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SUMMARY: OXA-48 carbapenemase-producing organisms have emerged rapidly worldwide and may
be transmitted through patients who receive medical care abroad. To our knowledge, this is the second
case of OXA-48-producing Klebsiella pneumoniae isolated from a patient who had returned to Japan

after receiving treatment abroad.

Infections by multidrug-resistant gram-negative rods
present a great public health concern and have con-
tinued to spread worldwide (1). Receiving medical care
abroad has been suggested as a potential route of trans-
mission of multidrug-resistant organisms (MDROs) (2).
[-Lactamase genes, particularly those coding for car-
bapenemase, have a high transmissibility rate and play a
significant role in the development of multidrug
resistance. The OXA-48 carbapenemase was first isolat-
ed from Enterobacteriaceae in Istanbul, Turkey in 2001
(3). Since then, outbreaks with enormous clinical impact
have been reported worldwide (4-7). Furthermore, the
isolation of OXA-48-producing organisms from
patients transferred from foreign countries to their na-
tive countries has also been increasingly reported (8,9).
The first case of OXA-48 carbapenemase-producing
Klebsiella pneumoniae and Escherichia coli was re-
ported in Japan in December 2012 (9). Here we report
the second case of an OXA-48-producing K. pneumo-
niae isolate from a clinical sample obtained from a
patient returning to Japan.

An 84-year-old Japanese man with no significant past
medical history or exposure to antimicrobial agents
went on a 15-day tour to Egypt and Turkey in April
2012. On the 14th day of his trip, he presented at a
hospital in Cairo, Egypt with vomiting, diarrhea, fever,
and jaundice. He was subsequently diagnosed with
traveler’s diarrhea, septic shock, and obstructive jaun-
dice and admitted to the intensive care unit (ICU),
where administration of meropenem, ciprofloxacin, and
metronidazole elicited a prompt response. On day 8, he
was transported to our hospital in Tokyo, Japan, where
abdominal ultrasoundgraphy and a computed tomo-
graphy (CT) scan revealed a liver abscess. Due to the
patient’s history of receiving medical care outside
Japan, he was considered to be at risk of infection by

*Corresponding author: Mailing address: Disease Control
and Prevention Center, National Center for Global Health
and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-
0052, Japan. Tel: +81-3-3202-7181, Fax: +81-3-3207-
1038, E-mail: kayokohayakawa@gmail.com

antimicrobial-resistant organisms. Therefore, he was
kept in a single room with contact precaution. Screening
results of a stool culture to identify MDROs were posi-
tive for K. pneumoniae, which was found to be resistant
to third and fourth generation cephalosporins and
levofloxacin. The minimum inhibitory concentration
(MIQC) of imipenem was 4 mg/L as measured using the
MicroScan WalkAway™ system (Siemens AG, Munch,
Germany). The MIC was also determined using the
manual broth microdilution method as per the Clinical
and Laboratory Standards Institute (CLSI) criteria
(Table 1) (10). Polymerase chain reaction (PCR) with
specific primers was used to detect genes encoding plas-
mid-mediated AmpC p-lactamases (blaacc, blacir,
blapya, blagse, blapox, and blayox), metallo-S-lac-
tamases (blaMM, b[amM, b[alMp, blaNDM: blaS[M, and
blagpy) (11), carbapenemases (blagic, blagpc, blaoxa.io,
blaoxa.23, blagxa-2s, blaoxa.as, and blagxa.si) (2,12), and
extended-spectrum f-lactamases (ESBL) (blactx.m,
blapgy, blasyy, and blatgy) (12,13). DNA sequences of
open reading frames of the drug-resistant PCR-positive
genes were determined. The multidrug-resistant K.
pneumoniae isolate harbored 3 ESBL-encoding genes
(blaTEM_l, b[asHv_l, and blaCTx.M_m) and a car-
bapenemase-encoding gene (blapxa.sg), but no genes en-
coding plasmid-mediated AmpC p-lactamases or me-
tallo-B-lactamase. Multilocus sequence typing (MLST)
was performed as described in the K. pneumoniae
MLST Database (http:/www.pasteur.fr/recherche/
genopole/PF8/mlst/Kpneumoniae.html). The sequence
type (ST) of the isolate was ST101.

Blood culture test results for this patient upon admis-

sion were negative. The patient responded well to empir-

ic treatment with 750 mg/day of levofloxacin and 1000
mg/day of metronidazole. Although the liver abscess
was not drained, based on the clinical response to
levofloxacin, OXA-48-producing K. pneumoniae was
thought to be only colonizing organism, which was not
contributing to the infectious clinical syndrome in this
patient. He was discharged 21 days after arrival.

To our knowledge, this is the second case of isolation
of OXA-48-producing K. pneumoniae in Japan. The
first involved a man who had been hospitalized in a
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Table 1. Minimum inhibitory concentrations (ug/mL) of OXA-48 carbapenemase-producing Klebsiella pneumoniae isolate

PIP CEZ CTX CAZ CMZ IPM/CS MEPM MINO LVFX AMK GM ABK AZT T/S
W/A =128 =32 =64 =16 =64 4 NA 2 =8 =64 =16 NA =32 2
BMD  >2048 NA 2048 32 64 NA 32 NA 16 64 16 =<0.25 128 NA

ABK, arbekacin; AMK, amikacin; AZT, aztreonam; BMD, broth microdilution; CAZ, ceftazidime; CEZ, cefazolin; CMZ, cefmetazole;
CTX, cefotaxime; GM, gentamicin; IPM/CS, imipenem/cilastatin; LVFX, levofloxacin; MEPM, meropenem; MINO, minocycline; NA,
data not available; PIP, piperacillin; T/S, trimethoprim/sulfamethoxazole; W/A, MicroScan WalkAway™.

Southeast Asian country. Multidrug-resistant (resistant
to third and fourth generation cephalosporins,
aminoglycosides, and quinolones; MIC of imipenem
was 2 mg/L) K. pneumoniae and E. coli were isolated
from the sputum and/or feces, and PCR analyses of the
carbapenemase genes revealed the presence of a
blapxa.4s-like gene in these isolates (9).

Our patient had traveled to Turkey and received med-
ical care at an ICU in Egypt. OXA-48-producing organ-
isms have been reported in both countries (14). The
patient had no other history of travel to a foreign coun-
try for 1 year prior to this episode; therefore, it is likely
that he acquired OXA-48-producing K. pneumoniae
while receiving medical care at the ICU in Egypt. Drug-
resistant K. pneumoniae ST101 has been reported as a
causative agent of outbreaks or as a predominant clone
of nosocomial pathogens in medical settings in several
Mediterranean countries, including Greece (15), Italy
(16,17), Libya (18), and Spain (19). The isolate from our
patient was identified as ST101 by MLST, and thus, it
was considered not to be of the K1 serotype, which is as-
sociated with liver abscess (20).

Of particular concern, OXA-48 carbapenemase-
producing organisms may not necessarily be reported as
carbapenem-resistant based on the MIC, as most
microbiology laboratories in Japan continue to use the
former CLSI criteria, in which Enterobacteriaceae sam-
ples with an MIC for imipenem of <4 mg/L are catego-
rized as susceptible to carbapenem (10). Clinical isolates
that show resistance to third generation cephalosporins
and/or other classes of antibiotics (e.g., aminoglycoside
and quinolone) and reduced susceptibility (MIC >1
mg/L) to carbapenems should be carefully considered
and analyzed. Screening for carbapenemase with the
modified Hodge test and PCR analyses for such isolates
is strongly recommended.

For patients at potential risk of infection, such as
those with a history of hospitalization abroad, a proac-
tive approach is necessary to control the spread of
MDROs. Thus, screening of all patients with a history
of hospitalization abroad, as well as those transferred
from other hospitals and nursing homes, should be
considered.
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Abstract

aminoglycosides in a hospital in Nepal.

PFGE patterns and the fifth showed 95.7% similarity.

and armA isolated from patients in Nepal.

Background: Drug-resistant Providencia rettgeri producing metallo--lactamase and 16S rRNA methylase has
been reported in several countries. We analyzed P. rettgeri clinical isolates with resistance to carbapenems and

Methods: Five clinical isolates of multidrug-resistant P. rettgeri were obtained in a hospital in Nepal. Antimicrobial
susceptibilities were determined using the microdilution method and entire genomes were sequenced to
determine drug-resistant genes. Epidemiological analysis was performed by pulsed-field gel electrophoresis.
Results: Four of the 5 isolates were resistant to carbapenems (imipenem and meropenem), with MICs 216 mg/L,
with the remaining isolate showing intermediate resistance to imipenem, with an MIC of 2 mg/L and susceptibility
to meropenem with an MIC <1 mg/L. All 5 isolates had blaygg.1. Of the 4 carbapenem-resistant strains, 3 had
blanpm-1 and 1 had blapxa.7»- All isolates were highly resistant to aminoglycosides (MICs 21,024 mg/L) and harbored
armA. As the result of pulsed-field gel electrophoresis pattern analysis in the S P. rettgeri isolates, 4 had identical

Conclusions: This is the first report describing multidrug-resistant P. rettgeri strains harboring blaypm.1 Of blaoxa-72

L Keywords: NDM-1, OXA-72, 165 rRNA methylase, Providencia rettgeri, Molecular epidemiology

Background
Providencia rettgeri has been associated with hospital
acquired infections, including catheter-related urinary
tract infections, bacteremia, skin infections, diarrhea, and
gastroenteritis [1,2]. To date, there have been 5 reports of
P. rettgeri isolates harboring metallo-B-lactamase (MBL)
encoding genes, including IMP-type MBL producers in
Japan [3,4]; VIM-type MBL, PER-1 extended-spectrum (-
lactamase (ESBL) and 16S rRNA methylase ArmA in
Korea [5]; and NDM-type MBL in Israel [6] and Brazil [7].
NDM-type MBL was initially identified in Klebsiella
pneumoniae and Escherichia coli in 2009 in Sweden [8].

* Correspondence: tkirikae@ri.ncgm.go.jp

'Department of Infectious Diseases, Research Institute, National Center for
Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
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Since then, NDM-1-producing Enterobacteriaceae have
been isolated in various parts of the world [9,10].
Exogenously acquired 16S rRNA methylase genes re-
sponsible for very high levels of resistance to various
aminoglycosides are widely distributed among Entero-
bacteriaceae and glucose-nonfermentative microbes [11].
Gram-negative pathogens producing 16S rRNA methylase
ArmA have been isolated in various countries [11].
Although co-production of several resistance determi-
nants is not rare in Enterobacteriaceae [12-16], it is less
common in P. rettgeri [5]. We describe here P. rettgeri
clinical isolates from Nepal that produce carbapenemase
(NDM-1 or OXA-72) and 16S rRNA methylase (ArmA).

© 2014 Tada et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Table 1 Summary of the characteristics of the 5 P. rettegeri strains, including antimicrobial resistance profiles and resistant genes

Antibiotics resistant genes

Strains  Tissue Infection MIC (mg/L)

sources PP TZP CAZ FEP IPM DPM MEM ATM ABK AMK GEN CIP CST FOF TIG
JOMTU1 Pus ssl 1024 512 >1024 64 32 16 64 1024 >1024 >1024 >1024 128 >128 512 4
IOMTU4  Sputum  NLRTI 1024 128 >1024 256 16 16 32 1024 >1024 >1024 >1024 >256 >128 512 4
IOMTU9T  Sputum  NLRTI  >1,024 1024 >1024 1024 64 32 64 1024 >1024 >1024 >1024 256 128 128 4
IOMTU94  Pus ssl 1024 4 >1024 256 2 1 1 >1024 1024 1024 >1024 256 >128 1024 4
IOMTU99 Sputum  NLRTI  >1,024 512 >1024 128 64 32 64 1024 >1024 >1024 >1024 >256 >128 1024 4

blanpm-1, blaoxa-1o. blayes-1, blarema, bldaoc.sr,
armA, aadAl, aadA2

blaoxa- 2. blaoxa-1o, blaves. 1, blargm.1, blaapc.sz
' armA, aadAl

blanom1, blaoxa-1o, blaves.1, blarem-, blanpc.es,
armA, aadAl

blagxa- 1o, blaves-, blarem, blaaoc.e7.
armA, aadAl

blanpwm.1, blayes.1. blaoxa o blarem, blaapc.ez,
armA, aadAl

SS1, surgical site infection; NLRTI, nosocomial lower respiratory tract infection PIP, piperacillin; TZP, piperacillin/tazobactam; CAZ, ceftazidime; FEP, cefepime; IPM, imipenem; DPM, doripenem; MEM, merbpenem; ATM,

aztreonam; ABK, arbekacin; AMK, amikacin; GEN, gentamicin; CIP, ciprofloxacin; CST, colistin; FOF, fosfomycin; TIG, tigecycline.
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Methods

Bacterial strains

Five P. rettgeri clinical isolates were obtained from May
to July 2012 from 5 patients at Tribhuvan University
Teaching Hospital in Kathmandu, Nepal. Three isolates
were from sputum and 2 from pus at surgical sites.
Samples were obtained as part of standard patient care.
Phenotypical identification {17] was confirmed by API
32GN (BioMérieux, Mercy I'Etoile, France) and 16S rRNA
sequencing (1,497 bp) [18,19].

Antimicrobial susceptibilities

MICs were determined using the microdilution method,
according to the guidelines of the Clinical Laboratory
Standards Institute (CLSI) [20]. Breakpoints to antibiotics
were determined. The modified Hodge test, the merope-
nem-sodium mercaptoacetic acid double-disk synergy test
(Eiken Chemical, Tokyo, Japan) and E-test (imipenem/
EDTA) (AB Biodisk, Solna, Sweden) were performed.

Entire genome sequencing

The entire genomes of these isolates were extracted and
sequenced by MiSeq (Illumina, San Diego, CA). CLC
genomics workbench version 5.5 (CLC bio, Tokyo,
Japan) was used for de novo assembly of reads and to
search for 923 drug-resistance genes, including genes
encoding f-lactamases, 165 rRNA methylases and
aminoglycoside-acethyl/adenylyltransferases; point muta-
tions in the gyrA, parC and pmrCAB operons; and point
mutations in the fos genes, including fosA, fosA2, fosA3,
fosC and fosC2.

Pulsed-field gel electrophoresis (PFGE) and southern
hybridization

PFGE analysis was performed as described [3]. An
813 bp probe for blaypm.; was synthesized by PCR
amplification using the primers 5°-atggaattgcccaatattatg-
cac-3" (forward) and 5’'-tcagcgcagcttgteggecatgeggg-3'
(reverse), and a 780 bp probe for blagxa.7, was synthe-
sized using the primers 5'-agtttctctcagtgcatgttcatctat-3’
(forward) and 5°-agaaccagacattccttcttteattte-3° (reverse).
Southern hybridization to detect blanpm.; and blaoxa.7
was performed using these probes, which were detected
using DIG High Prime DNA labeling and detection
starter kit II (Roche Diagnostics, Mannheim, Germany).

Nucleotide sequence accession numbers

The nucleotide sequences surrounding blaypym.; and
blagxa.72 have been deposited in GenBank with the ac-
cession number AB828598 and AB857844, respectively.

Ethical approval
The study protocol was reviewed and approved by the
Institutional Review Board of the Institute of Medicine,
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Tribhuvan University (ref. 6-11-E) and the Biosafety Com-
mittee, National Center for Global Health and Medicine
(approval number: 23-M-49).

Results

Antimicrobial susceptibilities

Four of the 5 isolates were resistant to carbapenems
(doripenem, imipenem and meropenem) and pipera-
cillin/tazobactam, whereas the fifth was susceptible to
piperacillin/tazobactam, doripenem and meropenem and
showed intermediate resistance to imipenem (Table 1).
All 5 isolates were highly resistant to cephalosporins
(ceftazidime and cefepime), aztreonam, aminoglycosides
(arbekacin, amikacin and gentamicin), ciprofloxacin, co-
listin and fosfomycin, and all 5 showed intermediate
resistance to tigecycline. The four isolates resistant to
carbapenems were negative with the modified Hodge
test, but three of the four isolates were positive with the
meropenem-sodium mercaptoacetic acid double-disk
synergy test and E-test/EDTA.

Drug-resistant genes

All 5 isolates tested had several genes associated with
B-lactam and aminoglycoside-resistance (Table 1). These
isolates had blﬂ\/gg_l, blaOXA,w, blaTEM_l, blaADc_67
(ampC), armA and aadAl; 3 had blaypm.p; and 1 had
blagxa.7n. None of these isolates had any other pB-
lactamase encoding genes, including the class A genes
blasyvs and blactx.ums the class B genes blaapm, blappv,
blagin, blagiv, blanps, blanps, blaxnam blasiv, blasys,
blaspn, blarmps, and blayvg or the class D gene
blagxas except for blagxa.10 and blaoxa.7. None had
other genes encoding 16S rRNA methylases or amino-
glycoside acetyl/adenylyltransferases. All 5 isolates had
point mutations in the quinolone-resistance-determining
regions of gyrA and parC, with amino acid substitutions
of S83I and D87E in GyrA and S80I in ParC, but none
had any mutations in the pmrCAB operon and fos genes.
All sequences of the drug-resistant genes tested were
identical to those registered in GenBank.

-~

% Similarity
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P. rettgeri chromosomes.
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PFGE and southern hybridyzation

Of the 5 P. rettgeri isolates, 4 had identical PFGE patterns
and the fifth showed 95.7% similarity (Figure 1). Three of
these isolates had a plasmid harboring blanpm.1 and one
had a plasmid harboring blagxa.7p, with plasmid sizes
ranging from 9.42 to 23.1 kbp (data not shown).

Genomic structures surrounding blanpm.1 and blaoxa.72
The genetic environments surrounding blanpm., (Acces-
sion no. AB828598) was blanpm.1-blempy-trpF-dsbC-cutAl
All 3 isolates harboring blanpm.1 (IOMTUL, 91 and 99)
had the same genetic environments. The blapxa.72
gene was flanked by conserved inverted repeats at the
XerC/XerD binding sites [21], indicating mobilization
by site-specific recombination mechanisms. The repl
gene was located downstream of blagxa.7» (Accession
no. AB857844).

Discussion

The relatively high MICs to piperacillin/tazobactam and
carbapenems of the five P. rettgeri isolates were likely
due to the presence of blanpm.i or blaoxa.7r. The
enzymatic activities of metallo-B-lactamases, including
NDM-1, were not inhibited by tazobactam [22], a PB-
lactamase inhibitor, in agreement with the MIC profiles
of these isolates to piperacillin/tazobactam. The high
MICs of all 5 isolates to ceftazidime, cefepime and aztre-
onam were likely due to the presence of blayeg.; [23],
and the presence of armA in these isolates was likely
associated with their extremely high resistance to all
aminoglycosides tested [11]. Point mutations in the quin-
olone-resistance-determining regions of gyrA and parC
have been associated with high resistance to quinolones
[24]. Point mutations in pmrCAB operon have been asso-
ciated with the resistance of Acinetobacter spp. [25] and
Pseudomonas aeruginosa [26] to polymxyin and colistin;
and the presence of fos genes, including fosA, fosA2, fosA3,
fosC and fosC2, has been associated with resistance to
fosfomycin in Gram-negative bacteria [27-29].

Plasmids containing blanpm.: or blaoxa.y» may be
disseminated among Gram-negative pathogens in Nepal.
The genetic environments surrounding blanpm.; in our
P. rettgeri strains (blanpm.i-blempy-trpF-dsbC-cutAl)
were also observed in other plasmids, including A. bau-
mannii plasmid pAbDNDM-1 from China (Accession no.
JN377410), Citrobacter freundii plasmid pYE315203
from China (Accession no. JX254913), E. coli plasmid
pNDM102337 from Canada (Accession no. JF714412),
K. pneumoniae plasmid pKP-NCGM18-1 from Nepal
(Accession no. AB824738) [30], K. pneumoniae plaémids
pKPX-1, pKPN5047 and pNDM-HN380 from China
(Accession nos. AP012055, KC311431 and }X104760,
respectively), and P. rettgeri plasmid pFR90 (Accession no.
JQ362415) from China. In addition, the genetic structures
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of OXA-72 producing Acinetobacter spp [31-34] and K
prneumoniae (Accession no. JX268653 and AB825955

- deposited in 2012 and 2013, respectively) had the

same genetic structure (blapxa.7o-repl) as our strain
of P. rettgeri.

Conclusions

To our knowledge, this is the first report describing P.
rettgeri strains harboring blanpm.; or blagxa.7» and
armA isolated from patients in Nepal. These 5 strains
were highly resistant to both B-lactams and aminoglyco-
sides and expanded in a clonal manner in the hospital.
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IMP-2, a subclass Bl metallo-g-lactamase (MBL), is a Zn(II)-containing hydrolase. This hydrolase,
involved in antibiotic resistance, catalyzes the hydrolysis of the C-N bond of the f-lactam ring in f-lactam
antibiotics such as benzylpenicillin and imipenem. The crystal structure of IMP-2 MBL from Acinetobacter
spp. was determined at 2.3 A resolution. This structure is analogous to that of subclass B1 MBLs such as
IMP-1 and VIM-2. Comparison of the structures of IMP-1 and IMP-2, which have an 85% amino acid iden-
tity, suggests that the amino acid substitution at position 68 on a g-strand (£3) (Pro in IMP-1 versus Ser
in IMP-2) may be a staple factor affecting the flexibility of loop 1 (comprising residues at positions 60—66;
EVNGWGY). In the IMP-1 structure, loop 1 adopts'an open, disordered conformation. On the other hand,
loop 1 of IMP-2 forms a closed conformation in which the side chain of Trp64, involved in substrate binding,
is oriented so as to cover the active site, even though there is an acetate jon in the active site of both IMP-1
and IMP-2. Loop 1 of IMP-2 has a more flexible structure in comparison to IMP-1 due to having a Ser resi-
due instead of the Pro residue at position 68, indicating that this difference in sequence may be a trigger to

induce a more flexible conformation in loop 1.
Key words

B-Lactamases catalyze the hydrolysis of f-lactams, open-
ing the S-lactam ring and rendering the antibiotics inactive.
p-Lactamases are classified into four classes, A-D": Classes
A, C, and D are serine enzymes that use a serine residuc as
a nucleophile, whereas class B consists of metallo enzymes
whose active sites contain one or two Zn(II) ion(s) and are re-
ferred to as metallo-g-lactamases (MBLs), MBLs are divided
into three subclasses (Bl, B2, B3) based on the sequence of
the Zn(II) ligands.® MBLs hydrolyze most f-lactams used
currently, such as cephems and carbapenems, but not mono-
bactam such as aztreonam. MBLs are hardly blocked by the
inhibitors for serine f-lactamases, including clavulanate, sul-
bactam and, tazobactam.

In 1994, IMP-1 MBL, belonging to subclass Bl, was first
identified from Serratia marcescens and Pseudomonas ae-
ruginosa in Japan*® Its gene, blap, encodes the IMP-1
enzyme and is integrated as a gene cassette into integrons car-
ried by transferable plasmids.” Therefore, the blay, gene can
spread among different nosocomial pathogens horizontally. To
date, at least 48 variants of IMP-type MBLs have been depos-
ited (http:/www.lahey.org/Studies) by the end of July 2014.

In 1997, an IMP-2 MBL was identified from an Acineto-
bacter baumannii clinical isolate AC-54/97 in Italy,” followed
by the isolation of IMP-2-producing 4. baumannii, 4. lowfii,
and P. aeruginosa in Japan® The IMP-2 gene (blapg.,) is

#These authors contributed equally to this work.

*To whom correspondence should be addressed.

antibiotic resistance; f-lactam antibiotic; metallo-g-lactamase; X-ray crystallography

also carried as an integron-bone gene cassette, similar to the
IMP-1 gene (blags).5" IMP-2 possesses approximately an
85% amino acid identity with IMP-1, and differs in 36 amino
acids from IMP-1: 10 amino acid residues are clustered within
the signal peptide region and the remaining 26 amino acid
residues are found in the mature protein” (Fig. 2C). The struc-
ture of IMP-1 suggests that 4 of 26 amino acid residues pre-
dicted to be involved in substrate recognition in IMP-2 (Ser68,
Gin198, Asp227, and Ser26l; the amino acid residues of
IMP-1 and IMP-2 are designated by théir BBL number?) are
located in the neighborhood at its active site within a distance
of ca. 9A (Fig. 1). The remaining 22 amino acid residues are
located at the protein surface or are far from the active site.

The kinetic parameters of the hydrolysis of several
B-lactams by IMP-2 are overall similar to those by IMP-1, but
the catalytic efficiency values of the two enzymes (k,,/K ) for
ampicillin are different™ the /K, values are 4.8um~'s™
for IMP-1 and 0.21pM7's™ for IMP-2 The k, /K, -value
of IMP-1 to IMP-2 increases 23-fold, so IMP-1 hydrolyses
ampicillin more efficiently than IMP-2. These differences in
kinetic parameters might be related to the subtle structural
changes arising from the different amino acid sequences of
the enzymes, even though the 6 amino acid residues (His116,
Hisl18, Aspl20, His196, Cys221, and His263) which construct
the active site of the enzyme are conserved between IMP-1
and IMP-2,

Therefore, determination of the fine three-dimensional
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structure of IMP-2 would be very useful for clucidating the
mechanism underlying the difference in the substrate specific-
ity between IMP-1 and IMP-2 in order to develop inhibitors
specific for MBLs. Here, we describe the crystal structure of
IMP-2 MBL from Acinetobacter spp.

MATERIALS AND METHODS

Plasmid and Reagents The pBC SK(+) plasmid vector
was purchased from Agilent Technologies, Inc. (Santa Clara,
CA, U.S.A.). Ampicillin and zinc(II) nitrate hexahydrate were
purchased from Wako Pure Chemical Industries, Ltd. (Osaka,
Japan). 2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic
acid (HEPES) was purchased from Dojindo Laboratories (Ku-
mamoto, Japan). Tris(hydroxymethyl)aminomethane (Tris) was
purchased from Nacalai Tesque (Kyoto, Japan). Polyethylene
glycol 4000 (PEG 4000) was purchased from Hampton Re-
search (Aliso Viejo, CA, U.S.A.). All other reagents were of
the highest grade commercially available.

Expression and Purification The IMP-2 enzyme was
expressed in Escherichia coli HB101 harboring pBC SK(+)
vector carrying the blayg, gene; pBC SK(+)/blayp,. The
cells were cultured in 2L of LB broth containing ampicillin
(50 pg/mL) for 14h at 37°C, then centrifuged at 6000Xg for
15min at 4°C. The pellet was resuspended in 30mL of 50mm
sodium phosphate buffer (pH 7.0) containing 10 M Zn(NOy),.
The cells were disrupted by sonication, then centrifuged at
105000Xg for 75min at 4°C. The supernatant was purified
by column chromatography. Cation exchange chromatogra-
phy was performed using a SP Sepharose Fast Flow column
(#26 mmX100cm, GE Healthcare UX Ltd., Little Chalfont,
U.K) pre-equilibrated with 50mM sodium phosphate buffer
(pH 7.0) containing 10um Zn(NO,),. Bound proteins were
eluted with a linear gradient of 0 to 0.3M NaCl in 50mMm
sodium phosphate buffer (pH 7.0) containing 10 um Zo(NO,),.
Fractions exhibiting p-lactamase activity were collected,
pooled, and concentrated by ultrafiltration with an Amicon
YM-10 (Merck KGaA, Darmstadt, Germany). Then, the
sample buffer was exchanged with 50 mum Tris—HCl buffer (pH
7.4) containing 0.3M NaCl, followed by concentration by ul-
trafiltration with a Centricon YM-10 (Merck KGaA) to 2mL.
The concentrated samples were applied to a gel filtration
column (Sephacryl HR-100, 16 mmX80cm, GE Healthcare),
pre-equilibrated with 50mwm Tris—HCI buffer (pH 7.4) con-
taining 0.3 M NaCl. Fractions exhibiting f-lactamase activity
were collected, pooled, concentrated by ultrafiltration using
an Amicon YM-10 (Merck KGaA), and then stored at —80°C.
The purity of the preparation was examined by sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE);
the final preparation showed a single band using Comassie
Brilliant Blue (CBB) dye, indicating more than 95% purity.
For crystallization of the purified IMP-2 enzyme, the protein
buffer was exchanged with 20mM HEPES-NaOH (pH 7.5)
using an Amicon Ultra (Merck KGaA).

Crystallization Initial screening of IMP-2 crystallization
conditions was performed using the hanging drop method at
293K by referring to the IMP-1 crystallization conditions.”
Drops prepared by mixing 3 gL of protein solution (Smg/mL)
with 3 gL of reservoir solution, and were equilibrated against
350 4L of reservoir solution in the well. Crystals of IMP-2
were appeared after one month using a reservoir solution con-
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sisting of 30% (w/v) PEG 4000, 0.1 M citric acid/sodium citrate
buffer containing 0.2 M sodium acetate (pH 6.0).
Data Collection and Refinernent X-Ray diffraction data

Fig. 1. Molecular Surface Representation of IMP-1

Zn(II) ions arc shown as green spheres, and loop 1 aud loop 2 are shown as
yellow ribbos models, The acetate jon and the mutated amido acid residues as
compared to the IMP-2 sequence are shown as sticks. The amino acid residues of
IMP-1 are designated by their BBL number.

Table 1. Crystallographic Data Collection and Refinement Statistics for

MPp-2

Data collection
Resolution (A)

44.2-2.30 (2.38-2.30)?

Wavelength (A) 1.5418

Cell dimensions
a, b, and ¢ (A) 37.9, 68.5, 883
a, f,and y (%) 90.0, 90.0, 90.0
Space group P2,2,2
Redundancy 6.81 (6.62)
Cormpleteness (%) 99.8 (100.0)
R 0.095 (0.255)
No. of observed reflections 73284 (7065)
No. of unique refiections 10767 (1068)

40 6.6 (2.3).

Refinement statistics
o Cutoff None
Resolution (A) 44.2-2.30 (2.63-2.30)
No. of reflections used 9994 (7s1)

B factors (A%) i
Average 319 7
Protein 31.8
Ligand .26.6
Water 34.1

No. of non-H atoms®
Protein 17117
Ligand 5
Water 113

R.m.s.d deviation from ideal”

Bond lengths (A) - 0.00%

Angles (deg.) «1.17
&m,d,,“) 0.232 (0.276)
Re. 0.299 (0.265)

a) Values in parentheses are for the highest resolution shell. 8) Ry, =2, % (kD) -
CURKDY) |53, {hkT), where I{hk]) is the observed intensity for reflection hk! and
(hkD)> is the average intensity calculated for reflection j from replicate data. c)
Per asymmetric unit. d) R.m.s.d: root-mean-square-deviation. €) Rypuey=ZuullFol=
FJVZ,ulFl, where F, and F, are the observed and calculated structure factors, re-
spectively. ) Ree = ZulIFol—1F 24 iF ) for 5% of the data not vsed at any stage of
structural refinement.
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"

Fig. 2. A) Overall Structure of IMP-2 from Acinetobacter spp.
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a-Helices, f-strands, loops, and Zn(II} ions are shown in red, green, yellow, and orange, respectively. B) Superposition of IMP-1 (orange) and IMP-2 (beige) structures.
Considerable differences are observed in the loop 1 rootifs in both IMP-1 and IMP-2 structures. C) Sequence alignment and secondary structures of IMP-2 from Acinefo-
bacter spp. with that of IMP-1 from Serratia marcescens using the PDB file, IDDK (IMP-1), and the structure from this study (IMP-2). References for cach séquence are
as follows: IMP-1 (EMBL/GenBank/DDBJ accession number: IMP-1 (S71932)) and IMP-2 (AB182996). The figure was produced using the ESPript 3.0 program (http://
espript.ibep.fr).’® The BBL number is indicated above the sequences.” The dashed lines indicate the signal peptide sequences. Invariant residues are shown in red columns
and conserved residues are shown in boxes. The arrows indicate f-sheets, the coils indicate a-helices, TT indicates # turns, and » indicates 3,4 helices. The laop 1 and loog

2 regions in IMP-1 and IMP-2 are underlined in blue,

Fig. 3. Comparison of the IMP-2 Structure and the IMP-1 Structure

a-Helices, f-strands, and loops are shown in red, green, and yellow, respectively. Za(l]) ions are shown as orange spheres. Trp64, His116, Hisl18, Asp120, His1o¢
Cys221, and His263 residues and an acetate ion are represented as sticks (carbon, gray; nitrogen, blue; oxygen, red; and sulfur, light green). A) Structure of the active sit
in YMP-2, The electron density map (cyan mesh) is shown contoured at the 1.0 level in the 2|F |—|F,| map. B) Structure of the active site in IMP-1.

were collected in house X-ray diffraction system. CuKa X-ray
radiation from a rotating-anode X-ray generator (Rigaku
Micro Max007, Rigaku Corporation, Tokyo, Japan) and an
imaging-plate detector (Rigaku R-AXIS VII) were used. Crys-
tals could be flash-cooled at 100K in a stream of cold nitrogen
without cryoprotectant to avoid crystal cracking. Diffraction
data from IMP-2 crystals were collected to 2.30 A resolution.
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The diffraction data sets were processed using program Crys
talClear (Rigaku Corporation). The crystallographic statistic
of the collected data are summarized in Table 1.

The structure of IMP-2 was solved by molecular replace
ment using the program Morlep'® of the CCP4 suite ves
6.3'") using the structure of IMP-1 from P. aeruginosa (PD}
code: 1DDE6) as a search model. The initial model was refine:



Vol. 38, No. 1 (2015)

with REFMAC 5.5 in the CCP4 suite'” using resolution
limits of 44.2-2.30A. Water molecules were added using
Coot 0.7" selected from peaks in the 2|F,|—|F,| difference

density map (0=1.8). The final model had an R, factor of

23.2% and an Ry, factor of 29.9%. The quality of the final
model was checked with RAMPAGE (http:/mordred.bioc.
cam.ac.uk/~rapper/rampage.php).® The Ramachandran plot
showed 95.8% (207 residues) of the residues in the favoured
region and 3.7% (8 residues) of the residues in the allowed re-
gion, while 0.5% (1 residue; Asp84) was in the outlier region.

All structural figures were prepared using the program
PyMOL v0.99rc6."

PDB Accession Code Coordinates and structural factors
have been deposited in the PDB under the accession code:
4UBQ

RESULTS AND DISCUSSION

Overall Structure of IMP-2 The final refined model
of IMP-2 per asymmetric unit included one IMP-2 molecule
consisting of residues Leu39-Lys298, two Zn(Il) ions, 113
water molecules, and one acetate ion. The overall structure of
IMP-2 adopts an afB/fa sandwich structure, with an interface
comprising two central antiparallel f-strands surrounded by
two a-helices (Fig. 2A), similar to the structural fold in other
subclass B! MBLs such as IMP-1,” CcrA,'® IND-7,7 and
VIM-2."® The N-terminal domain consists of four a-helices
(al—a4) and six antiparallel f-strands (#1-56), whereas the C-
terminal domain is formed by two a-helices (&5 and a6) and
five antiparallel f-strands (87-£11). The active site of IMP-2
contains two Zn(Il) jons (Znl, Zn2) separated by 3.2A and
is located at the bottom of a wide, shallow cleft enclosed by
two extended loops (loop 1, loop 2, Fig. 2A). Loop 1, a f-turn
connected by two antiparallel f-strands (52, 83), comprises
residues 60-66 (EVNGWGV) (Fig. 2C). Loop 1 is likely in-
volved in the binding of substrates or inhibitors.”**® Loop 2,
which connects a strand (810) and a helix («5), is composed of
residues 224-240 (Fig. 2) and is located on approximately the
opposite side of loop 1 centered around the Zn(II) ion-binding
site. Lys224 and Asn233 on loop 2 participated in substrate
and inhibitor binding >

Asp84 in IMP-2 is the outlier in the Ramachandran plot
and has a sterically strained main chain conformation, with
¢ and y angles of 59° and 150°, respectively. The carboxyl-
ate oxygen, ODl, is hydrogen bonded to Serl150G (3.04)
and Serl15N (2.8A), whereas OD2 is hydrogen bonded to
Lys69NZ (2.7A), SerllSOG (3.14), and Serl210G (274).
In IMP-1, Asp84 also has a sterically strained main chain
conformation in both the native and in the inhibitor complex,
2-[5-(1-tetrazoylmethyl)thien-3-yl}-N-[2-(mercaptomethyl)-4-
(phenylbutyrylglycine)] with mean ¢ and w angles of 81° and
148°, respectively.” The carboxylate oxygen atoms of Asp84
in IMP-1 form hydrogen bonds to Lys69NZ (2.8 A), Serl15N
(2.8A), Serl150G (2.84), and Ser1210G (2.7A)% Asp84 has a
common strained conformation not only in IMP-1 and IMP-2,
but also in other subclass Bl MBLs.*'$?) Therefore, Asp84
likely plays an important role in the folding of MBLs.

Structural Comparison with IMP-1 The overall struc-
ture of IMP-2 superposed on IMP-1 (PDB code: 1DDK the
structure discussed here) with a root-mean-square deviation
(rmsd) of 0.55A (for the Ca atoms of Leu39-Gly293, Fig. 2B).
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Significant differences were located in loop 1 of the IMP-1
and IMP-2 structures. Different conformations for the loop 1
were observed between the two enzymes, even though there
was an acetate ion in the active site of both enzymes (see dis-
cussion below).

In the IMP-1 -structure, Gly63-Trp64-Gly65 (the GWG
portion) located near the apex of loop 1, are disordered, and
Trp64 is positioned away from the active site groove, towards
the solvent.” NMR studies on CcrA by Scrofani et'al. suggest
that Trp64 of IMP-1 plays a role in recruiting and stabilizing
the substrate ligand.” The conformational flexibility of the
GWG portion likely creates an open cavity in the active site,
allowing the accommodation of a variety of bulky substrates.
In contrast, judging from the 2|F,|—{F,| electron density map,
the backbone of the GWG portion in IMP-2 is in a single con-
formation with a well-defined electron density (Fig. 3A). Two
antiparallel f-strands (82, f3) in IMP-2 extend perpendicu-
larly to the active site cleft, where the indole ring of Trp64 is
situated, thus covering the active site from the upper part (Fig.
3A). Residues 60—66 in loop 1 of IMP-2 are transformed from
an open conformation, as seen in the IMP-1 structure (Fig.
3B), to a closed conformation (Fig. 3A), resulting in a tunnel-
shaped cavity in the active site.

Interestingly, this closed conformation of loop 1 in IMP-2
is similar to those found in the crystal structures of IMP-1
complexed with inhibitors.>?**) However, the active site
cleft showed no major difference between IMP-1 and IMP-2
(Fig. 2B). One structural factor that may be triggering the
conformational change of loop 1 may be the nature of the,
residue at position 68, located between Val67 and Lys69 on a
P-strand (83) that creates part of the hydrophobic pocket for
the substrate of loop 1. Position 68 in IMP-1 is Pro, which is
conformationally rigid, whereas that of IMP-2 is a Ser residue,
Substitution of the residue at position 68 led to changes in the
dihedral angle of the adjacent Val67 (for the Ca atom of Val67:
¢ —147°, 9122° and @ 180° for IMP-1 and ¢ —95° $149°, and
@ 174° for IMP-2) and to changes in hydrogen bond formation
of loop 1 between IMP-1 and IMP-2. Rotational transfer of
V1a67 (¢: —147° IMP-1 to —95° IMP-2) may influence inter-
action with substrates. Palzkill ef al. analyze the residues in
or near the active site of IMP-1 by codon randomization and
selection experiments**?**" and suggest that Val67 is essential
for ampicillin hydrolysis.?6*" X

Loop 1 of IMP-2 seems more flexible due to the lack of ste-
ric hindrance with the cyclic side chain of Pro, compared with
IMP-1. Borra et al. pointed out that loop 1 of VIM-7 MBL
with Ser at position 68 is more flexible than that of VIM-2,
with Pro at position 68.” The crystal structures of IMP-1
with and without a mercaptocarboxylate inhibitor indicate that
IMP-1 takes an open conformation without an inhibitor and
converts to a closed conformation upon binding of the inhibi-
tor to the active site.” Such an observation is found in X-ray
crystal structures of unliganded MBL from Bacteroides fra-
gilis (CerA) and its 4-morphofinoethanesulfonic acid (MES)
complex.?”

From the results of the IMP-2 structure although there is
only one case, it is thought that IMP-2 can take a closed con-
formation, even when a substrate or an inhibitor is not present
in the active site, because of the conformational flexibility.

Comparison of the Active Site Structure between IMP-1
and TMP-2 Znl in IMP-2 showed a very clear electron
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density and was coordinated by three His residues (Hisll6,
His118, and His196) and one acetate ion. The average bond
distance between Znl-His and the average angle for His-
Zni-His were 2.3A and 105°, respectively, which are almost
identical to those found in IMP-1 (2.34A, 94°). An acetate ion
in the active site of IMP-2 exhibited two alternate conforma-
tions with half-occupancy (ACTA, ACTB), with one of the
two oxygen atoms in ACTA located 2.7A from Znl (IMP-;
2.94). No apparent electron density for a bridging water mol-
ecule/hydroxide ion in between Znl and Zn2 was observed,
in contrast with the majority of other MBL structures, The
coordination environment around Znl can be described as a
distorted tetrahedral geometry, as can be seen in the Znl site
of IMP-1.

The coordination geometry of Zn2 in IMP-2 is different
from that of IMP-1. Unlike Znl, the 2|F,|—|F,| electron den-
sity map at Zn2 showed the existence of partially dissociated
Zn(II) ion from the active site. The occupancies for Znl and
Zn2 were set to 1.0 and 0.3, respectively, for subsequent re-
finement. As a result, the final B-factors approached 33.6A%
for Zn1 and 38.3 A% for Zn2 (B-factor average: 35.8 A?). This
result indicates that the Zn(II) binding affinity of the Zn2 site
is lower than that of the Znl site. Moreover, the side chain
of Cys221 adopted alternate conformations, where the oc-
cupancy of Cys221A was refined by 0.3, and that of Cys221B
was refined by 0.7. The former conformer was the Zn2-hound
form, whereas the latter was the Zn2-unbound form. The
Zn2-Cys221A and Zn2-His263 bond distances were 2.3A
and 3.0 A, respectively. Thus, the Zn2-Cys221A bond distance
was similar to that of IMP-1 but the Zn2-His263 bond dis-
tance in IMP-2 was much longer by 0.6 A than that of IMP-1.
The side chain of Aspl20 in IMP-2, the Zn2 ligand, displayed
a well-defined single conformation and the Zn2-Aspl120 bond
distance in IMP-2 is 2.6A, very similar to that of IMP-1
(2.6A). One of the two oxygen atoms in ACTB is located
3.1A from Zn2, which is the same position as the apical water
of plane in IMP-1. The IMP-2 ligand-Zn2-ligand bond angle
of 74—104° is close to the optimal tetrahedral angles, although
those of IMP-1 are 64-88° Thus, the coordination environ-
ment around Zn2 can be described as a distorted tetrahedral
geometry. In the IMP-1 structure, Zn2 is coordinated with
Aspl20, His196, Cys221, and one water molecule, and 2 bridg-
ing water/hydroxide ion (but not seen due to a low resolution),
forming a trigonal bipyramidal geometry.® In addition, an
acetate ion in IMP-1 is positioned 2.8 A from Zn2. Thus, there
is a considerable difference in the coordination geometry of
the Zn2 sites between IMP-1 and IMP-2.

Another interesting difference in and near the active site
is the portion of residues 261-263: IMP-2 harbors two con-
tiguous (Ser261-Ser262) residues adjacent to the Zn2 ligand
His263, whereas IMP-1 harbors Pro261-Ser262 adjacent to
His263. In the crystal structure of IMP-2, the hydroxyl oxygen
atom of Ser261 is hydrogen bonded to the main chain car-
bonyl of Ser264 (3.04), indicating that the conformational
freedom of this portion of the protein by the participation of
this hydorgen bond is decreased relative to IMP-1. In addition,
His263N61 in IMP-1 and IMP-2 is hydrogen bonded to the
main chain carbonyl of the residue at position 68. From these
findings, we propose that the conformational flexibility of resi-
dues 261-263 may well also influence the position, mobility,
or affinity of Zn2,
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CONCLUSION

In conclusion, we have determined the crystal structure of
a subclass Bl MBL, IMP-2. Comparison of the structures of
IMP-1 and IMP-2 revealed that the substitution of the amino
acid residue at position 68 (Pro in IMP-1, Ser in IMP-2)
causes conformational flexibility of loop 1 (comprising resi-
dues at positions 60-66) in IMP-2 that may be responsible for
substrate binding. Qur data will help elucidate the correlation
between substrate specificity and structural polymorphism
among MBLs belonging to the IMP family. Crystallographic
studies of IMP-2 complexed with the hydrolyzed product of
ampicillin are in progress in order to guantitatively analyze
the structure—activity relationship of IMP-2.
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