HDLS.* Mutations previously described in pa-
tents with HDLS are located within the
kinase domain of CSF-IR.*7 A previous study
has shown that cells expressing mutant CSF-
IR are defective in autophosphorylation of
CSF-1R owing to CSF-1 stimulation.* This
finding suggests that abnormality in CSF-1R
signaling is relevant to the pathogenesis of
HDLS; however, the precise pathologic mech-
anism by which perturbation of CSF-1R sig-
naling leads to HDLS has remained elusive.

Gross neuropathologic features of HDLS are
characterized by prominent degenerative changes
of the cerebral white matter with frontal promi-
nence and the corpus callosum.! Microscopic
examination revealed loss of myelin sheaths
and axons and the presence of abundant neuro-
axonal spheroids."*'" Another distinctive neuro-
pathologic feature is the presence of pigmented
macrophages in a background of white matter
destruction. These pathologic features have been
commonly described in patients with pigmented
orthochromatic leukodystrophy (POLD).'>'?
Patients with POLD have recenty been shown
to carry CSF-1R mutations.'*

In this study, we identified 7 index patients
from unrelated pedigrees with or without a fam-
ily history who were found to carry various
types of CSF-1R mutation. We attempted to
characterize the molecular genetic, clinical, neu-
roimaging, and neuropathologic findings of
these patients.

METHODS Standard protocol approvals, registrations,
and patient consents. We enrolled 7 probands from 7 unre-
lated Japanese families. Genomic DNA was isolated from periph-
eral leukocytes from the patients. This study was approved by the
institutional review board of Niigata University, and written
informed consent was obtained from all the patients or their care-
givers. Patients clinically suspected of having HDLS were referred
to our laboratory for genetic testing for CSF-/R. Clinical presen-
tations and neuroimaging findings of the patients were recrospec-
tively evaluated by board-certified neurologists.

Genetic analyses. Mutational analysis of CSF-IR was per-
formed using sequences of both strands of all PCR-amplified
coding exons and flanking intronic sequences as previously
described.” When the mutations were identified, we confirmed
that the mutations were not found in known single nucleoride
polymorphisms (SNPs) based on dbSNPs, and determined the
absence of the mutations in normal controls by custom TagMan
SNP genotyping assay (Applied Biosystems, Foster City, CA). To
predict the pathogenicity of amino acid substitutions caused by
missense mutations, we conducted in silico analysis using the
PolyPhen-2 and SIFT algorithms.'>'¢
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Total RNA was extracted from autopsied brain tissues from
the 2 patients with CSF-/R mutations (¢.2442+1G>C and
p.S688EfsX13) and from peripheral leukocytes from the patient
with p.I794T mutation. Complementary DNA was synthesized
using a high-capacity cDNA reverse transcription kit (Applied
Biosystems).

Western blot analysis. Proteins from the frontal cortex of the
autopsied cases (c.2442+1G>C and p.S688EfX13) and control
subjects without neurologic disorders were extracted and fractionated
as previously described.'” Detergent-extracted lysates were subjected
to sodium dodecyl sulfate polyacrylamide gel electrophoresis
followed by immunoblotting. A polyclonal anti-CSF-1R antibody
that recognized the C-terminus of CSF-IR (C-20, Santa Cruz
Biotechnology, Dallas, TX) and a monoclonal ancbody thar
recognized the N-terminus of CSF-IR (B8, Santa Cruz
Biotechnology) were used for detection of total CSF-1R. CSF-1R
phosphorylated at Tyr546, Tyr723, and Tyr809 was detected using
specific antiphosphorylated CSF-1R  antbodies (Cell Signaling
Technology, Beverly, MA). Methods for cell culture experiments
are described in the e-Methods on the Neurology® Web site at

www.neurology.org.

Analysis of MRI and CT. We examined a total of 23 MRIs
of 7 patients with HDLS with a CSF-I/R murtation. MRI was
conducted for diagnostic purposes using a 1.5T MRI system.
Axial T1- and T2-weighted and fluid-attenuated inversion
recovery (FLAIR) images were obtained from all the patients.
Longitudinal MRI studies of the 7 patients with HDLS were
carried out using a previously reported semiquantitative rating
scale.® The semiquantitative rating was carried out by 2 expert
examiners. The scores between the 2 examiners were highly in
agreement with a significant correlation (intraclass correlation
coefticient = 0.98, 95% confidence interval 97-99). Six out of

the 7 patients were evaluated by brain CT.

Neuropathologic techniques and immunohistochemistry.
Neuropathologic examination was performed on a biopsied speci-
men taken from the frontal white matter of patient [II, and 4 autop-
sted brains of patient L' patient VI, a grandfacher of padent II
(patient ITHCI in table e-1),% and a patient who is not included
in table 1 (patient IHC2 in table e-1). The clinicopachologic find-
ings of patient ITHC2 who was found to carry the CSF-1R mutation
of pJ794T were reported in detail elsewhere.” Formalin-fixed,
paraffin-embedded sections were prepared, and stained with
hematoxylin & eosin and by the Kliiver-Barrera method. Serial
sections of the biopsied specimen and the frontal and occipital lobes
of the autopsied brains were also immunostained with polyclonal
antibodies against Ibal (Wako, Richmond, VA; 1:2,000), CSF-1R
(C-20) (1:100), and glucose transporter-5 (GLUT-5) (IBL,
Minneapolis, MNj; 1:50), and monoclonal antbodies against CD68
(Dako, Carpinteria, CA; 1:200). As autopsy controls, sections from
the frontal lobe of 3 patients without any neurologic discases and 2
patients with eicher Alzheimer disease or adrenoleukodystrophy were
immunostained. Detiled information on the control cases is available
in table e-1.

RESULTS Identification of CSF-IR mutations. We
identified 6 different mutations of CSF-IR in 7 pro-
bands with HDLS of Japanese origin (figure 1A).
These mutations included 3 novel missense mutations
(c.2294G>A/p.G765D, ¢.2342C>A/p.A781E, and
¢.2470C>T/p.P824S), one novel splice-site mutation
(c.2442+1G>T), and one novel single nucleotide



[ Table 1 Clinical characteristics of HDLS patients with CSF-1R mutation

 pSGBBEfeX13 -

‘Cognitive impairment/personality

Ambulatory - : L

Cognitive impairment/depression

hereditary diffuse leukoencephalopathy with spheroids.

Abbreviation: HDLS

insertion generating a premature stop codon
(c.2060_2061insT/p.S688ELX13). We detected
one known missense mutation (c.2381T>C/p.
1794T)*%7 in 2 patients from apparently unrelated
pedigrees. All missense mutations were located in the
tyrosine kinase domain of CSF-/R. These mutations
were not described in the dbSNP database and not
present in 124 healthy controls. The amino acids
substituted by the missense mutations were highly
conserved across species (figure e-1A). In silico
analysis of the missense mutations using the
PolyPhen-2 and SIFT programs revealed that these
mutations are predicted to be pathogenic with high
probability.

Clinical presentations. Familial occurrence was observed
in 3 probands, in whom autosomal dominant inheri-
tance was suspected. Four probands had no family his-
tory of neurologic diseases; hence, these patients
apparently represent sporadic cases, although the possi-
bility remains that incomplete penetrance or other factors
may account for the lack of familial history. Details of
clinical presentations of the patients with CSF-/R muta-
tions are summarized in table 1. The ages at onset of the
patients ranged from 36 to 55 years with the mean age at
onset of 44 ycars. Cognitive impairment is an initial
symptom in all the patients. Cognitive impairment as
well as behavioral and personality changes were the car-
dinal clinical features in all the patients. Parkinsonian
symptoms such as bradykinesia and gait disturbance,
pyramidal signs, and seizures were the frequent accom-
panying clinical manifestations. Six of the 7 patients
progressed into being wheelchair-bound and having
severe dementia with communication problems within
5 years after onset. One patient at 1 year after onser
remains ambulatory and capable of verbal conversation.

mRNA expression of mutant CSF-IR. We sought to
ascertain whether the mutations found in this stady
result in alteration of mRNA expression or aberrant
splicing. To clarify these issues, we performed reverse
transcription (RT)-PCR analysis using mRNA speci-
mens obtained from peripheral leukocytes or frozen
brain tissues. Sequence analysis of the amplified CSF-
IR mRNA from the patient with p.I794T mutation
revealed that the mutant CSF-1R allele is expressed at a
level comparable to the normal allele (figure e-1B).
We next investigated mRNA expression in the cerebral
cortex of the patient with the single nucleotide insertion
that generates a premature stop codon (p.S688E£5X13).
This premature stop codon is predicted to cause
nonsense-mediated mRNA decay? To test this
prediction, we amplified exon 15 of CSF-IR by
RT-PCR. This analysis revealed that the expression
level of the mutant allele is markedly decreased
compared with that of the normal allele (figure 1B).
We further attempted to determine the aberrant splice
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(A} Schematic illustration of CSF-1R structure. Six different mutations identified in this study are shown below the diagram
of electropherograms. The tyrosine kinase domain of CSF-1R is shown in gray. Numbers represent exons in which mutations
were identified. Positions of previously reported mutations are shown as triangles above the diagram. IVS = intervening
sequence. (B} Sequencing electropherogram of amplified genomic DNA and reverse transcription PCR amplicons of patient
with frameshift mutation (p.S688EfsX13), which was predicted to undergo nonsense-mediated mRNA decay. The expres-
sion of the mutant allele was hardly detectable, suggesting that this frameshift mutation results in nonsense-mediated
decay of mutant mRNA. The predicted amino acid sequences followed by a stop codon are shown in red. {C) Immunoblot
analysis of CSF-1R protein using anti-CSF-1R antibody {C-20) in Triton X-100 soluble fraction from frontal cortex of
autopsied cases (c.2442+1G>T and p.S688EfsX13) and 4 control subjects (1-4} without neurologic disorder. Note that
the full-length CSF-1R (150 kDa and 130 kDa, representing mature protein and immature full-length protein, respectively)
and proteolytically cleaved C-terminal fragment of CSF-1R (55 kDa) showed markedly decreased expression levels. The
equivalency of protein loading is shown in the actin blot (bottom).

variants in the patient with splice-site mutation
(c.2442+1G>T) involving exon 18. RT-PCR
analysis using primers designed to amplify exons 17
to 20 revealed that 2 additional amplified fragments
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were detected in the patient’s mRNA in addition to
the normal fragment (figure e-1C). We subcloned
these aberrant splice transcripts and identified 3
aberrant splice variants with skipped exon 18



(figure e-1C). These splice transcripts are translated
into in-frame truncated CSF-1R proteins.

Protein expression of CSF-1R in brain of patients with
HDLS. Having cstablished that alteration of mRNA
expression and aberrant splicing of CSE-1R oceur in
the brains of the patients, we next examined the
protein expression of CSF-1R in the brain. We
extracted the protein from the frontal cortex of 2
patients with the frameshift mutation (p.S688EfX13)
and the splice site mutation (€.2442+1G>T) as well
as from the contols without neurologic disorder.
Western blot analysis using the anti-CSF-1R antibody
revealed the full-length CSF-1R migrating at ~150 kDa
as a mature form and ~130 kDa as an immature form,
and the cleaved C-terminal fragment (CTF) migrating at
~55 kDa (figure 1C). The expression levels of full-
length and cleaved CTF of CSF-1R in the patients
were markedly lower than those in control subjects
(figure 1C).

Defective autophosphorylation of CSF-1R in cells
expressing mutant CSF-1R. To address the functional
propertics of mutant CSF-1R identified in patients
with HDLS, we tansiendy transfected wild-type or
CSE-1Rs  ¢DNA  ino  HEK293T
Western blot analysis using anti-CSF-1R  antibodies

mutant cells.

revealed comparable expression levels between wild-

type and mutant CSF-1Rs (figure e-2A). Under
incessant  stimulation with CSF-1 in a medium
containing  serum, wild-type CSF-IR  showed

constitutive autophosphorylation of CSE-1R at Tyr
546 and 723, whereas none of the 8 mutants found in
our patients (SG688EfX13, G765D, A781E, 1794T,
aberrant splice variant [ASV] 1, ASV2, ASV3, and
824S) and 2 previously reported mutants (M766T
and M875T)% revealed detectable autophosphorylation
of CSF-1R (figure e-2A). We next examined ligand-
induced autophosphorylation of CSF-1R by CSF-1
stimuladon (25 ng/ml) after removal of serum from
the medium. Upon stimulation with CSF-1, we
observed autophosphorylation of wild-type CSE-1R
at Tyr 723 and 809 in a time-dependent manner,
whereas neither ASV1 nor [794T CSE-1R showed
autophosphorylation (figure e-2B). To extend this
finding, we transiently transfected 10 murtant CSF-1Rs
and examined ligand-induced autophosphorylation of
CSF-1R by stimulation with CSF-1 or IL-34. None of
the mutant CSF-1Rs underwent autophosphorylation
of CSF-1R (figute e-2C).

We then determined whether the missense mutant
affects autophosphorylation of wild-type CSF-1Rin a
dominant-negative manner. HEK293 cells inducibly
expressing FLAG-tagged wild-type CSF-1R were fur-
ther transfected with myc-His-tagged wild-type or
mutant CSF-1R. Coexpression of wild-type CSE-1R

increased the level of autophosphorylation of CSF-1R
as compared with that observed in mock-transfected
cells expressing FLAG-tagged wild-type CSF-1R
(figure e-2D). Coexpression of mutant CSF-1Rs
did not suppress the level of autophosphorylation
occurring  in FLAG-tagged wild-type CSE-1R
(figure ¢-21D). These findings suggest that the missense
mutants cause a loss of autophosphorylation of own
CSF-1R, but do not suppress the autophosphorylation
of wild-type CSF-1R by the dominant-negative

mechanism.

Characteristic MRI findings. MRIs of each patient are
shown in figure 2A and figure e-3. All the patients
showed bilateral hyperintensities in the white matter
with frontal predominance visualized by FLAIR or
T2-weighted imaging. Thinning of the corpus callosum
with hyperintensity lesions were noted from the early
phase of the discase (figure 2A). The changes of the
white matter and the corpus callosum were already
derectable 5 years prior to the onset in one patient,
who underwent MRI for evaluation of his headache at
age 48 (figure 2A). This finding suggests that MRI
alterations precede the clinical symptoms of HDLS.

Longitudinal MRI changes. Longitudinal MRI changes
were determined in 7 patients with HDLS using the
MRI rating scale.'® The total MRI scores ranged from
12 to 44, the white matter lesion (WML) scores
ranged from 11 to 32, and atrophy scores ranged from
1 to 12. These MRI scores increased with disease
duration, and the average changes in scores per year
were 3.7 * 1.5 for total score, 2.5 = 1.1 for WML
score, and 1.3 £ 0.5 for atrophy score. There were
statistically significant correlations of the disease dura-
tion with total (r = 0.94, p < 0.01), WML (r =
0.94, p < 0.01), and atrophy (» = 0.92, p < 0.01)
scores (figure 2, B~D). We found a statistically sig-
nificant correlation between WML score and atrophy
score (r = 0.94, p < 0.01) (figure 2E).

Characteristic brain CT findings. Five out of 6 patients
who underwent brain CT demonstrated multiple spotty
calcifications in the affected white matter (figure 3A and
figure e-4A). The calcifications preferentially developed
in the frontal white matter adjacent to the anterior horn
of the lateral ventricles. Histopathologic analysis by von
Késsa staining of the lesions of calcifications in patient
1V revealed that the lesions contained calcium deposits
(figure 3, B and C, and figure e-4, B-D).

Neuropathologic findings of patients with HDLS. Histo-
pathologically, the brains of all patents with HDLS
showed diffuse loss of myelin sheaths and axons in the
white matter with severe gliosis prominent in the frontal
lobe (figure 4A). Within the white matter lesions, there
were scattered axonal spheroids (figure 4B) showing
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{ Figure 2 Longitudinal MRI changes of patients with hereditary diffuse leukoencephalopathy with spheroids 1
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(A} Sequential MRI studies of patient VI using fluid-attenuated inversion recovery (FLAIR) images. At the early stage
of the disease, white matter hyperintensities were often found in the periventricular area, surrounding the anterior
and posterior horns with a tendency to confluence, and in the fiber tract in the internal capsule. Enlargement of the lat-
eral ventricles was also noticeable. Notably, the corpus callosum showed hyperintensities and thinning at the time of
onset. The progression was relatively rapid and cortical atrophy became evident as the disease progressed. The MRI
taken 5 years before the onset for the evaluation of headache showed subtle asymmetric white matter hyperintensities
surrounding the anterior horns and faint signal changes and mild thinning of the corpus callosum. {B-E) Chronological
changes in semiquantitative MRI scores in 7 patients with hereditary diffuse leukoencephalopathy with spheroids. MRI
finding severity was evaluated from the total score (B, scores 0-57), which combines the white matter lesion (WML) score
(C, 1-42) and the atrophy score {D, 0-13), and the presence of lesions in the thalamus and basal ganglia. (E) Correlation
analysis between WML score and atrophy score.
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" Figure 3 Spotty calcifications in white matter on CT images ]

Patient 1l
(p.A781E)

39 yo, 3 years
after onset

{A) Multiple lesions caused by calcifications in the brain as revealed by CT. The boxed area is
enlarged at the right bottom of the panel. Small spotty calcifications were observed in the
affected white matter. (B, C) Histopathologic findings of small lesions in frontal white matter
close to the corpus callosum of patient VI carrying splice-site mutation. Calcium deposition
and fibrillary gliosis were evident. (B) Hematoxylin & eosin, (C) von Kdssa reaction. Bar =
100 pum for B and C.

immunoreactivity for phosphorylated neurofilaments
and numerous phagocytic cells with brownish granules
(figure 4C). Interestingly, immunohistochemistry using
microglia/macrophage markers, including Ibal, CDG68,
and GLUT-5, revealed microglia with characteristic
features. For example, despite diffuse white matter
degeneration and astrogliosis, activated microglia were
spatially restricted rather than distributed diffusely
(figure 4D). The activated microglia (Ibal-, CD68-,
and GLUT-5-immunopositive cells) and phagocytic
cells (Ibal- and CD68-immunopositive, but GLUT-
S-negative cells) appeared to be segregated (data not
shown). In human tissue, GLUT-5 immunopositivity
is selectively observed in microglia rather than in
other mononuclear phagocytic cells.?** Moreover,
individual microglia demonstrated their characteristic
morphology with thin processes and many knotlike
structures (figure 4, E~H). Furthermore, in the
white matter of patients with HDLS, the number
of activated microglia immunopositive for CSE-1R
(figure 4, I and J) was apparently smaller than those
observed in brains affected by Alzheimer disease
and adrenoleukodystrophy (figure 4, K and L).

DISCUSSION The clinical presentations of our patients
are essentially similar to those reported previously.>
Taken together with the previous reports,>® this study

suggests that HIDLS is relatively common in the Japa-
nese population. We identified a novel mutation of
single nucleotide inserdon (¢.2060_ 2061insT) that
causes a frameshift generating a premature stop codon
(p-SG88ELsX13). This premature stop codon fulfills
the criterion of nonsense-mediated mRNA decay.?’
Supporting this notion, mRNA analysis revealed
that the mutant allele is poorly expressed in the
brain tissue of the patient. This finding indicates
that haploinsufficiency of CSF-IR is sufficient for
developing HDLS. Tt has not been determined
whether missense mutations of CSF-IR cause
haploinsufficiency or a dominant-negative effect of
CSE-1R. Our cell culture experiments revealed that
additional expression of mutant CSF-1R in cells
inducibly expressing wild-type CSF-1R did not
suppress the autophosphoryladon of CSFE-1R
occurring in wild-type  CSF-1R. These findings
suggest that the dominant-negative effect of the
missense mutant CSF-1R is not likely to be the
mechanism underlying missense mutations in HDLS.
MRI of the patients in this study revealed relatively
uniform findings characterized by frontoparietal white
matter changes with corpus callosum involvement.
Thinning of the corpus callosum often accompanied
by signal intensity changes is exclusively observed from
the very early stage. On the basis of our experience, the
sagittal views of brain MRI with FLAIR or
T2-weighted images are useful for detecting such early
characteristic changes of the corpus callosum. Enlarge-
ment of lateral ventricles without cortical atrophy is
also an early characteristic MRI feature, which may
reflect a decrease in white matter volume. We quanti-
fied MRI abnormalities using a rating scale as previ-
ously reported.™ The MRI scores increased with
increasing disease duration, and there was a significant
correlation between MRI score and disease duration.
This suggests that the MRI rating scale could be a
useful tool for monitoring disease progression.
Calcifications in the frontal white matter were fre-
quendy observed by CT" in our patients with CSF-1R
mutations. These calcifications on CT images have not
been paid much attention in patients with HDLS
except for a single patient pathologically diagnosed with
HDLS in whom similar calcification was observed.
Conventional CT images often fail to detect small cal-
cifications in the white matter; thus, we recommend the
use of the thin-slice CT technique that reliably detects
such small lesions. The calcifications in the white matter
may be a disease-specific feature in patients with HDLS
because they are not usually observed in padents with
other neurologic discases or healthy aged individuals. It
is of note that CSF-1R signaling plays a role in the
regulation of osteoclast cytoskeletal reorganization™?5
hence, the calcifications in patients might be directly
related to the pathophysiology of CSF-1R mutations.
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[ Figure 4 Histopathologic features of patients with hereditary diffuse leukoencephalopathy with spheroids }

(A-C) White matter lesions of frontal lobe of patient VI. (A} Marked myelin loss of white matter with U-fibers spared. (B) Axonal spheroids (arrows) in white
matter. (C) Abundant macrophages (arrowheads) in white matter. (D-L) Microglia in white matter of patients with hereditary diffuse leukoencephalopathy
with sphercids and control brains. (D-H) Immunohistochemistry of Ibal in degenerative white matter. (D, E) Patient V1. (F) Patient lll. (G) Patient {HC1. (H)
Patient IHC2. (D) The boxed area in (A) is enlarged. Spatially restricted appearance of tbal-immunopositive activated microglia (upper right corner). (E-H)
Characteristic features of microglia. {I-L) CSF-1R immunohistochemistry in degenerative white matter. {I} Patient V. (J) Patient il (K) Patient with Alzheimer
disease. {) Patient with adrenoleukodystrophy. Images in | and J were taken from serial sections of images in E and F, respectively. Note very faint or no
CSF-1R immunopositivity in activated microglia in images | and J. (A) Kliiver-Barrera staining, (B, C), hematoxylin & eosin staining, (D-L) immunohistochem-
istry of Ibal (D-H) and CSF-1R (I-L}. Bar = 7 mm for A, 33 um for B and C, 306 um for D, 50 wm for E, F, and I-L, and 25 um for G and H.

Histopathologic examinations of the brains of
patients with HDLS showed the abnormal appearance
of activated microglia in a spatially restricted manner
and morphologic alteration of microglia, despite diffuse
white matter degeneration and astrogliosis. Moreover,
CSF-1R  immunopositivity on remaining activated
microglia was clearly weaker than that in brains with
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other diseases. In mice homozygous for a null mutation
in Csflr and in the CSF-1 ligand gene (GsfI7%), a
reduced number and morphologic alteration of microglia
have been reported.”*" The histopathologic features of
microglia in the present patients appear to be similar to
those of the mutant mice, even though the degree of
abnormality is different between the 2 species. Moreover,



macroscopic findings in brains of CyfIr-deficient mice
such as reduced brain size, ventricular enlargement,
and defects in the corpus callosum are also commonly
observed in patients with FIDLS.* Impairment of the
CSF-1R-mediated microglial repair of axonal
degeneration may contribute to the development of
HDLS, because mice showing defective microglia/mac-
rophages in the brain appeared to show impaired
remyelination. In contrast, a recent study has shown
that CSF-1R is expressed in neurons and CSF-1 admin-
istration improves neuronal cell survival without signifi-
cant microglial activation in a mouse model of
neurodegeneration.” Moreover, it was shown that
CSE-1R is expressed in neuronal stem cells and the
CSF-1R ligands directly stimulate neuronal differenti-
ation and neuronal precursor cell survival.?' Further
investigations are warranted to clarify whether microg-
lia or neurons play a predominant role in the patho-
genesis of HDLS.
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Abstract
The cerebral small vessel disease (CSVD) refers to a group of pathological condition

that affects the intracranial small vessels. CSVD causes lacunar infarction, white matter

disease and hemorrhage, and may contribute to development of dementia and motor

disability in the elderly. CSVD is a common aging phenomenon, however, little is known

about its molecular pathogenesis. To understand the molecular pathogenesis for CSVD,
here, we review the clinical spectrum, pathological findings and the molecular pathogene-

sis of CSVD caused by single gene defect: including cerebral autosomal dominant

arteriopathy with subcortical infarcts and leukoencephalopathy, cerebral autosomal

recessive arteriopathy with subcortical infarcts and leukoencephalopathy, COLAAL-

related disorders, retinal vasculopathy with cerebral leukodystrophy, Fabry disease, and

hereditary cerebral amyloid angiopathy.

Key words: CADASIL, CARASIL, COL4Al-related disorder, RVCL, hereditary cere-

bral amyloid angiopathy
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somal dammani arteriopathy with subcortical
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(CARASIL), COIL4Al-related disorder, reti-
nal vasculopathy with cerebral leukodystrophy
(RVCL). Fabry disease, hereditary cerebral
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