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Production of inflammatory cytokines in
response to diphtheria-pertussis-tetanus (DPT),
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Haemophilus influenzae type b (Hib) and 7-valent pneumococcal (PCV7) vaccines both became recommended in
Japan in 2010. In this study, cytokine production was investigated in peripheral blood mononuclear cells (PBMCs) cul-
tures stimulated with diphtheria and tetanus toxoids combined with acellular pertussis vaccine (DPT), Hib, and PCV7
separately or concurrent different combinations, all as final off-the-shelf vaccines without the individual vaccine compo-
nents as controls. Higher IL-1B levels were produced when cuitures were stimulated with PCV than with DPT or Hib, and
the concurrent stimulation including PCV7 enhanced the production of IL-18. Although Hib induced higher levels of IL-6,
no significant difference was observed in IL-6 production with the concurrent stimulation. The concurrent stimulation
with Hib/PCV7 and DPT/Hib/PCV7 produced higher levels of TNF-a and human G-CSF. Cytokine profiles were examined
in serum samples obtained from 61 vaccine recipients with febrile reactions and 18 recipients without febrile iliness
within 24 h of vaccination. No significant difference was observed in cytokine levels of IL-1B, I1L-4, IL-6, IL-10, IL-12, IFN-y,
MIP-1, TNF-«, and prostaglandin E2 (PGE2) in sera between the two groups. However, significantly higher levels of human
G-CSF were observed in recipients with febrile iliness than in those without febrile reactions. Further investigations of the
significance of elevated serum G-CSF levels are required in vaccine recipients with febrile illness.

Introduction o ) )
However, many pediatric vaccines have been approved with

the implementation of recommended immunization schedules

A long-term vaccine gap occurred in Japan from 1993 when  in developed countries, which shows that vaccine preventable
measles mumps and rubella combined vaccine (MMR) was diseases need to be controlled.>¢ Haemophilus influenzae type
discontinued because of the unexpectedly high incidence of b conjugated with tetanus toxoid (Hib) became licensed in
aseptic meningitis caused by mumps vaccine components.”” December 2008, and 7-valent pneumococcal conjugated with
Thereafter, new vaccines were not introduced until 2008. recombinant diphtheria toxoid (PCV7) vaccines in February
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Figure 1. IL-1 B, IL-6, TNF-a, and G-CSF production in PBMCs cultures stimulated with DPT, Hib, PCV7, DPT/Hib, DPT/PCV7, Hib/PCV7, and DPT/Hib/PCV7.
PBMCs were obtained from 29 individuals and culture fluids were harvested 24 h after stimulation. Cytokine concentrations were measured using
BioPlex 17 cytokine panel. Each bar represents the mean concentration () with 95% Cl.

2010, respectively. The simultaneous administration of several
vaccines was recommended by the Japanese Pediatric Association,
similar to the US and EU.>* PCV7 had relatively more adverse
reactions of fever > 38 °C, swelling, tenderness at injection site,
and irritability than those receiving meningococcal vaccine having
the same conjugate protein.” Combination vaccine containing
diphtheria and tetanus toxoids combined with acellular pertussis
vaccine (DPT), hepatitis B, and inactivated poliovirus vaccine
was generally co-administered with Hib (DPT-HBV-IPV-Hib)
in the EU. The incidence of fever = 38.0 °C in the concomitant
administration group (DPT-HBV-IPV-Hib with PCV7) was
significantly higher than that reported in the separate vaccination
group, but there was no significant difference in the incidence of
high fever = 39.0 °C.%°

All effective vaccines induce acquired immunity with the
development of antigen-specific antibodies and/or cell-mediated
immunity, and the stimulation of innate immunity is now
considered essential. Innate immunity consists of two different
patterns: pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs), and controls
the T and B cells to regulate acquired immune responses.”® The
stimulation of innate immunity has been found to modulate
the development of an acquired immune response through the
production of cytokines.'* PAMPs consist of Toll-like receptors
(TLRs)and retinoicacid inducible gene-based (RIG)-likereceptors,
which recognize the pattern of microbes."'® Aluminum adjuvant

2 Human Vaccines & Immunotherapeutics

induces inflammation at the injection site, and endogenous
products released from damaged cells (damage or danger associated
signals) stimulate DAMP, activating inflammasomes."”’® These
have been shown to induce the production of inflammatory
cytokine IL-1B from proinflammatory molecules.” DPT and
PCV7 contain aluminum adjuvant and stimulate NLRP3
inflammasomes through tissue damage.” Vaccine antigens
initiate innate immune response by the recognition by PAMPs
at the injection site, activating dendritic cells (DCs). Antigen is
processed and peptide is presented on MHC molecules (signal 1),
and antigen presenting cells are migrated to the draining lymph
nodes. Type I Interferon (IFN) and inflammatory cytokines
enhance the expression of co-stimulatory molecules to help the
recognition by T-cell (signal 2). IFN-y, IL-4, and IL-12 modulate
the differentiation toward Thl and Th2 responses.® The
mechanisms of immunogenicity induced by aluminum adjuvant
regarding whether the stimulation of NLRP3 inflammasomes
is necessary or not have not yet been fully understood.'®?® The
activation of innate immunity by vaccines is indispensable for
immunogenicity, and the enhanced production of inflammatory
cytokines may be related to the occurrence of adverse events.?!
Vaccine-specific innate inflammatory responses are clearly
important, and have not been sufficiently investigated regarding
cytokine production using different vaccines.

In our previous report, aluminum-adjuvanted H5 whole
virion inactivated vaccine (WIV) was licensed for adults in
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Japan but induced marked febrile reactions | pg/mi
with significantly stronger antibody responses | ggq -
in children. Aluminum adjuvant alone did ‘
not induce inflammatory cytokines, and | %
H5 WIV induced IL-6, IL-17, TNF-a, 700
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blood mononuclear cells (PBMCs) cultures.

Aluminum-adjuvanted H5 WIV enhanced

IL-1B production, with similar levels of other

cytokines stimulated with H5 WIV.*' In this

report, cytokine profiling was investigated
using PBMC:s to evaluate cytokine production
in response to the stimulation of DPT, Hib,
and PCV7, separately and concurrent different
combinations. Since the separate components
of these final vaccines were not available, only
the final formulated vaccines could be used
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as in-vitro stimulants. Serum cytokine levels

were investigated in 61 vaccine recipients with
febrile reactions and 18 recipients without
febrile illness within 24 h of vaccination.

Figure 2. IL-1B production in the PBMCs of 29 individuals. PBMCs were stimulated with DPT,
Hib, PCV7, DPT/Hib, DPT/PCV7, Hib/PCV7, and DPT/Hib/PCV7. Columns from left to right in each
individual show the production of IL-12 measured by EIA.

Results

Cytokine production in PBMCs stimulated with the single
or different combinations of vaccines

Preliminary studies of cytokine production showed that
cytokines began to be produced 6 h after the stimulation and
increased until 24 h, showing the same level afterward, similar
to the previous report of aluminum-adjuvanted H5N1 pandemic
vacine.”> Cell viability of non-stimulation was approximately
85-90%, 70-75% for non-adjuvanted vaccines, 50-60% for
aluminum-adjuvanted vaccines 24 h after stimulation. PBMCs
were stimulated with marketed vaccines, and culture supernatant
was collected 24 h after the stimulation. Seventeen cytokine
profiles were examined in PBMCs cultures obtained from 29
subjects by stimulation of single or different combinations of
DPT, Hib, PCV7, DPT/Hib, DPT/PCV7, Hib/PCV7, and
DPT/Hib/PCV7. IL-8, MCP-1, and MIP-1B were produced in
the control culture and showed no change with the stimulation.
No significant difference was observed in the levels of IL-2, IL-4,
IL-5, IL-7, IL-10, IL-12, IL-13, IL-17, GM-CSF, or IFN-y in
response to the single or concurrent stimulation with different
combinations of vaccines. Higher levels of IL-1B, IL-6, G-CSF,
and TNF-a were produced with the concurrent stimulations
than with the single stimulation, and the mean values are
shown with 95% confidence intervals (CI) in Figure 1. DPT
and Hib induced similar levels of IL-1B, 72.9 pg/ml (95% CI:
37.2-108.5 pg/ml) and 106.9 pg/ml (95% CI: 44.0-169.9 pg/
ml), respectively, and 0.34 pg/ml (95% CI: 0.11-0.58 pg/ml) was
detected in the control culture. PCV7 induced higher levels of
IL-1B, 178.5 pg/ml (95% CI: 42.1-314.9 pg/ml). DPT/Hib and
DPT/PCV7 generated similar levels of IL-18, 212.2 pg/ml (95%
CI: 124.5-299.9 pg/ml) and 289.3 pg/ml (95% CI: 158.4-429.2
pg/ml), respectively. Hib/PCV7 and DPT/Hib/PCV7 produced
significantly higher levels, 433.7 pg/ml (95% CI: 226.1-641.3
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pg/ml) and 5109 (95% CI: 270.0-751.9 pg/ml), respectively.
The concurrent stimulation with PCV7 induced slightly higher
levels of IL-1P.

A mean of 4.56 pg/ml (95% CI: 1.3-7.8 pg/ml) of IL-6 was
produced in the control cultures. The stimulation with Hib
induced higher levels of IL-6 (4136.7 pg/ml, 95% CI: 1883.5—
6389.9 pg/ml), while there was no significant difference in the
production of IL-6 in response to the stimulation with DPT
and PCV7, which showed a mean level of 2438 and 1872 pg/
ml, respectively. The concurrent stimulation induced similar
levels of 1L-6, 3248-4033 pg/ml. No significant difference
was observed in IL-6 production with the single or concurrent
stimulation.

A mean of 3.53 pg/ml (95% CI: 1.85-5.21pg/ml) of TNF-a
was produced in control cultures. Hib induced higher levels of
TNF-a in PBMCs, 880.0 pg/ml (95% CI: 406.7-1353.4 pg/
ml), than DPT (mean: 183.2 pg/ml, 95% CI: 77.0-289.3 pg/
ml) or PCV7 (mean: 304.5 pg/ml, 95% CI: 51.8-557.3 pg/ml).
Hib/PCV7 and DPT/Hib/PCV7 produced significantly higher
levels, 1833.4 pg/ml (95% CI: 788.9-2877.9 pg/ml) and 1484.3
pg/ml (95% CI: 583.3-2385.4 pg/ml), respectively.

The results of the production of G-CSF are shown. Hib
induced higher levels of G-CSF than DPT or PCV7. The
concurrent stimulation with DPT/Hib, DPT/PCV7, Hib/PC V7
and DPT/Hib/PCV7 induced similar levels of G-CSF, 78.55—
145.51 pg/ml.

Higher levels of IL-1B were produced in PBMC cultures
stimulated with PCV7 than with DPT or Hib, and Hib induced
higher levels of IL-6 and TNF-a. IL-18 levels increased in
PBMC:s stimulated concurrently with Hib/PCV7 and DPT/Hib/
PCV7, and similar patterns of TNF-a and G-CSF production
were observed in PBMC cultures. No significant difference in
IL-6 production was observed when cultures were stimulated
separately or concurrently.

Human Vaccines & Immunotherapeutics 3
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Table 1. Number of patients with or without febrile reactions after
vaccination with a different combination of vaccines

Fever + Fever -
DPT/Hib/PCV7 22 DPT/Hib/PCV7 4
DPT/Hib/PCV7/IPV 4 DPT/Hib/PCV7/Rota 1
DPT/Hib/PCV7/Rota 3
DPT/Hib/PCV7/BCG 1
PCV7/Hib 7 PCV7/Hib 6
PCV7/Hib/Rota 4 DPT/Hib 1
PCV7/DPT 1
PCV7 9 PCV7 4
PCV7/MR 3 DPT 2
Hib 3
PCV/Rota 1
PCV/IPV 1
PCV/IPV/Rota 1
PCV/Influenza 1
Total 61 18

DPT, Diphtheria, tetanus toxoids, combined with acellular pertussis vac-
cine; Hib, Hemophilus influenzae type b T-conjugated vaccine; PCV7,
7-valent pneumococcal conjugated vaccine; Rota, Rotavirus vaccine; BCG,
Bacillus Calmette-Guérin; MR, Measles and rubella combined vaccine; IPV,
Inactivated polio vaccine.

The BioPlex assay for human 17-plex shows cytokine profiles,
and the actual concentrations of cytokines should be examined by
quantitative EIA. IFN-a/B, IL-1B, and IL-6 were re-examined
using EIA. No IFN-a/f was detected in PBMCs cultures
stimulated with DPT, Hib, or PCV7, and IL-1B and IL-6 levels
were similar to those obtained by the BioPlex assay. The results of
IL-1B production in the 29 individuals are shown in Figure 2. All
subjects over 5 mo old had a DPT vaccination, whereas, very few
subjects had the Hib but none had PCV7 vaccination. Higher
IL-1B production was noted in young infants, but decreased at
around 2 y old and or older, except for two subjects (4 y and
5 mo old and 5 y and 11 mo old) who recovered from aseptic
meningitis. Scale-over values of > 800 pg/ml were observed in
young infants by the stimulation with multiple stimulations of
Hib/PCV7 and DPT/Hib/PCV7.

Serum cytokine profiles of vaccine recipients with or without
febrile illness

Experiments with PBMCs showed that inflammatory
cytokines were produced in response to the vaccine preparations,
but did not reflect the situation in vivo. The next concern
was whether cytokines were produced in the serum after
immunization. Cytokine profiles were investigated in 61 serum
samples obtained from recipients who exhibited febrile illness
within 24 h of being vaccinated. Eighteen serum samples were
obtained from recipients without febrile illness. These samples

4 Human Vaccines & Immunotherapeutics

were taken within 48 h of vaccination in both groups. The
background of their vaccination is shown in Table 1. Based
upon the data of PBMCs culture, cytokine response seemed to
be different according to the number of vaccine antigens. Among
61 febrile group, 30 were immunized with three or four vaccines
including DPT, Hib, and PCV7, 12 with basically two bacterial
vaccines, and 19 with one to three, including one bacterial vaccine.
Non-febrile group was similarly categorized. Considering the
results indicating that IL-1f, IL-6, G-CSF, and TNF-a were
secreted in stimulated PBMC cultures, we next investigated
whether the levels of inflammatory cytokines in sera of children
with febrile reaction were higher than those in sera from children
that did not develop fever. The results of cytokine profiles are
shown in Figure 3. Serum G-CSF levels were significantly
higher in recipients with febrile illness than in those without
febrile reactions. No detectable IL-13 was observed in sera in
both febrile and non-febrile groups and no significant difference
was observed in cytokine levels of IL-6 and TNF-a between the
two groups. These results are summarized in Table 2. The mean
serum levels of inflammatory cytokines IL-1B, IL-6, and TNF-
a, were 0.68, 29.44, and 13.43 pg/ml in vaccine recipients with
febrile reactions after the simultaneous injection of three (DPT/
Hib/PCV) or four vaccines (DPT/Hib/PCV + other vaccine),
and similar levels of inflammatory cytokines were produced in
vaccine recipients with febrile reactions after immunization of one
or two inactivated bacterial vaccines, also similar to those in non-
febrile group. Cytokine profiles of ten normal subjects without
vaccination were examined and the mean titers of cytokines
are also shown in Table 2. Higher levels of IL-6, IL-10, IL-12,
G-CSFE, IFN-v, and TNF-« were detected in both febrile and
non-febrile groups after vaccination in comparison with those in
normal subjects. No significant difference was observed in Thl
or Th2 cytokines (IL-4, IL-10, IL-12, and IFN-y) between the
two febrile and non-febrile groups. The mean G-CSF level in
vaccine recipients with febrile illness was 87.24 pg/ml after three
simultaneous injections, higher than those in the recipients with
febrile reaction after immunization with one or two vaccines, and
in the non-febrile group.

As a fever-related inflammatory protein, serum PGE2 was
assayed by competitive EIA, and the results are also shown in
Table 2. The mean serum PGE2 concentration was 148.62 pg/
ml (95%CI: 90.7-206.5 pg/ml) in the febrile group immunized
three vaccines, and there was no significant difference in PGE2
concentration between febrile and non-febrile groups.

Comparison of cytokine profiles of vaccine recipients with
those of patients with influenza

IL-18, IL-6, G-CSF, and TNF-a concentrations were
compared with serum levels in patients with the HIN1 2009
outbreak and 18 samples from patients admitted to the hospital
with acute pneumonia and 9 from outpatients (Table 3). Levels
were higher in hospitalized patients than in outpatients, but this
was not significant. IL-1B was not detected in sera obtained
from outpatients and no significant difference was observed in
IL-6 and TNF-« levels between the influenza outpatients and
immunization groups with febrile or non-febrile illness after
vaccination.
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Serum cytokine profiles in febrile illness (n = 61)
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Figure 3. Cytokine profiles of 61 individuals with febrile reactions within 24 h after immuniza-
tion (upper panel) and those of 18 recipients without febrile iliness (lower panel).

nuclear neutrophils (PMNs) and monocytes,

inducing cytokines in response to the invading
microorganisms.'"*** They recognize viral, fungal, or bacterial
components, in addition to replicative or non-replicative
pathogens recognized by RIG like receptor, or warning signals
by some adjuvants. Recognition by innate immune receptors
activates the signaling cascades of IFN-a/B, and the nuclear
factor kappa B (NF-iB)-related elevated transcription of
cytokines. Cellular damage and danger signals stimulate DAMP,
activating inflammasomes.”** In this study, cell viability reduced
to 50-60% in PBMCs stimulated with aluminum-adjuvanted
vaccines, and aluminum based cellular damage may have these
immunological stimulation. In our previous study, alJuminum-
adjuvanted HS5N1 whole virion inactivated vaccine induced
inflammatory cytokines, although aluminum adjuvant alone did
not induce these cytokines. Inflammasomes consist of NLRP3
and apoptosis-associated speck-like protein (ASC), which is
thought to be an adaptor molecule of NLRP-3, resulting in the
recruitment of caspase. It induces the inflammatory cytokines,
IL-1B, IL-6, and IL-18, from proinflammatory molecules."”°
Type I IEN enhanced the expression of co-stimulatory molecules
recognized by CD8+ CTL cells, together with MHC I molecules
and inflammatory cytokines for co-stimulatory molecules for
MHC II, recognized by CD4+ cells. CD4+ cells differentiate
to functionally different Thl and Th2 cells to produce different
subclass antibodies through cytokines. Thus, innate immunity
modulates the acquired immunity induced by vaccinations, and
effective vaccines theoretically have an impact on the innate
immune system by acting as the agonists of TLRs, RIG-I, and
NOD-like receptors, inducing the production of cytokines and
chemokines.'

Innate immune systems are not fully functional at the time
of birth. Human neonatal plasma showed high levels of Th2
cytokines during the first week following birth, and neonatal
APCs demonstrated skewed Th2 responses.”” Caron et al.*
reported that the production of regulatory Thl and Th2
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cytokines following the administration of TLR agonists was
lower in cord blood than in adule blood. In contrast, TLR-
stimulated pro-inflammatory cytokine (IL-1B, IL-6, and IL-8)
production was markedly higher in neonates than in adules. The
increased susceptibility of neonates to bacterial infections may
be related to imbalanced TLR responsiveness, with enhanced
pro-inflammatory cytokines and decreased regulatory cytokine
production. Butl etal.?” reported that most TLR agonists induced
the production of TNF-«, IL-18, IL-6, and IL-10 in cord blood.
For most agonists, TLR-mediated TNF-& and IFN-y responses
increased from birth to one month of age and TLR8 agonists also
induced the production of Thl-polarizing cytokines. In contrast,
IL-1B, IL-6, and IL-10 responses to most agonists were robust at
birth and remained stable through to 12 mo of age in Gambian
infants relative to those in developed countries.

Studies of bacterial infections suggest that bacterial lipo-
polysaccharides (LPS) act as TLR4 agonists, and vaccine antigens
of the polysaccharides of Hib or PCV7 are considered to be TLR4
agonists.”®” DPT used in Japan is an acellular formulation with
300 pg/ml of aluminum adjuvant and PCV7 consists of 250 pg/
ml of aluminum adjuvant. In this study of cytokine production by
PBMC:s and cytokine responses after immunization, significant
differences were observed in cytokine induction, particulaty
for IL-1B by different vaccines and stimulation of different
combinations of vaccines in PBMCs. The IL-1B levels were
significantly higher in response to PCV7 than to DPT and this
difference depended on the antigen-aluminum formulation.®
IL-1B levels with the simultaneous stimulation with DPT and
Hib were the same as those induced by PCV alone, but were
higher with the concurrent stimulation including of PCV7.
IL-1B production did not depend on the amount of aluminum
adjuvant. DPT and PCV7 contain aluminum adjuvants and the
concurrent stimulation with DPT and PCV7 induced higher
IL-B levels, but lower than those induced by PCV7 plus Hib.
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Table 2. Cytokine profiles in vaccine recipients with or without febrile reactions

Cytokine profile in subjects with febrile reaction after immunized with
= 3 bacterial vaccines (n = 30) 2 bacterial vaccines (n = 12) One bacterial vaccine (n = 19)

IL-18 0.68 (0.36~0.99) 0.78 (0.08~1.48) 0.83(-0.02~1.67)
-4 0.41 (0.26—0.56) 0.29(0.11~0.48) 0.35(0.14~0.57)
IL.-6 29.44(17.35~41.53) 12.53 (6.88~18.20) 23.72(11.53~35.90)
1L-10 7.34(1.97~12.71) 3.6(0.31~6.88) 7.85 (3.04~12.66)
IL-12 12.93 (-2.28~28.15) 6.4 (-2.61~13.07) 7.87 (1.27~14.46)
G-CSF 87.24(34.65~139.83) 37.41(18.99~55.83) 39.88(17.88~61.88)
IFN-y 49,95 (24.08~75.09) 42.95 (3.58~82.32) 33.26 (14.98~51.54)
MIP-18 66.81(41.33~92.29) 59.97 (32.55~87.38) 72.51(27.10~117.92)
TNF-o 13.43(0.25~26.62) 4.86(1.94~7.78) 11.3(1.49~21.11)
PGE2* 148.62 (90.7~206.5)) 114.36 (68.91~159.8) 219.3(51.49~387.2)

Cytokine profile in subjects without febrile iliness after immunized with Normal (n=10)

> 3 bacterial vaccines (n = 5) 2 bacterial vaccines (n = 7) One bacterial vaccine (n = 6)

IL-1B 1.12(0.04~2.21) 0.52 (0.15~0.89) 1.53 (-0.86~3.92) 0.12(0.04~0.21)
IL-4 1.32(-0.6—3.25) 0.22 (0.04~0.4) 0.43(0.05-0.81) 0.21 (0.09~0.32)
IL-6 1343 (-5.05~31.91) 21.79 (5.8~37.8) 36.60 (-233.80~97) 2.55(0.48~4.62)
IL-10 5.96 (-8.76~20.67) 3.54(-3.62~10.7) 7.49 (-6.66~21.65) 1.58 (-0.28~3.22)
1L-12 10.5(-15.62~36.62) 7.1 (-47~189) 15.29 (-18.848~49.43) 043 (0.19~0.66)
G-CSF 7.44 (2.30~12.58) 13.32(3.7~22.9) 5.59(0.83~10.34) 1.18 (-0.017~2.23)
IFN-y 61.63 (-25.64~148.89) 19.7 (-16.4~55.8) 28.18(-29.53~85.88) 5.24 (0.66~9.82)
MIP-18 113.06 (-116.83~342) 91.7 (52.8~130.5) 111.73 (-0.41~223.86) 48.99 (32.19~65.80)
TNF-a 4.68 (-0.03~9.38) 11.75(-14.8~38,3) 36.36 (-6.66~79.39) 1.35(0.11~2.59)
PGE2* 329.5(-43.8~702.4) 170.5(114.3~226.8) 381.13 (54.66~707.6) Not tested

Febrile illness was observed within 24 h after immunization in 61 subjects: three bacterial vaccines with or without other vaccine (n = 30), two bacterial
vaccines with or without other vaccine (n = 12), and single bacterial vaccine with or without other vaccine (n = 19). Eighteen serum samples were obtained
from whom no febrile iliness was observed within 24 h after immunization: three bacterial vaccines with or without other vaccine (n = 5), two bacterial vac-
cines with or without other vaccine (n = 7), and single bacterial vaccine with or without other vaccine (n = 6). Ten sera were obtained from normal healthy
infants aged 4-15 mo of age. IL-13, IL-4, IL-6, IL-10, IL-12, G-CSF, IFN-y, MIP-1B3, and TNF-a were assayed by Bio-Plex human 17-plex. PGE2* was assayed with

the competitive EIA kit. Mean serum concentrations of cytokines are shown with 95% Cl in parentheses.

Table 3. Comparison of cytokine profiles of acute phase sera obtained from admitted patients or outpatients with HIN1 pandemic 2009 influenza

Influenza IL-18 iL-6 G-CSF TNF-a
Admitted 19.44 3593 12.44 16.09
95% Cl 0-54.29 19.19-52.66 7.47-17.41 3.67-28.50
Outpatients 0.8 19.5 6.26 6.55
95% Cl 0-2.06 1.54-37.45 3.02-9.49 1.10-11.97

Hib induced high levels of IL-6 and no significant difference was
observed in IL-6 production among the different combinations
of vaccines. Hib induced higher levels of TNF-a than any other
single stimulation, whereas PCV7/Hib or all three vaccines
together produced higher levels than the others. In this study,
there are several limitations; vaccine antigens and different
backgrounds of donors’ age probably related to the immunization
history. PBMCs were stimulated with final vaccine products,
which contain adjuvants, preservatives, and stabilizers besides
vaccine antigens. The unavailability of components of each
vaccine resulted in the limitation that in-vitro stimulation
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profiles could not be attributable to each vaccine antigen for each
vaccine. These have some possibilities to influence the cytokine
production in response to aluminum antigen, but the purpose
of the study is to know the response to the vaccine formulations
after immunization of vaccines.

PBMC:s obtained from young infants produced large amounts
of IL-1B, and higher levels of IL-1B, TNF-a, and G-CSF were
produced when stimulated with two or three combinations of
inactivated bacterial vaccines. Febrile illness developed mostly
12-16 h after vaccination and disappeared within 24-48 h.
Sixty-one serum samples were obtained from febrile group and 18
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from non-febrile group, and the detection of higher amounts of
inflammatory cytokines was suspected. However, no significant
difference was observed in cytokine profiles irrespective of febrile
illness within 24 h of vaccination and no IL-1f was detected.
Influenza is a common infectious disease with an abrupt onset of
febrile illness and is a potent inducer of cytokines.”” Compared
with the acute phase of an influenza infection, cytokine profiles
after vaccination were similar to those in mild-moderate
outpatients infected with the 2009 pandemic strain. Higher IL-1B
levels were observed in sera obtained from seriously ill patients
that had been hospitalized, but no significant difference was
noted. All effective vaccines induce the production of cytokines
or chemokines, which modulate immunogenicity and are also
involved in inducing adverse events, such as systemic febrile
illness and immunotoxicity.”"*>* In this standpoints, IL-6, IL-10,
IL-12, G-CSF, IFN-v, and TNF-a were detected in both febrile
and non-febrile groups after vaccination in comparison with
those in normal subjects. Some cytokines might be associated
with febrile adverse events, and others to immunogenicity,
although this is not yet determined. Kamgang et al.** suggested
IL-1B as a biomarker of vaccine immunotoxicity. When a vaccine
is administered through an intramuscular or subcutaneous
route, the antigen is transported from the muscle tissue to the
regional lymph nodes, where immune responses occur. Since the
vaccine antigen does not appear directly in blood, an experiment
in which PBMCs were stimulated with vaccine antigen did not
necessarily reflect the in vivo responses following vaccination.
Although higher levels of cytokines were expected in the sera

of patients with febrile reactions, the inflammatory cytokine -

profiles of febrile recipients were not different from those of
recipients without febrile illness. IL-1B is known to be a strong
stimulant of oxidative stress, resulting in COX-2 stimulation and
prostaglandin E2 (PGE2) production. These have been clearly
related to acute or chronic inflammatory conditions. Subsequent
responsiveness to cytokines may be involved in febrile illness,
such as PGE2 or cytokine receptors.™ In this study, cytokine
profiles were also investigated in patients with influenza between
hospitalized and outpatients groups. However, no significant
difference was observed between the groups, because extremely
serious patients were not included in the hospitalized patient
group. Inflammatory cytokine profiles after vaccination were
similar to the outpatient group infected with the influenza virus.

It was very hard to obtain the sera especially from non-febrile
group (n = 18) within 24-48 h after immunization. From the
results of cytokine production by PBMCs (Fig. 1) when stimulated
with single or different combinations, 61 subjects with febrile
reactions were categorized into three subgroups: 30 were basically
immunized with three vaccines DPT/Hib/PCV7, 12 with
basically two bacterial vaccines (PCV7/Hib, and PCV7/DPT)
and 19 with including one bacterial vaccine. Non-febrile group
was similarly categorized. Therefore, the limitation of the study
was too small number of the subjects to make relevant statistical
comparisons. Several individuals had an additional vaccine (IPV,
Rota, BCG, influenza, or MR) besides three inactivated bacterial
vaccines. These additional vaccines might affect the cytokine
production. But, these live viral vaccines rarely cause febrile

www.landesbioscience.com

reaction within 24 h after vaccination. Cytokine production was
examined in PBMCs culture stimulated with IPV, influenza, and
MR vaccines and very low levels of inflammatory cytokines were
produced (data not shown). Therefore, additional simultaneous
immunization supposed to have little influence on cytokine
induction in sera.

In vaccine recipients, only human G-CSF was higher in
vaccine recipients with febrile reactions and was also produced
in PBMCs stimulated concurrently with two or three inactivated
bacterial vaccines. G-CSF acts to mobilize and recruit neutrophils
to the site of inflammation from the marginal pool.¥” The initial
response at the injected site was the migration of neutrophils and
monocytes with increased local cytokine production of G-CSF
and IL-5 in experimental mouse model.?® Neutrophils migrated to
the injection site of the aluminum-containing vaccine and caused
neutrophil extracellular traps, resulting in the degranulation of
neutrophil substances.”” Aluminum adjuvants induced reactive
oxygen species (ROX), which caused increased the production
of prostaglandin.*® But, in this study, there was no significant
difference in PGE2 concentrations in sera obtained from febrile
and non-febrile groups.

A recent concept in vaccine development is the vaccine
immune-network because so many genes are involved in the
immunogenicity of vaccines: immune effector genes, cytokine and
cytokine receptor genes, and the interaction of their transcripts. 44
Individual immunogenicity, low responders to some vaccines, may
depend on a dysfunction in the immune regulatory network and,
in a reflection of immunotoxicity, racial and individual differences
are suspected in clinical adverse reactions. Further investigations
of the significance of elevated serum G-CSF levels are required in
vaccine recipients with febrile illness.

Materials and Methods

Study design and subjects

A total of 29 healthy children without any immunological
disorders were enrolled in this study of cytokine production in
PBMCs cultures (n = 29; 15 males and 14 females). They were
admitted to Tokyo Medical College Hospital due to minor
respiratory infections or clinical tests of liver or kidney biopsy
(average 34 mo of age ranged from 2 mo to 7 y and 2 mo), and
blood samples were collected just before discharge after the recovery
of illness. Informed consent was obtained from their parents.
PBMCs were obtained by centrifugation (Ficoll-Paque™ Plus
#17-5442-02, GE Healthcare Bio-science), which was subjected
within three hours after taking heparinized venous blood. PBMCs
were adjusted to 5 X 10° cells in 500 pl of RPMI 1640 medium
supplemented with 5% FBS and adequate antibiotics in a 48-well
plate. Cultures were stimulated with 50 i of vaccine preparations
and the culture supernatant was harvested 24 h later. Samples
were stocked at =80 °C until Bio-Plex cytokine assay. This study
protocol was reviewed and approved by the Ethics Committee of
Tokyo Medical University, Tokyo, Japan.

Vaccine antigens

DPT (Kitasato), Hib (Sanofi Pasteur), and PCV7 (Pfizer)
were purchased commercially. A volume of 50 pl was used for
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the stimulation of a single vaccine or different combinations of
DPT/Hib, DPT/PCV7, Hib/PCV7, and DTP/Hib/PCV7. DPT
and PCV7 have aluminum adjuvant at the concentration of 300
ug/ml and 250 ug/ml, respectively, and Hib does not contain
aluminum.

Serum samples

Serum samples were obtained from 61 vaccine recipients who
had febrile illness »37.5 °C within 24—48 h after a single- or
simultaneous multi-vaccine administration and the details of the
immunization are shown in Table 1: DPT/Hib/PCV7 (22 cases),
DPT/Hib/PCV/IPV (4 cases), DPT/Hib/PCV7/Rota (3 cases),
DPT/Hib/PCV7/BCG (1 case), PCV7/Hib (7 cases), PCV7/
Hib/Rota (4 cases), PCV7/DPT (1 case), PCV7 (9 cases), PCV7/
MR (3 cases), Hib (3 cases), and the remaining 4 cases were of
a different combination of PCV7 and others. Febrile reactions
were observed mainly after immunization with PCV7 and
concurrent immunization including PCV7. Serum samples were
also obtained within 24~48 h from 18 recipients without febrile
reactions: DPT/Hib/PCV7 (4 cases), DPT/Hib/PCV7/Rota (1
case), PCV7/Hib (6 cases), DPT/Hib (1 case), PCV7 (4 cases),
DPT (2 cases). For the control subjects without vaccination,
serum samples were obtained from ten normal healthy subjects
aged < 1-3 y old. Serum cytokine profiles were examined by Bio-
Plex and the experimental protocol was approved by the Ethics
Committee of Kitasato Institute. Serum samples were collected
after obtaining informed consent.
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Cytokine assay

Culture supernatants and serum samples were subjected
to Bio-Plex Pro™ Human Cytokine Assay 17-plex, using Bio-
Plex 200 (GI17plex panel #M50-00031YV, Bio-Rad,). IFN-a,
IL-1B, and IL-6 concentrations were measured using EIA kits,
(Verikine human IFN-a/ serum sample ELISA kit #46100, pbl
interferon source), (Quantikine human IL-18 EIA kit#DLB50,
R&D Systems), and (Quantikine IL-6 EIA kit #D6050, R&D
Systems), following the instruction manuals. Prostaglandin E2
was measured by competitive EIA (Prostaglandin E2 EIA Kit
#KGE004B, R&D Systems).

Statistical analysis

Differences between groups were analyzed using the Mann-
Whitney U-test or chi-square test, and a significant difference
was defined as P < 0.05, using Statcel software (OMS, Saitama,

Japan).
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ABSTRACT

Aluminum-adjuvanted vaccines are administered through an intramuscular injection (IM) in the US and
EU, however, a subcutaneous injection (SC) has been recommended in Japan because of serious muscle
contracture previously reported following multiple IMs of antibiotics. Newly introduced adjuvanted vac-
cines, such as the human papillomavirus (HPV) vaccines, have been recommended through IM. In the
present study, currently available vaccines were evaluated through IM in mice. Aluminum-adjuvanted
vaccines induced inflammatory nodules at the injection site, which expanded into the intra-muscular
space without any muscle degeneration or necrosis, whereas non-adjuvanted vaccines did not. These
nodules consisted of polymorph nuclear neutrophils with some eosinophils within the initial 48 h, then
monocytes/macrophages 1 month later. Inflammatory nodules were observed 6 months after IM, had
decreased in size, and were absorbed 12 months after IM, which was earlier than that after SC. Cytokine
production was examined in the injected muscular tissues and AS04 adjuvanted HPV induced higher IL-
18, IL-6, KC, MIP-1, and G-CSF levels in muscle tissues than any other vaccine, but similar serum cytokine
profiles were observed to those induced by the other vaccines. Currently available vaccines did notinduce
muscular degeneration or fibrotic scar as observed with muscle contracture caused by multiple IMs of

antibiotics in the past.

© 2014 Elsevier Ltd. All rights reserved.

1. Infroduction

All vaccines have been administered through a subcutaneous
injection (SC) in Japan, whereas aluminum-adjuvanted vaccines
are administered through an intramuscular injection (IM) with-
out any serious reactions in the EU, US, and many other countries
[1]. IM was prohibited in Japan because serious muscle contrac-
ture was reported with multiple IMs of antibiotics with or without
antipyretics in the 1960s. The first case of the muscle contracture
was reported by an orthopedic surgeon in 1947, and may have been
caused by IM of antibiotics. The number of these cases increased
and several regional accumulations of patients were reported, espe-
cially in Yamanashi prefecture, where legal action was taken. All
cases had multiple IMs of antibiotics with or without antipyret-
ics, but not with vaccines. The Japanese Orthopedic Association

* Corresponding author at: Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
Tel.: +81 3 5791 6269; fax: +81 3 5791 6130.
E-mail address: tetsuo-n@lisci.kitasato-u.ac.jp (T. Nakayama).

http://dx.doi.org/10.1016/j.vaccine.2014.04.018
0264-410X/© 2014 Elsevier Ltd. All rights reserved.

announced the Precaution in 1976 that muscle contracture was
mainly caused by IM of antibiotics and that pediatricians should
refrain from unnecessary IM. Thereafter, an Investigational Com-
mittee on Muscle Contracture was established by the Japanese
Pediatric Association, which announced the following comments
in 1977 [2]:

1) Muscle contracture was reported in the quadriceps, deltoids, and
buttocks, and no site was safe for IM.

2) Muscle contracture was reported in all age groups, not just in
young infants.

3) The indication of IM was extremely rare.

4) Informed consent had to be obtained from patients or their
guardian in cases in which IM was required.

The histopathological findings obtained from the muscle tis-
sues of the patients revealed the infiltration of inflammatory
cells, degeneration of muscle cells, necrosis, fibrosis, and scar
formation, which were similar to those observed in experimen-
tal animals following IM of various antibiotics [3-5]. IM was
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subsequently prohibited for all medicinal procedures except the
administration of immunoglobulin preparations. All vaccines were
administered through SC, and the Committee on Muscle Contrac-
ture also suggested that all medicinal preparations for IM had to be
histopathologically examined in the muscle tissues of experimental
animals to assess the damage to muscle tissue [2].

Serious local reactions were previously reported following
immunization with diphtheria and tetanus toxoids combined with
the acellular pertussis vaccine (DPT) containing an aluminum
adjuvant, and the precise mechanisms underlying local reacto-
genicity and immunogenicity have not fully elucidated [6-8]. In
addition to a conventional aluminum adjuvant, a new vaccine
containing monophosphoryl lipid A (MPL) was introduced [9]. Alu-
minum has been used as an adjuvant for a long time because
it prolongs the retention of adsorbed antigens at the injection
site (depot effect), however, recent findings on innate immunity
have indicated that aluminum adjuvants initiate primary immune-
stimulation in the innate immune system [10,11]. Innate immunity
consists of two different patterns: pathogen-associated molecu-
lar patterns (PAMPs) and damage-associated molecular patterns
(DAMPs). All effective vaccines stimulate the innate immune sys-
tem to produce cytokines or chemokines for the development
of acquired immune responses through the expression of co-
stimulatory molecules [12~14]. These reactions start in the early
phase following the injection: therefore an investigation of local
reactions following a vaccination appears to be warranted to better
understand the safety and immunogenicity of vaccines [12,15,16].

Haemophilus influenzae type b (Hib) was introduced in Japan in
2008, 7-valent pneumococcal (PCV7) and human papillomavirus
(HPV) vaccines in 2010 {17]. These newly introduced vaccines are
administered through IM in other countries. However, only HPV
vaccines are recommended through IM, as is stated on the package
inserts. Vaccination against HPV has been associated with a chronic
painsyndrome in Japan, although a causal relationship has not been
established [18]. All routine vaccines, including newly introduced
ones, have not been examined to assess the safety of IM admin-
istration: therefore, histopathological findings and local cytokine
production were investigated in the present study using current
available inactivated vaccines.

2. Materials and methods
2.1. Vaccines

All routine inactivated vaccines were examined. DPT (Kitasato
Institute, Japan), Hib (Sanofi Pasteur, France), PCV7 (Pfizer, USA),
the Japanese Encephalitis vaccine (JEV) (Biken, Japan), seasonal
influenza split vaccine (Kitasato Institute, Japan), 4-valent HPV
(Gardasil: MSD, USA), and 2-valent HPV (Cervarix: GSK, Belgium)
were purchased commercially.

2.2. Experimental design

Four-week-old BALB/c mice were purchased from Charles River,
US. All vaccines were administered in 100 ! volume through IM in
the left quadriceps muscle in four mice for each vaccine (1/5 volume
of human dose) and phosphate-buffered saline (PBS) at the right
quadriceps muscle for the control. Muscle tissues were examined
1 month after a single injection to compare histological findings by
different vaccine preparations. Mice were immunized with three
doses of DPT through IM in the same left quadriceps, or through SC
in the back of the neck, to compare pathological findings through
IM and SC. Injection sites were examined 1, 3, 6, 9, and 12 months
after the injection to assess local reactions. Sera were also obtained
to compare serological responses.

To assess cytokine responses and histological findings at very
early phase following the injection, quadriceps muscle tissues and
serum samples were obtained pre, 3, 6, 24, and 48 h after a single
injection of DPT, Hib, PCV7, JEV, Cervarix, and Gardasil in three mice
for each point. PBS was injected in the opposite quadriceps as the
control.

2.3. Histological examinations

Quadriceps muscle tissues were fixed with 10% phosphate-
buffered formalin and decalcified in PBS before embedding in
paraffin. Muscle and subcutaneous tissues were stained with hema-
toxylinand eosin (HE) using a conventional procedure. Lumogallion
staining was performed and aluminum compounds were visualized
through confocal microscopy [19]. Macrophages were stained with
antibodies against F4/80 (a rat monoclonal antibody against mouse
F4/80, AbD Serotec, USA), iNOS (polyclonal rabbit anti-iNOS/NOS
type II, BD, USA), and arginase I (rabbit polyclonal antibody against
human arginase, Santa Cruz, USA) [20-22].

2.4. Cytokine productions

Quadriceps muscles were harvested, cut into small pieces, and
homogenized with 2 ml of RPMI supplemented with 1% protease
inhibitor (nacalai tesque, Kyoto, Japan) using Bio Masher Il (Nippi,
Tokyo, Japan). The muscle homogenate was centrifuged, filtrated
through a 0.45 pm filter, and subjected to a cytokine assay. IL-1j3,
[L-2, IL-4, IL-6, IL-10, Eotaxin, G-CSF, KC, MCP-1, and TNF-a were
measured using the BioPlex mouse cytokine panel (BioPlex, Bio-Rad
Laboratories, USA). The local production of cytokines was expressed
as the ratio of the cytokine concentration at the injected site to that
at the opposite site injected with PBS, and the mean of three mice
was shown for each cytokine.

2.5. Statistical analyses

Differences between the groups were analyzed using
Cochran—-Cox method and a significant difference was defined as
p<0.05, using StatMate software (ATMS, Tokyo).

3. Results
3.1. Histological findings 1 month after the single dose injection

Hib, influenza, and JEV do not contain aluminum adjuvant. The
DPT vaccine consists of 300 pg/ml of aluminum, PCV 250 pg/ml,
Gardasil 450 pg/ml, and Cervarix contains 1.0 mg/ml together with
100 p.g/ml of monophosphory! lipid A (MPL) adjuvant. Histolog-
ical findings following IM immunization are shown in Fig. 1.
Histopathological findings differed in muscle tissues injected with
aluminum-adjuvanted or non-adjuvanted vaccines. No significant
difference was observed in the pathological findings obtained from
tissues injected with non-adjuvanted JEV vaccine. However, one
of the three mice injected with Hib exhibited small localized
focal inflammatory reactions with the infiltration of inflammatory
and myogenic cells. Similar findings were observed in one of the
four mice immunized with the influenza vaccine. Non-adjuvanted
vaccines induced no significant pathological differences or small
localized inflammatory reactions.

Aluminum-adjuvanted vaccines induced inflammatory nodules
with the infiltration of inflammatory cells or macrophages at the
marginal lesions. Inflammatory nodules spread into muscle bun-
dle spaces without the degeneration of or atrophic changes to
muscle cells. Infiltrating cells were characterized as macrophages:
ballooned cytoplasm with peripherally localized nucleus. Lumogal-
lion staining was performed to visualize the aluminum adjuvant
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Fig. 1. Histological findings of HE staining 1 month after the inoculation with aluminum - adjuvanted and non-adjuvanted vaccines. DPT, PCV7, HPV Gardasil, and HPV
Cervarix were used as aluminum-adjuvanted vaccines (Alum+). Hib, JEV, and seasonal influenza split vaccines were used as non-adjuvanted vaccines (Alum--). Three or four
mice were inoculated through IM and the quadriceps muscles were removed 1 month after the injection.

and the results are shown in Fig. 2. No aluminum positive cells was homologously visualized in the inflammatory nodules of mus-
were observed in muscle tissues injected with Hib, or in the con- cle tissue injected with Cervarix. Aluminum was engulfed in the
trol. Weak staining was observed in the inflammatory nodules in cytoplasm of ballooned macrophages, resulting in macrophagic
muscle tissues injected with DPT, PCV7, and Gardasil. Aluminum nodules.

Fig. 2. Aluminum staining 1 month after the inoculation of vaccines. The results of Lumogallion staining are shown 1 month after the inoculation with DPT, PCV7, HPV
Gardasil, and HPV Cervarix. Regarding the control, the results of phosphate-buffered saline (PBS) and Hib (non-aluminum) are shown.
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