasmacytoid dendritic cells {3 ], and enhances humoral responses
depending TLR9 but not NACHT, LRR and PYD domains containing

Abbreviations: sHZ, synthetic hemozoin; HA, hemagglutinin; HI, hemagglutina-
tion inhibition; SV, hemagglutinin split vaccine; SV/sHZ, hemagglutinin split vaccine
adjuvanted with synthetic hemozoin; TCIDsg, 50% tissue culture infective dose.

* Corresponding author at: NIBIO, 7-6-8 Asagi, Saito, Ibaraki, Osaka 5670085,
Japan. Tel.: +81 72 641 8043; fax: +81 72 641 8079.
E-mail addresses: kenishii@hbiken.osaka-wacip, kenishii@nibio.go jp (K. Ishii).

hitpr//dxdotorg/ 10,1016/ lvaccine 2014.03.072

heme also activates APCs, and enhances the humoral responses
of several antigens, including ovalbumin, human serum albumin,
and serine repeat antigen 36 of Plasmodium falciparum in mice
or cynomolgus monkeys (Macaca fascicularis) |4,5]. Moreover, sHZ
acts as a potent immune modulator, which suppresses IgE produc-
tion against house dust allergens, suggesting that sHZ itself might
be usable for an allergy vaccine for dogs {4]. Differently from the
purified HZ, sHZ enhance the adaptive immune response through
MyD88, not related to TLR9 or NALP3 inflammasome pathway [4].
Thus, the efficacy, safety, and immunological mechanisms of sHZ
has been demonstrated, further studies are needed to explore its
application as an adjuvant for vaccines. '

In general, the efficacy of influenza hemagglutinin split vac-
cine (SV) correlates with the level of neutralizing antibody to

0264-410X/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license (htip://creativecommons.org/licenses/by-nc-sa/3.0/).
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hemagglutinin (HA) {6]. The neutralizing antibody contributes to
both prevention of influenza infection and suppression of influenza
exacerbation. Some reports have estimated the efficacy of influenza
vaccine in young adults to be 70-90%, and that in the elderly to be
considerably lower, intherange of 17-53% |7 |. Hence, SV is required
to improve the efficacy for the elderly. One possible solution of
the issue is via the use of adjuvant [8], although some adjuvants
have beenreported to cause pyrogenic reaction associated with the
induction of proinflammatory cytokine responses in clinical stud-
ies [9,101. Therefore, it is important to evaluate the pyrogenicity of
adjuvant in clinical or non-clinical studies to enable wider use of
adjuvants.

In the present study, we evaluated the efficacy and pyrogenicity
of sHZ as an adjuvant for seasonal trivalent SV in the ferret model.

2. Materials and methods
2.1. Antigens and adjuvants

Seasonal influenza SV “BIKEN”, containing influenza virus HA
surface antigens from three virus strains, A/California/7/2009
(H1N1),A/Victoria/210/2009 (H3N2), and B/Brisbane/60/2008, was
obtained from The Research Foundation for Microbial Diseases of
Osaka University (Osaka, Japan) |11 Endotoxin-free sHZ chem-
ically synthesized using an acidic method was obtained from
Invivogen (San Diego, CA) | 12]. The particle size of sHZ was deter-
mined by SEM and found to be approximately 1-2 pm. Fluad,
composed of influenza virus HA surface antigens from the three
strains described above and MF59, was obtained from Novartis
Vaccines and Diagnostics, Inc. (Emeryville, CA) [ 131.

2.2. Virus and cells

Influenza virus B/Osaka/32/2009 was kindly provided by Osaka
Prefectural Institute of Public Health. Madin-Darby canine kid-
ney (MDCK) cells were obtained from the American Type Culture
Collection (Manassas, VA) and were grown in minimum essential
medium (MEM,; Invitrogen, Carlsbad, CA) supplemented with 10%
fetal bovine serum (Invitrogen) and 100 p.g/ml kanamycin sulfate
(Invitrogen) in a humidified atmosphere of 5% CO; at 37 °C.

2.3. Ferrets

Approximately 7- to 8-month-old female ferrets were pur-
chased from Marshall Bioresources Japan Inc. (Ibaragi, Japan)
and Japan SLC Inc. (Shizuoka, Japan). The experiments were per-
formed under applicable laws and guidelines and after approval
from the Shionogi Animal Care and Use Committee. Under anes-
thesia, at least 1 week before virus inoculation, a data logger
(DS1921H-F5; Maxim Integrated Products, Inc., Sunnyvale, CA) was
subcutaneously implanted into each ferret to monitor body tem-
perature as previously reported [14]. The absence of influenza
A/California/7/2009 (H1N1), A/Victoria/210/2009 (H3N2), and
B/Brisbane/60/2008 virus-specific antibody in serum from each fer-
ret was confirmed by hemagglutination inhibition (HI) test before
the first immunization.

2.4. HI assay

HI assay was performed according to the protocol previously
reported | 14]. Serum was treated with receptor-destroying enzyme
(RDEII; Denka Seiken, Tokyo, Japan). Serially diluted sera were
mixed with 4 HA units of virus antigen for 1h at room tempera-
ture. The mixture was then incubated with 0.5% chicken red blood
cells for 30 min at room temperature. The HI titers were expressed

as reciprocals of the highest dilution of serum samples that com-
pletely inhibited hemagglutination. ‘

2.5. Immunization and sample collection

Ferrets were subcutaneously immunized with 22.5ug of
SV, 22.5 ug of SV adjuvanted with 50-800 g of sHZ (SV/sHZ
(50-800 u.g)) or premix solution Fluad, which is composed of
22.5 pg of SV and MF59. Second immunizations were conducted
28 days after the first immunization. Serum-was collected by
vena cava puncture on the day of the first immunization and
7, 14, 21, 28, and 35 days after the first immunization, and
HI titers against three HA antigens, A/California/7/2009 (H1N1),
A/Victoria/210/2009 (H3N2), and B/Brisbane/60/2008, were deter-
mined.

2.6. Evaluation of pyrogenicity of vaccine with adjuvant in ferrets

Ferrets were subcutaneously immunized with saline or 22.5 g
of SV adjuvanted with 800 pg of sHZ. Body temperatures were mon-
itored every 15 min with the data logger implanted in the ferrets.

2.7. Evaluation of protective effect of vaccine against influenza
virus infection

Under anesthesia, ferrets were inoculated intranasally with
B/Osaka/32/2009 (1.0 x 10* TCIDsp) in 400wl of phosphate-
buffered saline (PBS). To monitor virus replication in nasal cavities,
nasal washes were collected from infected ferrets on days 1 to
6 after infection. The collected samples were stored at below
—80°C until use. For virus titration, serial dilutions of nasal washes
were inoculated onto confluent MDCK cells in 96-well plates.
After 1h incubation, the suspension was removed, and the cells
were cultured in MEM including 0.5% bovine serum albumin (BSA;
Sigma-Aldrich) and 3 pg/ml trypsin. The plates were incubated
at 37°C in 5% CO, for 3 days. The presence of cytopathic effects
(CPEs) was determined under a microscope, and viral titers were
calculated as logyg of TCIDsg/ml. When no CPE was observed using
undiluted viral solution, it was defined as an undetectable level,
which was considered to be lower than 1.4 logyg of TCID5q/ml.

2.8. Activation of the inflammasome in peritoneal resident
macrophages

Activation of the inflammasome in peritoneal resident
macrophages was examined according to the protocol previously
reported | 15]. Briefly, peritoneal resident macrophages were col-
lected from C57BL/6 mice (Charles River Laboratories Japan, Inc.,
Kanagawa, Japan) and were prepared with complete RPMI1640
medium (Invitrogen). Macrophages were primed with 50 ng/ml LPS
(Sigma-Aldrich) for 18 h and then stimulated with sHZ or Alum
(Invivogen) for 8 h. The concentration of IL-1f in supernatant was
measured by ELISA (R&D systems, Minneapolis, MN).

2.9. Statistical analysis

Viral titers and body temperature of each animal were cal-
culated as the area under the curve (AUC) by the trapezoidal
method. Statistical significance between groups was determined
by Dunnett’s multiple comparison test using the statistical anal-
ysis software SAS (version 9.2) for Windows (SAS Institute, Cary,
NC).
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Fig. 1. Evaluation of the immunogenicity of SV, SV/sHZ, and Fluad. Ferrets were twice immunized with SV, SV/sHZ (800 u.g) or Fluad. Serum were collected on day 0, 7, 14, 21,
28, and 35 after the first immunization, and HI titers against three HA antigens of A/California/7/2009(H1N1) (A), A/Victoria/210/2009 (H3N2) (B), and B/Brisbane/60/2008
(C) were measured. * p<0.05 by Dunnett’s multiple comparison test vs. SV group (n=4 per group). Data represent the GMT = 95% confidence interval.

3. Results

3.1. sHZ enhanced immunogenicity of HA split vaccine in a
dose-dependent manner

To examine the adjuvant effect of sHZ on HA split vaccine, ferrets
(n=4 per group) were twice immunized with SV with or without
sHZ (800 pg) or Fluad, and then their serum HI titers were mea-
sured every week. Fluad is composed of SV adjuvanted with MF59, a
licensed squalene-based emulsion, widely used in clinical settings
116]. On day 28 after the first immunization, HI titers of SV/sHZ
group against H1, H3, and B virus antigens were significantly up-
regulated, of which the GMT was 135, 28, and 40, respectively,
comparable to those elicited by MF59 (p <0.05, Fig. 1A-C). After
the second immunization, HI titers of the SV/sHZ group against all
three antigens were significantly higher than those of the SV group
on day 35 (p<0.05) (Fie. 1A-C). The GMTs of the HI titers against
H1, H3, and B antigens in the SV/sHZ group were 905, 190, and
381, respectively. The boosting effect of SHZ was also comparable
to that of MF59. By contrast, HI titers against three HA antigens of
the SV group were not enhanced at every analysis point (Fig. {A-C).
These results demonstrated that sHZ has a potent adjuvanticity to
enhance the immunogenicity of SV, and its activity was comparable
to that of MF59 in ferrets.

Next, the dose-dependent adjuvanticity of sHZ to enhance the

immunogenicity of SV was examined. Ferrets were twice immu- .

nized with SV/sHZ (50-800 p.g), and HI titers were measured at
every week. The adjuvanticity to enhance HI titers against HA anti-
gens of H1 and B was observed with at least 200 ug of sHZ after
the first immunization, but no boosting effect of 200 wg of sHZ was
observed after the second immunization (Fig. 2). Overall, each HI
titer against all three HA antigens of SV/sHZ (800 pg) was 3-20
fold higher than that of SV/sHZ (200 wg) on day 7 after the second
immunization. Thus, 800 g of sHZ showed higher adjuvanticity

than 200 g of sHZ. This result implied that sHZ enhanced the
immunogenicity of SV in a dose-dependent manner in ferrets.

3.2. HA split vaccine adjuvanted with sHZ did not cause
pyrogenic reaction after immunization

It is reported that the ferret model can evaluate not only the
efficacy of vaccine but also the pyrogenicity of immunostimula-
tory agents like TLR ligands (e.g. TLR7/8 agonist R848) and virion
components, and non-pyrogenicity of SV {17,18]| To evaluate the
pyrogenicity of sHZ after the first immunization, ferrets were
immunized with saline or SV/sHZ (800 p.g), and the body tempera-
tures of ferrets were monitored continuously. The results showed
that sHZ did not enhance the body temperature after immunization,
and no difference was observed in body temperature between the
SV/sHZ and the saline groups, suggesting that sHZ does not have
the potential to induce a pyrogenic reaction in ferrets (Fig. 3).

3.3. sHZ enhanced the protective efficacy of HA split vaccine
against influenza virus infection

Having observed such potent adjuvanticity without pyrogenic-
ity of sHZ in ferrets, we next evaluated the contribution of
sHZ-adjuvanted SV vaccine to its protective efficacy. On day 7 after
the second immunization, the ferrets were intranasally infected
with B/Osaka/32/2009, and viral titers in nasal cavities were mea-
sured daily after infection. On day 2 after infection, each viral titer of
two groups SV/sHZ (200 pg) and SV/sHZ (800 j.g) was significantly
lower than that of the SV group (p<0.01 and <0.001, respectively)
(Fig. 4A). Each viral titer AUC of SV/sHZ (200 p.g and 800 p.g) groups
was significantly lower than that of the SV group (p <0.01) (Fig. 4C).

The body temperature changes of ferrets were monitored from
2 days before to 5 days after infection. Comparing the SV group with
the SV/sHZ group showed that the elevations of body temperature
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Fig- 3. Evaluation of pyrogenicity of SV/sHZ. Ferrets were immunized with saline or
SV/sHZ (800 p.g) (n=2-3). Body temperatures of ferrets were recorded every 15 min
by a data logger which had been implanted subcutaneously. The data were plotted
from the average of body temperature changes every 15 min. Gray and black lines
indicate the saline and the SV/sHZ groups, respectively. Baseline was set as the
average of body temperature during the 2 days before immunization.

were suppressed in all SV/sHZ groups in a dose-dependent manner
(Fiz. 4B). Moreover, body temperature change AUCs of all SV/sHZ
groups were lower than that of the SV vaccine group (Fig. 4D).

4. Discussion

Vaccination is the primary strategy to prevent influenza infec-
tion {191, The efficacy of influenza vaccine in young and healthy
adults is estimated to be 70-90%, but that in the elderly is lower
at 17-53% |71. Dose escalation of antigen has been examined to
enhance the efficacy of vaccine for the elderly [20]. However, this
is not a realistic approach without improvement of the manufac-
turing plants or manufacturing systems. As an alternative strategy,
the use of adjuvant may help overcome these issues by enhancing

the immunogenicity of influenza vaccine. In the present study, sHZ
enhanced the immunogenicity of SV and consequently elevated
its protective efficacy against virus infection in the ferret model,
which has been shown to reflect influenza symptoms and pro-
tective immune responses to influenza infection in humans [21].
In particular, SV/sHZ (800 p.g) strongly suppressed the viral titer
below the detection limit and did not cause pyrogenic reaction
after immunization. These results suggested sHZ to be a promising
adjuvant candidate for human SV.

Pyrogenicity is one of the main issues in the development of
novel adjuvants for vaccine even with good adjuvanticity. There-
fore, minimizing toxicity remains one of the major challenges in
adjuvant research [22]. Treanor et al. reported that VAX125, a
recombinant HA influenza-flagellin fusion vaccine, showed high
immunogenicity in clinical study {23}, but in some cases, febrile
symptoms were observed in the first 24 h following vaccination.
It was suggested that the pyrogenic reaction was associated with
systemic proinflammatory cytokine responses. sHZ induces the
production of IL-13 by activating NALP3 inflammasome path-
way in macrophages {24,25]. However, in the present study, sHZ
did not cause pyrogenic reaction after the first immunization.
To find insights into why sHZ did not show pyrogenicity, the
activity of sHZ to induce the NALP3 inflammasome was exam-
ined, and the results revealed that a relatively high concentration
(=300 pg/ml) of sHZ was required to induce IL-18 production in
macrophages (Supplemental Fig. 1). Dostert et al. also demon-
strated that 150 pg/ml sHZ could induce inflammasome in bone
marrow-derived macrophages {25]. These results suggested that
the activation of NALP3-inflammasome caused by sHZ was very
low and did not act as a trigger to cause a pyrogenic reaction in
ferrets.

Rapid systemic distribution of adjuvant is also understood to
enhance the risk of causing a pyrogenic reaction. Sauder et al.
reported that R848, which is known as an imidazoquinoline com-
pound and TLR7/8 agonist, caused a pyrogenic reaction correlated
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with the induction of proinflammatory cytokine responses in
healthy adults | 10}, This strong response was caused by rapid sys-
temic distribution of R848 after administration {10} 3M-052 is
a lipid-modified imidazoquinoline compound derived from R848,
bearing a C18 lipid moiety, for sustained release and incorporation
into a bilayer liposome [26]. 3M-052 incorporated into liposome
composed of dioleoylphosphatidylcholine (3M-052/PC) was shown
to avoid the induction of systemic proinflammatory cytokine
responses [26G]. In addition, the adjuvanticity of 3M-052/PC was
higher than that of R848. Therefore, persistent immunostimula-
tion at the injected site with adjuvant is thought to contribute to
its potent adjuvanticity { 26]. sHZ, synthesized by an acidic method,
formed insoluble particles approximately 1-2 um in size. On day 35
after the first immunization, a small amount of sSHZ was observed
at the immunized site (data not shown), suggesting that the dis-
tribution of sHZ was not rapid or was very limited in ferrets.
Thus, slow systemic distribution of sHZ might contribute to pre-
vent a pyrogenic reaction and maintain potent adjuvanticity after
immunization. The size of particle adjuvant is considered to affect
the particulate-induced immune responses such as the efficient
activation of dendritic cells or adjuvant uptake of macrophages
[27]. The smaller particles (20-200nm) are usually uptaken by
endocytosis via clathrin-coated vesicles, caveolae or their indepen-
dent receptors, and preferentially ingested by dendritic cells. The
larger size particles (0.5-5 pm) are uptaken by macropinocytosis,
while particles greater than 0.5 wm are predominantly taken up
by phagocytosis, and primarily ingested by macrophages {28]. The
crystal size of sHZ can be adjusted by the modification of synthetic
method, and smaller size sHZ (diameter range; 50 nm-1 pm, peak
of the frequency distribution; 50-200 nm) exhibits higher adjuvan-
ticity than larger size sHZ (>5 pm) in mice when immunized with
ovalbumin antigen {4]. This size-dependent adjuvanticity of sHZ

is considered as the result from the manner of uptake of APCs. In
this study, we demonstrated the potent adjuvanticity of sHZ, which
contains approximately 1-2 jum particles.

In the present study, we demonstrated that sHZ could enhance
the protective efficacy of SV against influenza virus in ferrets with-
out causing a pyrogenic reaction. The findings of this study indicate
that sHZ is safe and has great potential for use as an adjuvant for
human SV.
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Nucleic acid sensing by T cells initiates Th2 cell
differentiation
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While T-cell responses are .directly modulated by Toll-like receptor (TLR) ligands, the
mechanism and physiological function of nucleic acids (NAs)-mediated T cell costimulation
remains unclear. Here we show that unlike in innate cells, T-cell costimulation is induced even
by non-CpG DNA and by self-DNA, which is released from dead cells and complexes with
antimicrobial peptides or histones. Such NA complexes are internalized by T cells and induce
costimulatory responses independently of known NA sensors, including TLRs, RIG-I-like
receptors (RLRs), inflammasomes and STING-dependent cytosolic DNA sensors. Such
NA-mediated costimulation crucially induces Th2 differentiation by suppressing T-bet
expression, followed by the induction of GATA-3 and Th2 cytokines. These findings unveil the
function of NA sensing by T cells to trigger and amplify allergic inflammation. -
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oll-like receptors (TLRs) sense pathogen-associated mole-
cular patterns to initiate not only innate responses but
. also to help regulate T cell-mediated adaptive immune
responses’2. While some TLRs are expressed on the cell surface,
NA-sensing TLRs such as TLR3, TLR7/8 and TLR9 are expressed
in endosomal compartments, allowing specific recognition of
endocytosed pathogens.

Recent studies have shown that T cells also express TLRs and
that TLR ligands can directly modulate T-cell responses. For
example, TLR2 ligands directly promote proliferation of activated
T cells>*, modulate the proliferation and suppressive functions
of CD41CD257 regulatory T cells®®, trigger Thl effector
functions independently of TCR stimulation” and modulate Th17
responses®.

In addition, it has been reported that ligands for NA-sensing
TLRs enhance IL-2 production and proliferation of anti-CD3
antibody (Ab)-stimulated T cells®10 and promote survival of
activated T cells!!, and further that the TLR8 ligand inhibits the
suppressive function of regulatory T cells'?. However, except
for TLR2, very little is known about the molecular basis of the
NA-sensing mechanisms and the functional consequences of
NA-mediated costimulation in T cells.

Nawve CD4 ™ T cells differentiate into various effector T helper
(Th) cells such as Thl, Th2 and Th17 cells, which produce
IFN-y, IL-4/IL-5/IL-9/IL-13 and IL-17/IL-22, respectively'®.
While Thl and Th17 cells exhibit protective functions against
intracellular pathogens and extracellular bacteria/fungi, Th2 cells
protect from helminthic infection. Contrary to these protective
functions, the same Th subsets can play a role in disease
pathogenesis: Thl for inflammatory diseases, Th2 for allergic
diseases and Thl7 for autoimmune diseases. While TLR
stimulation of antigen-presenting cells (APCs) results in the
production of IL-12, which induces Thl differentiation, Th2
development is induced by IL-4, but the cells responsible for the
initial wave of IL-4 production needed to induce Th2
differentiation remain elusive!4.

In this study, we report that NA-induced costimulatory
responses of CD4+ T cells are mediated independently of
known NA sensors in innate immunity. We found that T cells
take up NAs to induce costimulation and that the NA-mediated
costimulation requires - higher-order structure of the NAs by
forming complexes with the antimicrobial peptides or with core
histones. More importantly, costimulation of naive CD4+ T cell
with NAs induces Th2 differentiation through the downregula-
tion of T-bet and the upregulation of GATA-3 expression. Thus,
NAs directly induce T-cell costimulation through a unique
NA-sensing mechanism to trigger the initial IL-4 production for
Th2 differentiation, which might be involved in triggering and
amplification of allergic inflammation.

Results

TLR-independent NA-mediated costimulation of CD4 ™" T cells.
To elucidate the functional significance of NA stimulation, naive
CD47 T cells were stimulated with each TLR ligand. While none
of the TLR ligands alone were able to induce cell proliferation
or IL-2 production, proliferation and IL-2 production were
selectively enhanced by Pam3 (TLR1/2), MALP-2 (TLR2/6),
poly(I:C) (TLR3) and CpG-B (TLR9) with anti-CD3 stimulation
(Fig. 1a).

We next determined whether this response is mediated by
TLRs using mice deficient in both MyD88 and TRIF, which
lack the capacity to respond to any of the known TLR ligands.
Surprisingly, both poly(I:C) and CpG-B-mediated costimulation
were normal in the MyD88/TRIF-doubly deficient CD4+ T
cells, whereas MALP-2 (TLR2)-mediated costimulation was

i

2

NATURE COMM

completely abrogated (Fig. 1b), demonstrating that poly(L:C)
and CpG-B-mediated T-cell costimulation was induced indepen-
dently of TLR signaling.

Notably, DNA lacking CpG motifs required for TLR9
activation, such as non-CpG oligodeoxynucleotide (ODN) and
DNA encoding GFP (GFP-S and GFP-AS, antisense strand) could
also induce costimulation for IL-2 production (Fig. 1c). These
data indicate that DNA induces T-cell costimulation indepen-
dently of the CpG motifs. We also found that poly(dA), poly(dC)
and poly(dG) but not poly(dT) induced the costimulation for
IL-2 production, although the uptake of poly(dT) and non-CpG
ODN by T cells was comparable (Fig. 1d).

Confocal microscopy analysis revealed that non-CpG ODN
colocalized with an endosomal marker dextran and a lysosomal
marker LysoTracker (Fig. le), indicating that non-CpG ODN is
taken up by T cells and transported to endosomes/lysosomes,
similarly in innate cells, and induces costimulatory signals in a
TLR-independent manner.

Higher-order structure of NA induces T-cell costimulation.
It is noteworthy that CpG-A possessing a poly(dG)-tail induced
stronger costimulation of CD4 T T cells than other ODNs such as
CpG-B and non-CpG (Fig. 1c). The importance of the poly(dG)
tract was confirmed by the finding that control ODN GpC cor-
responding to CpG-A induces robust IL-2 production, similar to
CpG-A (Fig. 2a), and that replacement of the poly(dG) motif of
GpC by poly(dA), poly(dC) or poly(dT) resulted in the complete
loss of stimulatory activity (Fig. 2b).

It has been reported that the poly(dG) tail induces the
spontaneous formation of large multimeric aggregates via
G-quadruplex formation'®, Indeed, when GpC was rendered
single-stranded by heating and flash-cooling, a dramatic
reduction of IL-2 production was observed (Fig. 2¢), suggesting
that higher-order structures mediated by the poly(dG) motif are
critical for enhanced costimulation by CpG-A and GpC.
Consistently, introduction of a poly(dG)-tail to non-CpG and
CpG-B that possess a phosphodiester (PO) backbone sensitive to
DNase enabled them to induce costimulation, whereas the same
DNA without the poly(dG)-tail could not (Fig. 2d).

It has been shown that the poly(dG) motif not only protects
against DNase degradation'® but also enhances the cellular
uptake of the ODN'7. Indeed, the uptake of GpC-poly(dC) by
T cells was lower than GpC, indicating that GpC-poly(dC) could
not induce costimulation due to its poor uptake (Fig. 2e). It is
noteworthy that cellular uptake of GpC-poly(dC) was weaker
than that of non-CpG (Fig. 2e). It has been reported that
phosphorothioate (PS)-modified ODN are taken up more
efficiently than PO-ODN'. The entire backbone of non-CpG is
PS, whereas it is only partial in GpC (Supplementary Table 1). PS
modification of GpC-poly(dC) led to enhanced cellular uptake
and costimulation (Fig. 2e). By contrast, modification of non-
CpG to contain only partial PS resulted in decreased uptake and
the failure of costimulation (Fig. 2e). We also confirmed that
cellular uptake and costimulation of PO-backboned non-CpG
was much weaker than those of PS-backboned non-CpG
(Supplementary Fig. la). These data indicate that efficient
uptake of DNA via its poly(dG) tail or PS modification is
critical for induction of costimulation.

While inosine or guanine-containing RNA such as poly(I),
poly(G), poly(I:C) and poly(C:G) could induce costimulation,
poly(A), poly(U), poly(C) and poly(A:U) could not (Fig. 2f). The
induction of costimulation by RNA was correlated with the
cellular uptake of RNA (Fig. 2f). These data indicate that
RNA-mediated costimulation depends on the RNA sequence for
cellular uptake of RNA to induce costimulation.
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Figure 1 | DNA/RNAs are incorporated into and induce costimulation of CD4* T cells. (a) Naive CD4 1 Tcells were cultured with indicated TLR ligands
(Pam3: Spgmi ™, MALP-2: S pgml~ ", poly(k:C): 100 pgml ~, Flagellin: Tpgml 7, Loxoribine: 100 pM, CpG-B: 5 M) in the presence or absence of
immobilized anti-CD3e Ab (10 ugml ). After 48-hour incubation, IL-2 production and cell growth were assessed by ELISA and MTS assay, respectively.
*P<0.05, Student’s t-test (compared with anti-CD3 alone). (b) Naive CD4* T cells from WT or Myd88 =/~ Trif =/~ mice were stimulated

with the indicated TLR ligands or anti-CD28 (Clone: 37.51, 5pgml~1) in the presence of immobilized anti-CD3e Ab. *P<0.05, Student's t-test
(compared with WT cells treated with Pam3). (¢,d) Naive CD4* T cells were stimulated with the indicated NAs (¢) and ODNs (d) in the presence of
immobilized anti-CD3e Ab. These T cells were incubated with the Cy5-labelled ODNs at 37 °C for 90 min and ODN uptake was determined by flow
cytometry (d, upper). *P<0.05, Student's t-test (compared with anti-CD3 alone). (e) Naive CD4 ™ T cells were incubated with 5uM non-CpG-Cy5 for
90 min and dextran-Alexa Fluor 488 or LysoTracker for last 10 min for the subcellular staining of endosomes and lysosomes, respectively. Confocal
microscopy data with differential interference contrast (DIC) images of representative cells are shown. Scale bars, 2.5 um. Error bars indicate s.d. Data are
representative of at least three independent experiments.

It has been reported that poly(I) forms parallel four-stranded and poly(G) resulted in impaired costimulation (Fig. 2g),
helices held together by hydrogen-bonded inosine quartets, similar ~ indicating that the ability of RNA to induce T-cell costimulation
to poly(dG) chains'®. We found that heat denaturation of poly(l:C)  is dependent on the higher-order structure similar to DNA.
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untreated control). Error bars indicate s.d. Data are representative of at least three independent experiments.

Costimulation induced by NA complexed with LL37 and
histones. It has been recently shown that endogenous self-DNAs
stimulate plasmacytoid dendritic cells by forming aggregated
structures upon binding with the antimicrobial peptide LL37
(ref. 19). Similarly, we found that mammalian and bacterial
genomic DNA were taken up by T cells and induced
costimulation when mixed with LL37 while they alone were
neither incorporated nor induce stimulation (Supplementary

4

AL

© 2014 Macmillan Publishers Limited.

Nl

Fig. 2a, Fig. 3a). Similarly, although poly(A) and poly(A:U) per se
were defective in cellular uptake and induction of costimulation
of naive CD4™ T cells (Fig. 2f), they were incorporated and
induced T-cell costimulation when complexed with LL37
(Supplementary Fig. 2b, Fig. 3b).

Similar to LL37, extracellular histones as components of
neutrophil extracellular traps exhibit antimicrobial function?,
We found that the addition of core histones (H2A, H2B, H3 and
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Figure 3 | T-cell activation by NAs complexed with antimicrobial peptides or core histones. (a,b) Naive CD4*+ T cells derived from WT and Myd88 =/~
mice were stimulated with plate-bound anti-CD3e together with calf thymus (CT)- or E. coli (EC)-derived genomic DNA (a) or RNAs (b) either

alone or premixed with LL37. After 48h, IL-2 production and cell growth were assessed by ELISA and MTS assay, respectively. *P<0.05, Student's
t-test (compared with anti-CD3 plus LL37 in WT cells). (¢) Naive CD4 ™ T cells were incubated with the Cy5-labelled CT DNA premixed with the
indicated histones or LL37 at 37 °C for 90 min and the incorporated DNA were analysed by flow cytometry. (df) Naive CD4* Tcells derived from
WT and Myd88 =7/~ Trif ™/~ mice were stimulated with plate-bound anti-CD3 together with CT DNA alone (d), RNAs alone (f) or premixed with
various histones (d,f), and analysed similarly in (a). *P<0.05, Student's t-test (compared with anti-CD3 plus each histone or LL37 in WT cells). (e) Naive
CD47 Tcells were stimulated with anti-CD3 with Cy5-labelled CT DNA premixed with Alexa488-labelled histone H3 for 18 h. Endosomes and Lysosomes
were visualized by staining with dextran-Alexa Fluor 488 and LysoTracker, respectively. Confocal and differential interference contrast (DIC) images of
representative cells are shown. Scale bars, 2.5 um. Error bars indicate s.d. Data are representative of at least two independent experiments.

H4), but not the linker histone HI, increase cellular uptake of
- genomic DNA into CD4" T cells (Fig. 3c). The uptake was
correlated with induction of costimulation (Fig. 3d). Although the
genomic DNA-H2A complex was the strongest inducer for IL-2

NATURE CO

production, H2A itself induces costimulation in the absence of
DNA through unknown mechanism. Therefore, we use H3
that has no costimulatory activity by itself to determine
the localization of histone/DNA complexes. The genomic
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DNA-histone H3 complex was incorporated and localized in
endosomes and lysosomes as shown by colocalization with
dextran and LysoTracker, respectively (Fig. 3e). Similarly to LL37,
histone H3 and H4 allowed poly(C) and poly(A:U) to induce
costimulation of naive CD4+ T cells (Fig. 3f). These data
indicated that NAs from self or pathogens could induce T-cell
costimulation by forming complexes with antimicrobial peptides
such as LL37 or core histones.

NA-mediated costimulation is independent of known sensors.
To determine the mechanism of NA recognition and activation in
T cells, we analysed the possible involvement of cytosolic sensors
of NAs in innate cells. DNA-dependent activator of IRFs
(DAL also known as ZBP1) was first reported to function as a
cytoplasmic DNA receptor?!. Absent in melanoma 2 (AIM2)

was identified as a cytosolic DNA sensor that activates.

inflammasome?2. Stimulator of IFN genes (STING) and TBK1
have been identified as essential molecules that mediate a wide
range of cytosolic DNA-induced type I IFN responses®3~2>. To
examine the possible involvement of these sensors for T-cell
costimulation, we tested naive CD41 T cells derived from
Zbpl~/~, Asc =/~ (which links AIM2 to caspase-1), Sting =/~
and Tnf~/~ Tbkl~/~ mice. However, surprisingly, DNA-
mediated costimulation was induced normally in these T cells

(Fig. 4a—c, Supplementary Fig. 3a), strongly suggesting that T cells
utilize a DNA-sensing system different from innate immune cells.

TLR3 recognizes poly(I:C) in the endosome and initiates
signalling through the adaptor, TRIF'. On the other hand,
retinoic  acid-inducible gene I (RIG-I) and melanoma
differentiation-associated gene 5 (MDAS) sense poly(I:C) and
viral RNA in the cytoplasm, which activates an adaptor, IFN-f3
promoter stimulator 1 (IPS-1; also known as MAVS)2627 To
examine the possibility that RIG-I/MDAS5 and TLR3 may
recognize RNA cooperatively or separately in T cells, we
examined RNA-mediated T cell costimulation in IPS-1/TRIF-
doubly deficient mice. Normal costimulation by poly(I:C) and
poly(I) was observed in Ips-1~/~ Trif 7/~ T cells (Fig. 4d).
In addition, to determine the functional redundancy between
TLRs and inflammasomes or RIG-I-like receptors (RLRs), we
generated MyD88/ASC-and MyD88/IPS-1 doubly-deficient mice.
NA-mediated costimulation was normally induced in naive CD4 *
T cells from both mutant mice (Supplementary Fig. 3b.c).
It has been demonstrated that NAs are promiscuously sensed by
HMGB proteins to induce type I IFN and pro-inflammatory
cytokines?®. However, downmodulation of all three HMGB
proteins in CD4 " T cells using small interfering RNA did not
alter IL-2 production in response to NAs (Supplementary Fig. 3d).

To identify the mechanism underlying the NA-mediated
costimulatory signal to induce IL-2 production in T cells, we
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Figure 4 | NA-mediated T cell costimulation is independent of known innate sensors. (a-d) Naive CD4 % T cells derived from WT or Zbpl =/~

(@), Asc™/~ (b, Sting=/~ (€) or Ips-1=/~ Trif /= (d) mice were stimulated with plate-bound anti-CD3e and the indicated ligands. After 48 h, IL-2
production was measured by ELISA. (e) T-cell hybridoma reporter cells expressing NFAT-GFP (left) or NF-kB-GFP (right) were stimulated with the
indicated ligands with or without immobilized anti-CD3e for 24 h and analysed by flow cytometry. Error bars indicate s.d. Data are representative of at least

two independent experiments.
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cells were restimulated with immobilized anti-CD3e plus anti-CD28 for 6 h for staining of intracellular cytokines. Error bars indicate s.d. Data

are representative of at least three independent experiments.

analysed the activation of NF-kB and NFAT, both of which plus anti-CD3. We observed that poly(I:C) and GpC markedly
are essential for T-cell activation?®. T-cell hybridoma (2B4) increased activation of NF-kB and NFAT, compared with
expressing the NF-kB-GFP or NFAT-GFP was stimulated by NAs  anti-CD3 alone (Fig. 4e). These data suggest that enhanced
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activation of NF-kB and NFAT is involved in the induction of
NA-mediated T-cell costimulation. It is also worth noting that
NA-induced costimulation of a T-cell hybridoma, which is
definitely free of any innate cells, confirms that NA directly
stimulates T cells.

NA-mediated costimulation induces Th2 cell differentiation.
A recent study demonstrated that DNA released from dying host
cells stimulates Th2 responses in vivoC. It is also reported that
stimulation of RLRs by specific ligands biases the immune system
toward a Th2 response, whereas the TLR signalling strongly
induces Thl and Th17 responses®!. Accordingly, it seemed
possible that NA-induced stimulation of T cells would induce
Th2 cell differentiation. To test this hypothesis, naive CD4* T
cells were stimulated in vitro with anti-CD3 plus anti-CD28
together with various NAs without blocking Abs against IFN-y or
IL-4. NAs such as poly(I:C), poly(I) and non-CpG strongly
induced the differentiation of IL-4-producing T cells without the
addition of exogenous IL-4 (Fig. 5a). By contrast, NAs strongly
inhibited the differentiation of IFN-y-producing T cells (Fig. 5a),
and also increased the frequency of Th2 cells producing IL-5,
IL-9, IL-13 and IL-10 (Fig. 5a, Supplementary Fig 4a).
Consistently, the expression of the Th2-master regulator
GATA-3 was enhanced, whereas the expression of T-bet, the
Th1-master regulator was strongly inhibited in the T cells cultured
with NAs (Supplementary Fig. 4b), suggesting that NAs directly
induce the differentiation of Th2 cells. Notably, unlike NAs, TLR2
ligands had a minimal effect on Thl and Th2 differentiation
(Fig. 5a), and NA-mediated costimulation did not affect the
development of IL-17-producing T cells (Supplementary Fig. 4c).
Since NAs induced Th2 differentiation of MyD88/TRIF-double
deficient T cells similarly to control T cells (Supplementary
Fig. 4d), this processes does not require TLR signalling.

The generation of Th2 cells is dependent on IL-4-STAT6
signalling, which leads to the upregulation of GATA-3 (ref. 32).
We assessed whether Th2 differentiation induced by
NA-mediated costimulation was also IL-4-STAT6-dependent.
IL-4 receptor (R) a-deficient T cells after activation by NAs for
6 days failed to produce any Th2 cytokines including IL-4 and
IL-13 (Fig. 5b). In addition, the induction of GATA-3 expression
was severely diminished in IL-4Ro-deficient T cells (Fig. 5¢).
Similar results were obtained using Stat6 /= CD4% T cells
(Supplementary Fig. 4e), indicating that NA-mediated Th2
differentiation requires IL-4-STAT6 signalling. However, NA-
mediated inhibition of IFN-y production and T-bet expression
was still observed in IL-4Ro-deficient T cells (Fig. 5b,c),
suggesting that NA-mediated inhibition of Thl differentiation
is independent of IL-4 signalling. Therefore, it is likely that
NA-mediated costimulation may enhance IL-4 production at an
early time point (within 48h), which then induces Th2
differentiation. Indeed, IL-4 production was induced at 48h by
NAs but not TLR2 ligands, whereas IFN-y production was

~reduced (Fig. 5d). NA-induced enhancement of IL-2 production
was not strong upon stimulation with anti-CD3 plus CD28
as compared with anti-CD3 alone. Strong costimulation with
anti-CD28 resulted in reduced enhancement, though significantly
enhanced (Fig. 5d).

Collectively, these data demonstrate that- NAs induce Th2
differentjation in an IL-4 signal-dependent manner similarly to
the canonical Th2 differentiation pathway induced by exogenous
IL-4, whereas suppression of Thl differentiation by NAs is
independent of IL-4 signalling.

We next determined whether self-DNA from dead cells induce
Th2 differentiation. We found that the addition of dead cells
(irradiated naive CD4 T T cells or irradiated HEK 293 cells) to

8

the T-cell culture enhanced the differentiation of IL-4-producing
cells, which was cancelled by the addition of DNase I into the
medium (Fig. 5e, Supplementary Fig. 5f). Addition of RNase A
resulted in minimal effect. These data suggest that self-DNA is a
critical factor for Th2 differentiation induced by dead cells. To
examine whether NA-mediated Th2 differentiation is induced
upon antigen stimulation, OVA-specific naive CD4+ T cells
from OT-II Tg mice were stimulated with OVA peptide-pulsed
irradiated splenocytes plus non-CpG. Non-CpG promoted Th2
differentiation under the condition, strongly suggesting that NAs
induces T-cell costimulation even when T cells are activated by
antigen-pulsed APCs (Fig. 5f).

Mechanisms underlying NA-induced Th2 differentiation.
To determine the mechanism by which NAs induces Th2
differentiation, we compared the gene expression profiles in
CD4* T cells activated under neutral conditions in the presence
or absence of non-CpG. Surprisingly, before the upregulation of
GATA-3, the expression of T-bet was strongly inhibited by non-
CpG-mediated costimulation (Fig. 6a). Following the suppression
of T-bet expression, the expression of Th2-associated genes was
upregulated and IFN-y was downregulated at 48 h after stimu-
lation (Fig. 6a). We further confirmed that various NAs other
than non-CpG also induced the suppression of T-bet and the
upregulation of GATA-3 and IL-4 expression (Supplementary
Fig. 5a). We then compared the kinetics of the expression
of Thl/Th2-associated genes upon stimulation with IL-4 or
non-CpG. GATA-3 was quickly induced in CD4" T cells by .
exogenous IL-4 (at 24h), followed by the induction of Th2
cytokines and the inhibition of T-bet and IFN-y expression. By
contrast, in CD4 " T cells stimulated with non-CpG, GATA-3
expression was induced after inhibition of T-bet expression,
suggesting that Th2-associated genes are indirectly induced by
non-CpG-mediated costimulation. In addition to these kinetic
differences, inhibition of T-bet expression by non-CpG was more
rapid and robust than by exogenous IL-4 (Fig. 6b). T-bet inhibits
Th2 differentiation by directly inhibiting the expression of Th2
cytokines and sequestering GATA-3 from the promoters of Th2
cytokines®. Using ChIP analysis, we showed that the binding of
GATA-3 to the IL-4 and IL-13 promoters was enhanced in
CD4 ™ T cells by stimulation with non-CpG (Fig. 6¢). Therefore,
it is likely that NA-mediated costimulation induces Th2
differentiation primarily by inhibiting T-bet expression.

To test this hypothesis further, we compared Th2 differentia-
tion by the blockade of IFN-y signalling and non-CpG
stimulation, because the expression of T-bet is controlled by
IFN-y signalling®*. We found that the T-bet expression in CD4 T
T cells cultured in the presence of anti-IFN-y was much lower
than those stimulated with non-CpG at early time point (48 h)
after TCR stimulation (Fig. 6d). However, the expression of
GATA-3 and Th2 cytokines in T cells cultured with anti-IFN-y
was much lower than those stimulated with non-CpG (Fig. 6d),
suggesting that inhibition of T-bet expression by non-CpG is not
sufficient, though partially contributes, for the upregulation of
Th2-associated gene expression. Additional signal(s) are required
for the induction of Th2-associated genes by non-CpG-mediated
costimulation. Consistently, the Th2 polarization by the presence
of anti-IFN-y was weaker than by non-CpG later (day 6) after
TCR priming (Fig. 6e). Thus, non-CpG-mediated costimulation
simultaneously inhibits T-bet expression and enhances the
expression of Th2-associated genes.

As T-bet controls Thl development by directly activating
IFN-y (ref. 34), it is likely that NA-mediated costimulation
would inhibit Thl development under Th1-polarizing conditions.
As expected, non-CpG inhibits Thl development and
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Figure 6 | Molecular mechanism of NA-mediated Th2 differentiation. (a) Naive CD4™* T cells were stimulated with anti-CD3e plus anti-CD28 with
or without non-CpG for the indicated periods and mRNA expression was analysed by real-time PCR. *P<0.01, Student's t-test (compared with
anti-CD3/CD28 alone). (b) Naive CD4™* T cells were stimulated by NAs or IL-4 and analysed similarly in (a). *P<0.01, Student's t-test

(compared with anti-CD3/CD28 alone). (¢) Naive CD4 ™ T cells were stimulated with anti-CD3e plus anti-CD28 together with non-CpG for 48 h, and
ChlP analyses were performed by immunoprecipitation with control Ab (IgG) or anti-GATA-3. Quantitative PCR analysis of the GATA3 binding at

the IL-4 and 1L-13 gene promoters. The results were normalized to those of a standardized aliquot of input chromatin. *P<0.05, Student's t-test
(compared with anti-CD3/CD28 alone). (d,e) Naive CD4 ™ T cells were stimulated in the presence of non-CpG or anti-IFN-y Ab and mRNA expression
(d) and intracellular cytokine expression (day 6) (e) were analysed. *P<0.01, Student's t-test (compared with anti-CD3/CD28 alone).

(F) Naive CD4+ Tcells from WT and IL-4Ro. ™/~ mice were stimulated and analysed similarly in (a). *P<0.01, Student's t-test (compared with
anti-CD3/CD28 plus non-CpG in WT cells). Error bars indicate s.d. Data are representative of at least two independent experiments.
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IFN-y production even under Thl differentiation condition
(Supplementary Fig. 5b).

We then analysed whether IL-4 signalling is required for the
early expression of Th2-associated genes after NA-mediated
costimulation. Interestingly, the augmentation of the expression
of IL-4 and GATA-3 by non-CpG was severely impaired in
IL-4Ra-deficient CD4 1 T cells, whereas the upregulation of IL-5,
IL-9 and IL-13 expression and downregulation of IFN-y and
T-bet expression was largely unaffected (Fig. 6f). Similar results
were obtained in the Stat6 ~/~ CD4t T cells (Supplementary
Fig. 5¢). These data suggest that non-CpG-mediated T-cell
costimulation directly induced the expression of IL-5, IL-9 and
IL-13, partly through the inhibition of T-bet expression, whereas
IL-4 and GATA-3 expression was induced by IL-4-STAT6
signalling. Naive CD4% T cells are capable of producing
IL-4 upon primary TCR stimulation in the absence of exogenous
IL-4, and the early IL-4 is rapidly consumed by the CD4™
T cells themselves®>. Therefore, NA-mediated IL-4 production
may require early IL-4 autocrine signalling to induce the
autoactivation of GATA-3 expression. Notably, however,
expression of all Th2-associated genes in IL-4Ra-deficient
CD4%+ T cells disappeared by day 6 after priming with NAs.
Although non-CpG stimulation induces the enrichment of
GATA-3 on the IL-13 promoter (Fig. 6c), it seems that early
induction of IL-13 expression by non-CpG (at 48h) is
independent of GATA-3 because IL-13 expression was
enhanced by non-CpG in IL-4Ro-deficient CD4" T cells
despite the lack of GATA-3 upregulation by non-CpG (Fig. 6f).
However, it seems that the enrichment of GATA-3 on the IL-13
promoter is critical for IL-13 expression later (in day 6) after TCR
priming for its maintenance because the induction of IL-13 and
GATA-3 expression by non-CpG was diminished later after TCR
priming (in day 6) in IL-4Ro-deficient CD4+ T cells (Fig. 5b,c).
These data indicate that autocrine IL-4 is required for the
induction of IL-4 and GATA-3 upon non-CpG stimulation,
which then acts to amplify and stabilize the expression of
Th2-associated genes.

Discussion

The present study shows that NAs directly stimulate CD4 ™"
T cells through a NA sensor different from those of the innate
system, subsequently leading to Th2 cell differentiation. In
addition to TLRs, a growing number of NA sensors have
been identified in the innate immune system, including RLRs,
IPS-1-dependent sensors, MyD88/TRIF-dependent sensors, ASC-
dependent inflammasomes and STING-dependent sensors®.
However, we found that recognition of NAs by T cells is
independent of all of these known sensors including HMGBs,
although we cannot conclusively exclude the possibility that some
known NA sensors work redundantly.

We found that a higher-order structure of the NAs is required
for their incorporation by T cells. Since T cells can incorporate
genomic self-DNA only when it is complexed with antimicrobial
peptides or core histones, T cells may respond to NAs from
dying cells at the site of inflammation and infection, where
antimicrobial peptides and/or histones are released. We also
demonstrated that specific recognition and uptake of RNA
induces costimulatory responses. A recent study demonstrated
that cells infected with several viruses including vaccinia virus
contained higher-order structured RNA that stimulated MDAS5
(ref. 37), indicating the possibility that T cells may recognize
such viral RNA and are activated. Recent studies demonstrated
that, upon infection with nonpermissive HIV, cytoplasmic
DNA derived from incomplete reverse transcripts caused
CD4% T cell death through recognition of the cytosolic DNA
by a sensor IFI16 followed by activation of the ASC-caspase-1
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pathway®®%®. It was also reported that transfected DNA was
colocalized with IFI16 in activated T cells*. However, our result
that DNA-mediated costimulation was normally induced in
ASC-deficient CD4 1 T cells suggests that IFI16 is not involved
in the DNA-mediated costimulation in T cells. While cytosolic
DNA stimulates IFI116 upon HIV infection or DNA transfection,
incorporated DNAs are accumulated in endosome/lysosome
and induce T-cell costimulation in our experiments without
activation of IFI16 probably due to the failure to deliver DNA to
the cytosol.

Furthermore, a recent study showed that immunization with
RLR ligands or infection with viruses, which mainly activate
RLRs, results in enhanced Th2 responses and much weaker Thl
responses’!, supporting our observation that NAs directly
stimulate the induction of Th2 responses. It is known that TLR
stimulation of innate immune cells promotes Thl and Thl7
responses by inducing the Thl-polarizing cytokine IL-12 and the
Th17-polarizing cytokines IL-6/IL-23/IL-1 (refs 1,41). Recent
studies, including ours, show that TLR2 ligands directly activate
Thl but not Th2 cells’” and promote Th17 differentiation®. In
contrast to TLR, the activation of RLRs suppresses Thl and Th17
differentiation through the inhibition of IL-12 and IL-23
production, resulting in the enhanced differentiation of Th2
cells®!. Our results demonstrate that direct stimulation of T cells
by NAs strongly inhibit the initial expression of T-bet, which
allows the initial production of IL-4 and Th2 cytokines to induce
Th2 differentiation. Thus, similar to Thl and Th17 responses
induced by TLRs in innate cells and T cells, it is likely that
activation of RLRs in innate cells and the NA sensor in T cells by
NAs cooperatively induces Th2 differentiation.

The initial origin of IL-4 to trigger Th2 differentiation has been
extensively analysed but remains unclear. It has been reported
that basophils serve as Th2 ce]l-promotinig APCs by producing
IL-4 and/or thymic stromal lymzphopoietin 4. However, their role
as APCs remains controversial*2. It has been suggested that naive
T cells are a possible source of IL-4 (refs 43,44), which modestly
induces Th2 differentiation when IFN-y and IL-12 are
neutralized®>. Although it has been proposed that Th2
differentiation may occur as a default pathway, CD4™+ T cells
in IL-12 p40-deficient mice fail to differentiate into Th2 cells in
response to intracellular pathogens®>. Thus, the simple blocking
of Thl-inducing stimuli such as IL-12 or IFN-y is not sufficient to
induce Th2 differentiation, suggesting the existence of additional
Th2-inducing factors. However, such factors for the initial
triggering of IL-4 production from naive CD4 ™ T cells under
physiological conditions have not been identified. We here
provide strong evidence that the initial IL-4 production derived
from naive CD4 ™ T cells upon recognition of NAs in the absence
of any exogenous cytokines or neutralizing antibodies instructs
naive CD4 T T cells to differentiate into Th2 cells.

A recent report demonstrated that aluminium hydroxide
adjuvant (alum) causes cell death and release of host DNA at
sites of immunization, which mediates the adjuvant effect for
Th2-biased adaptive responses®®. As the mechanism to induce
Th2 responses, it has been reported that uric acid released in the
peritoneal cavity after injection of alum may have a role in
promoting Th2 cell responses independently of the ASC
inflammasome or TLR signalling?®. As uric acid crystals
released at the sites of immunization/inflammation induce
extracellular DNA traps formation by neutrophil, eosinophil
and basophil*’, uric acid-induced extracellular DNA traps may
directly stimulate T cells to induce Th2 response. A recent study
reported that defects in clearance of apoptotic airway epithelial
cells upon environmental allergen encounter lead to augmented
Th2 cytokine production and airway hyper-responsiveness??,
indicating that in vivo Th2 responses are closely related to host
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cell death accompanied by host DNA release. In line with the
hypothesis, we found that self-DNA from dead cells induces Th2
differentiation.

Collectively, we have identified NAs as a direct Th2-inducing
factor, which induces initial production of IL-4 by naive CD4 ™
T cells, which in turn induces Th2 differentiation. Although we
have not identified the NAs sensor in T cells yet, our results
provide the possibility that NAs may be critical targets for the
development of improved vaccine adjuvants and the overall
design of therapeutics to control allergic diseases.

Methods

Mice. C57BL/6 mice were purchased from Clea Japan, Inc. The mice deficient in
MyD88, TRIF-deficient, IPS-1 ZBP1 and STAT6 were provided by Dr Akira S.
Asc ™/~ mice were provided by Dr Taniguchi $ and Dr Noda T. Sting™’~

and Il4ra~/~ mice were provided by Dr Barber GN and Dr Brombacher F,
respectively. Mice aged 8-16 weeks were used. All mice were maintained under
specific pathogen-free conditions and all experiments were conducted under
protocols approved by RIKEN Yokohama Institute.

ELISA and cell growth analysis. Cell culture supernatants were analysed by
ELISA for the production of IL-2 (BD biosciences), IL-4 (BD biosciences) and
IFN-y (BD biosciences). Cell growth was assessed by the MTS assay-based Cell
Counting Kit-8 (DOJINDO).

Helper T-cell differentiation. CD4+/CD25 ~/CD62L*/NKI1.1 ™ (naive) T cells
were isolated from spleens using a FACS-Aria cell sorter. For ThO cells, cells were
stimulated with plate-bound anti-CD3 (2C11, 10 pgml ™ !) and anti-CD28 (PV-1,
10 pgml 1) Abs in the presence of the indicated ligands. For Thl cells, cells were
cultured in the presence of IL-12 (10 ngml~!) and anti-IL-4 Abs (10 pgml ~}).
For Th2 cells, cells were similarly cultured in the presence of IL-4 (10ngml™1).

Real-time quantitative PCR. After removal of genomic DNA by treatment with
DNase (Wako Nippon Gene), randomly primed ¢cDNA strands were generated
with reverse transcriptase II (Invitrogen). RNA expression was quantified by
real-time PCR with the following gene-specific primers and values were normalized
to the expression of Rps18 mRNA (Supplementary Table 2).

Reagents and Abs. The TLR2 ligands N-palmitoyl-S-(2,3-bis(palmitoyloxy)-
(2RS)-propyl)-Cys-Ser-Lys, (Pam3) and macrophage-activating lipopeptide 2
(MALP-2) were purchased from EMC Microcollections. Poly(I:C), a TLR3 ligand,
and LPS (Escherichia. coli O111:B4), a TLR4 ligand, were obtained from GE
Healthcare Biosciences and Sigma, respectively. Flagellin, a TLR5 ligand, and
loxoribine, a TLR7 ligand, were obtained from InvivoGen. Oligo DNAs including
TLR9 ligands were purchased from Hokkaido System Science. Poly(A), poly(U),
poly(C), poly(G), poly(I), poly(A:U) and poly(C:G) were purchased from Sigma.
Calf thymus DNA and E. coli DNA was from Sigma and Invivogen, respectively.
LL37 was from AnaSpec. Histone H1, H2A, H2B, H3 and H4 were from New
England BioLabs. LL37 or histones were first premixed with genomic DNA
(peptide:DNA mass ratio of 2:1). After 30-min incubation at room temperature, the
mix was added to the T-cell cultures (final concentration was 10 pgml ~ 1 of DNA).
Abs specific for anti-IL-4 PE (11B11, 1:25 dilution) and anti-IEN-y FITC
(XMG1.2, 1:25 dilution) were obtained from BD Biosciences; anti-IL-5 PE (TRFK5,
1:25 dilution), anti-IL-10 PE (1:25 dilution) and anti-IL-13 PE (eBiol3A, 1:25
dilution) from eBioscience; anti-IL-9 PE (RM9A4, 1:25 dilution) from BioLegend.
ChIP analysis used mAb to GATA-3 (HG3-31AG; Santa Cruz, 1:125 dilution).

Intracellular cytokine staining analysis. CD4 T cells were restimulated with
immobilized anti-CD3 and anti-CD28 for 6h in the presence of 2 uM monensin
(Sigma, St Louis, MO). Cells were fixed with 4% paraformaldehyde and permea-
bilized with 0.5% Triton X-100. After blocking with 3% BSA-PBS, cells were
stained with antibodies to each cytokine. Flow cytometric analysis was performed
on a FACSCalibur and data were analysed with BD CellQuest.

Cellular uptake of NA. To analyse the uptake of NA, 2 x 10° cells were pre-
incubated at 37 °C for 10 min in medium. Cells were incubated with fluorescence-
labelled NA at 37 °C for 90 min. Then cells were washed once in HANKS/0.1% BSA
followed by an acidic wash with 100 mM acetic acid, 150 mM NaCl (pH2.7) for
1min to remove unbound and cell surface-bound NA. Subsequently, cells were
washed two times in HANKS/0.1% BSA, and were analysed by flow cytometry
using the FACSCalibur.

Reporter cells. The 2B4-NFAT-GFP cells have been described*” and the 2B4-NF-
kB-GFP cells were established by transfection of NF-kB-GFP into 2B4 hybridoma
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cells. These cells were cultured in RPMI 1640 medium supplemented with 10%
(vol/vol) FCS and B-mercaptoethanol.

Chromatin immunoprecipitation assay. Cells were fixed for 10 min at 4 °C with
10% formaldehyde. After incubation, glycine was added to a final concentration of
0.125 M to quench the formaldehyde. Cells were pelleted, washed three times with
ice-cold PBS and then lysed. The lysates were sonicated to reduce DNA length to
between 200 and 300 base pairs. The chromatin was pre-cleared with protein G
agarose beads for 6h and then incubated with 4 pg of anti-GATA-3 (HG3-31)
agarose conjugate antibody (Santa Cruz, sc-268 AC) or control IgG overnight. The
precipitates were washed and eluted in 120 pl of NaHCO; buffer with 1% SDS. The
samples were treated with RNase and Proteinase K and then de-crosslinked at
65 °C overnight. Precipitated DNA was further purified with Qiaquick PCR
purification kit (Qiagen) and was analysed by quantitative PCR (Supplementary
Table 2)%.

Confocal microscopic imaging. Cells were settled on glass-bottom, 35-mm tissue
culture dishes (MATSUNAMI GLASS). Confocal microscopy analyses were per-
formed with a Leica TCS SP5 confocal microscope with an oil immersion objective
(HCX PL APO x 63/1.40-0.60 NA, Leica). Dual-color images were acquired using
a sequential acquisition mode to avoid cross-excitation. To visualize the Histone-
calf thymus DNA complex in CD4+ T cells, calf thymus DNA (Sigma) was
labelled with Cy5 using the Label IT Nucleic Acid Labelling Reagents (Mirus) and
histone H3 was labelled with DyLight 488 using the antibody labelling kit (Pierce),
according to the standard protocol provided by the respective manufacturers.

RNA interference. Double-stranded oligonucleotides corresponding to the target
sequences were cloned into the pSuper.Retro RNAi plasmid (Oligoenginelnc.).
The siRNA targeting sequences which function for commonly all three murine
HMGB1/2/3 are 5'-GAGAAGTATGAGAAGGATATT-3' and 5'-AAGTATGAGA
AGGATATTGCT-3'.

Statistics. Statistical significance was determined by a two-tailed unpaired
Student’s f-test. P<0.05 was considered statistically significant.
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Innate lymphoid cells regulate
intestinal epithelial cell glycosylation
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Chihiro Sasakawa, Yoshinori Umesaki, Yoshimi Benno, Hiroshi Kiyono*

INTRODUCTION: The combination of food
intake and the resident gut microbiota ex-
poses the gastrointestinal (GI) tract to nu-
merous antigens. Intestinal epithelial cells
(ECs) compose a physical barrier separating
the internal organs from the gut microbiota
and other pathogenic microorganisms en-
tering the GI tract. Although anatomically
contained, the gut microbiota is essential
for developing appropriate host immunity.
Thus, the mucosal immune system must
simultaneously maintain homeostasis with
the gut microbiota and protect against
infection by pathogens. Maintenance of
the gut microbiota requires epithelial cell-
surface glycosylation, with fucose residues
in particular. Epithelial fucosylation is me-
diated by the enzyme fucosyltransferase 2
(Fut2). Polymorphisms in the FUT2 gene
are associated with the onset of multiple
infectious and inflammatory diseases and
metabolic syndrome in humans.

RATIONALE: Despite its importance, the
mechanisms underlying epithelial fucosyl-
ation in the GI tract is not well understood.
In particular, although commensals such as

Bacteroides thetaiotaomicron induce epithe-
lial fucosylation, how mucosal immune cells
participate in this process is unknown. We
used a combination of bacteriological, gno-
tobiological, and immunological techniques
to elucidate the cellular and molecular basis
of epithelial fucosylation

by mucosal immune
Read the full article ?ells 1a toice, e§pemally
innate lymphoid cells

at http:/dx.doi
.org/10.1126/ (ILCs). To explore the
science.1254009 role of ILCs in the in-

duction and mainte-
nance of epithelial fucosylation, we used
genetically engineered mice lacking genes
associated with the development and func-
tion of ILCs. To investigate the physiological
functions of ILC-induced epithelial fucosyl-
ation, we used a Fut2-deficient mouse model
of S. typhimurium infection.

RESULTS: The induction and maintenance
of Fut2 expression and subsequent epithe-
lial fucosylation in the GI tract required
type 3 ILCs (ILC3s) that express the tran-
scription factor RORyt and the cytokines
interleukin-22 (IL-22) and lymphotoxin (LT).

- Wild-type

- ILC3 Deficiency

Commensal bacteria, including segmented
filamentous bacteria (SFB), induced fucosyl-
ation of intestinal columnar ECs and goblet
cells. Expression of IL-22 by ILC3 required
commensal bacteria, whereas LT was ex-
pressed in a commensal-independent man-
ner. Ablation of IL-22 or LT in ILC3 resulted
in a marked reduction in epithelial fucosyl-
ation, demonstrating that both cytokines are
critical for the induction and regulation of
epithelial fucosylation. Fucosylation of ECs
in response to the intestinal pathogen S.
typhimurium was also mediated by ILC3.
Compared with control mice, Fut2-deficient
mice were more susceptible to pathogenic
inflammation as a result of S. typhimurium
infection, suggesting that epithelial fucosyl-
ation contributes to host defense against S.
typhimurium infection.

CONCLUSION: We demonstrate the critical
role of the cytokines IL-22- and/or LT-pro-
ducing ILC3 in the induction and regulation
of intestinal epithelial fucosylation. We also
show that ILC3-mediated epithelial fucosyl-
ation protects the host from invasion of S.
typhimurium into the intestine. Our results
provide important details of the glycosyl-
ation system and homeostatic responses
created by the trilateral ILC3-EC-com-
mensal axis in the intestine. Modulation of
mucosal immune cell-mediated epithelial
glycosylation may provide novel targets for
the treatment or prevention of infectious
diseases in humans. &
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Commensal
bacteria

S. typhimurium

ILC3s regulate epithelial glycosylation. Commensal bacteria, including segmented filamentous bacteria (SFB), induce IL-22 production by
ILC3. LT is produced by ILC3 in a commensal bacteria—independent manner. ILC3-derived [L-22 and LT cooperatively induce the production of
Fut2 and subsequent epithelial fucosylation, which protects the host against Salmonella typhimurium infection.
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