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Introduction

Abstract

Cerebral small vessel disease is a common disorder in the elderly. The findings of
hereditary small vessel disease studies clearly show that small vessel diseases have
a distinct molecular pathway that is different from that in large vessels. However,
the anatomical and functional heterogeneity of the cerebral small vessel system
makes it difficult to understand the concept and molecular mechanism for small
vessel disease. The purpose of this review is to explain the heterogeneity of small
vessels and the importance of the components of the capillary system in the patho-
genesis of cerebral small vessel disease. Although traditional investigations have
focused more attention on the arteriole, the most functional part of small arteries
is the capillary. Therefore, the capillary might play an important role in the patho-
genesis of small vessel disease. In the capillary, pericytes and astrocytes are unique
components with marked diversity. However, the molecular signature and function
of pericytes remain unknown. Furthermore, the morphology and molecular signa-
ture of astrocytes in the cortex and white matter are quite different. Therefore, the
mechanism of small vessel disease is not simple, and must be investigated consider-
ing the diversities of small vessels. In the capillary, cross-talk between cell compo-
nents exists. Among these cell signaling pathways, recent findings on the gene
responsible for hereditary small vessel disease show that transforming growth fac-
tor-f and platelet-derived growth factor-p could contribute to the molecular path-
ogenesis of small vessel disease. These findings provide useful information for the
development of a new therapeutic strategy for small vessel disease.

The concept of cerebral SVD is still obscure. Although
small vessels are anatomically and functionally different,

The vessel system in the brain is fundamental for main-
taining brain function. Among the components of the ves-
sel system, the small vessels play an important role in
maintaining the function. Diseases that mainly involve
small vessels are known as cerebral small vessel disease
(SVD). SVD is a common disorder in elderly populations,
and contributes to dementia, gait disturbance and stroke.!
The concept of SVD changes our understanding of cere-
bral vascular disease in that the molecular pathogenesis of
SVD is different from that of large vessel disease, which
is mainly caused by arteriosclerosis. With advances in
molecular genetics, the genes that cause cerebral SVD
have been identified. Study findings have clearly shown
that SVD has a distinct molecular pathway that does not
involve large vessels. However, little is known about the
molecular basis of SVD.?
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we are still not sure which type of small vessel contributes
to the pathogenesis of cerebral SVD. Furthermore,
although a blood-brain barrier and perivascular drainage
of interstitial fluid from the brain parenchyma have been
proposed as a function in the small vessels in the brain,
the precise functions and involved components of small
vessels are not fully understood.®* To understand cerebral
SVD, the function and precise structure of the small ves-
sels in the brain must be clarified. Capillaries and sur-
rounding astrocytes are unique, and play an important role
in the function of small vessels. However, previous studies
on cerebral small vessels have mainly focused on the arte-
rioles, which are larger than capillaries.'" The purpose of
the present review is to explain the heterogeneity of the
cerebral small vessel system, and the importance of mural
cells in the pathogenesis of cerebral SVD, based on the
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findings from studies about the molecular pathogenesis of
hereditary SVD.

Heterogeneity of small vessels

A characteristic feature of the brain arteries is that they
mainly lose their external elastic membrane.® This feature of
the cerebral arteries might contribute to the high frequency
of brain vessel aneurysms.® Among the small vessels in the
brain, there are at least three different types of vessels: pial
artery, arteriole and capillary.” The pial artery is composed
of the following cells and connective tissue layers (starting
from the luminal side): endothelial cells, basement mem-
brane, internal clastic membrane, smooth muscle cells, base-
ment membrane, leptomeningeal cells and connective tissue.”
These small arteries have anastomoses.® The anatomical dif-
ferences among these three vessels include the absence or
presence of the internal elastic membrane, smooth muscle
cells and perivascular space. The elastic membrane is absent
in the arterioles, and smooth muscle cells and the perivascu-
lar space are both absent in the capillaries.

There are two types of arterioles, according to their ana-
tomical position in the cerebrum. One is the superficial per-
forating artery arising from the pial artery (smaller than
large arteries), and the other is the deep perforating artery
arising from the anterior, middle and posterior cerebral
arteries (large arteries). Superficial perforating arteries are
further divided into four types by the depth of the vessels
from the cerebral surface. Two types of superficial perforat-
ing arteries irrigate the different layers in the cortex, and the
others irrigate the corticomedullary junction and white mat-
ter.”'® In the cortex, small arteries are more abundant than
in white matter, and make anastomoses.

The superficial perforating artery that branches into the
periventricular area and irrigates the white matter is known
as the medullary artery. The medullary artery is divided into
two types by its shape after penetrating the cortex. After
penetrating the cortex, one artery extends straightly through
the white matter and the other bends at a right angle at the
subcortical area to access the deep white matter. The arteries
make anastomoses around the ventricular wall.!' The super-
ficial perforating arteries coil, loop and spiral within wide
adventitial spaces at the corticomedullary junction; the func-
tion of these structures is unknown.'' These arteries have
thick adventitial sheaths and large perivascular spaces in the
white matter not in the cortex.'' Meanwhile, the deep perfo-
rating artery branches out directly from the large artery,
and most of the arteries reach the basal ganglia and thala-
mus.'? In addition, some of these arteries have a dual lepto-
meningeal cell layer, resulting in a relatively large
perivascular space.” This unique structure might appear as a
relatively large perivascular space on T2-weighted magnetic
resonance imaging (MRI).

Another important characteristic of the small vessels is
their regulation by the neuron.'™!'* The pial artery is densely
innervated by the peripheral nervous system. In contrast,
small cortical arteries (arteriole or capillary) are innervated
by interneurons in the cortex or subcortical pathway neu-
rons. It is not known if these neuronal regulations also exist
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in small arteries in the subcortical area; however, the small
vessels in the white matter might be less tightly regulated by
the nervous system.

Diversities of capillaries

The most important function of capillaries in the small ves-
sel system is as a blood-brain barrier.* The non-fenestrated
endothelial cells and tight junction compose this system. The
endothelial cells are enveloped with pericytes and astrocyte
end-feet. This structure is sometimes called a neurovascular
unit; however, the contribution of the nervous system to
capillaries in the subcortical area is not clear.'® In the pres-
ent review, these components will be described as a capillary
unit, including capillaries, astrocytes and pericytes. In a cap-
illary unit, the endothelial cell plays several important roles
for barrier function: forming a tight junction, selective trans-
port system and endocytosis.*'> To maintain these charac-
teristic features, the endothelial cells in capillary express
several unique molecules, which are not observed in the
endothelial cells in arterioles; for example, claudin and oc-
cludin in tight junctions, glucose transporter 1 for selective
transportation and caveolin | for selective transcytosis.* In
addition, a recent study showed extravasation of clots in the
capillary to the brain parenchyma by the endothelial cells,
suggesting that the function and characteristics of endothe-
lial cells in the capillary might be different from those in the
arteriole.'® Furthermore, it is not known if all the endothe-
lial cells in the central nervous system are identical regard-
less of their location. Endothelial cells are tightly associated
with pericytes, which are mural cells in the capillary, by
autocrine and paracrine signaling.'”'® If the characteristics
and function of pericytes vary according to their location,
the same might also be true for endothelial cells.'

In capillaries, smooth muscle cells are absent, and peri-
cytes cover some extent of the abluminal side of endothelial
cells. Compared with other species, the small vessels in the
human cortex are covered by a larger number of pericytes.?
Recent findings show that pericytes play an important role
in maintaining the blood—brain barrier function.'>!"%2% 1
addition, a decrease in the number of pericytes causes neu-
rodegeneration through a non-ischemic or hypo-oxygenic
pathway.?* Pericytes are cells attached to the abluminal side
of endothelial cells in the capillary and covering the
basement membrane along with endothelial cells. There are
several molecular signatures that can distinguish most of the
pericytes form other cells; however, none of the single
molecular markers can distinguish all of the pericytes from
other brain cells.?®?' The lineage of the pericytes in the cen-
tral nervous system is different in each part of brain.!”?02°
The embryonic sources of pericytes include neuroectoderm-
derived neural crest cells, which give rise to pericytes in the
forebrain, and mesoderm-derived mesenchymal stem cells,
which give rise to pericytes in the midbrain, brain stem and
spinal cord.

This complex is enveloped by astrocytes. Although the
contribution of the astrocytes to maintain the barrier func-
tion is not fully understood, the astrocytes might contribute
to the direction of the selective transportation between the
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luminal side and the brain parenchyma.?®?’ The astrocyte
also has marked heterogeneities, including protoplasmic and
fibrous astrocytes.?*?=3! The protoplasmic astrocyte is pre-
dominantly found in the cortex, and has many branching
processes with end-feet that envelop the synapse and capil-
laries. Furthermore, some of the branches extend to the sur-
face of the cerebrum. In contrast, the fibrous astrocyte is
found in white matter, and has a few unbranched processes
with end-feet that envelop Ranvier nodes and capillaries.
Although the lineage differences of each astrocyte in the
cerebrum is still obscure, the astrocytes in the spinal cord
have a distinct lineage depending on the anatomical position
in the spinal cord.?®?

Small arteries have marked anatomical and functional
diversities. Most prominently, small vessels in the cortex and
white matter are different in many aspects. The difference is
not simply explained by the difference of the circulation
dynamics or number of capillaries. The regulations by the
nervous system and the type of cells that compose the capil-
laries are fundamentally different between small vessels in
the cortex and white matter. These results indicate that
small vessels do not have a single architecture. We should to
pay more attention to the heterogeneities of cerebral small
vessels when we study the molecular pathogenesis of SVD.

Which type of small vessel is
responsible for the clinical features of
SVD?

MRTI has shown several aspects of SVD, white matter hyper-
intensity, lacunar infarction, microbleeds, cortical subarach-
noid hemorrhage, cortical microinfarction and cortical
thinning.>** Among these features, which feature is mostly
responsible for the clinical symptoms of SVD? The most
prominent feature of SVD on MRI is white matter hyperin-
tensity (WMHI). Indeed, several hereditary SVD show dif-
fuse WMHI; thus, there is no doubt that WMHI is a result
of small vessel alterations. The lower density of capillaries in
white matter might explain the vulnerability of the white
matter in SVD.!! As the medullary artery is severely affected
in sporadic SVD, Okeda et al. proposed the earthen pipe
hypothesis for the molecular pathogenesis of SVD.3*3% They
speculated that the hypoperfusion resulting from a loss of
autoregulation of small vessels contributes to the white mat-
ter pathology in SVD.

Although the autoregulation disturbance hypothesis might
explain a part of the molecular pathogenesis of white matter
injury, the loss of the smooth muscle cell layer cannot sim-
ply explain the entire feature of SVD. The pathological find-
ings of idiopathic basal ganglia calcification do not support
this hypothesis. Patients with idiopathic basal ganglia calcifi-
cation present massive calcifications in the perforating arte-
riole, specifically, in a portion of the media intima.**® In
the small vessels of patients with this disease, the contracting
property of the arteriole should be completely diminished.
However, WMHI is not an early finding in these patients.™*~
4 The difference between this small vessel pathology and
the other SVD is that the affected area is calcified and
protected from the bloodstream. Therefore, an additional
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mechanism should exist to explain the molecular pathogene-
sis of WMHI. In addition, accumulating evidence shows
that WMHI is not strongly correlated with the clinical
symptoms in hereditary SVD.**™¢ This feature markedly
precedes the onset of the neurological symptoms. Thus, the
significance of WMHI on development of clinical manifesta-
tions in SVD should be carefully assessed.**®

The capillary, which plays the most important role in the
small vessel system, could contribute to the clinical manifes-
tations in SVD.*® Capillary alterations can cause cognitive
impairment and movement dysfunction through different
mechanisms: (i) dysfunction of the barrier function; (ii) dys-
regulation of microcirculation dependent on neuronal activ-
ity; and (iii) failure of interstitial fluid draining.'7*%%!
Previous studies have attempted to explain the selective vul-
nerability for white matter, as changes in the white matter
are mostly prominent in SVD. However, if WMHI is just a
consequence of the dysfunction of the small vessel system,
we might lose track of the true pathogenesis that contributes
to the neurological manifestations of SVD. Further studies
should focus on the alteration of the microcirculation sys-
tem, including the capillary and surrounding cells, to under-
stand the pathogenesis of SVD.

Which component of small vessels is
important for the pathogenesis of SVD?

The degeneration of the smooth muscle cells and the split-
ting of the internal elastic membrane are characteristic fea-
tures in sporadic and some hereditary small vessels. The
splitting of the internal elastic fiber might cause the transi-
tion of smooth muscle cells and their migration and prolifer-
ation to the media intima, not apoptosis.>?> Furthermore, the
disturbance of elastic fiber by reducing the amounts of com-
ponent protein, elastin, does not cause SVD.* In con-
trast, patients with the mutation in actin, which is mainly
expressed in the smooth muscle cells, resemble those of spo-
radic SVD.*® Therefore, the degeneration of smooth muscle
cells might contribute to the pathogenesis of SVD.

However, the capillary, a functional small vessel, does not
have smooth muscle cells. The capillary has several unique
structures that distinguish it from other vessels and small
vessels in other organs. These unique structures might
explain why these disorders specifically affect the brain.
Thus, whether the components of the capillary unit are
important for pathogenesis of SVD will be addressed in the
present review.

One of the components of the cells in the capillary unit is
the pericyte. Pericytes are cells that share the basement
membrane with endothelial cells. However, the lack of
markers to identify pericytes makes it difficult to investigate
the involvement of these cells in the human brain.!>!72° The
involvement of pericytes in SVD is well characterized in dia-
betic retinopathy. In this disorder, pericyte apoptosis is an
early manifestation. The absence of pericytes is recognized
as a “pericyte ghost”, which represents the trace of the peri-
cyte as a space between the basement membrane.’’ In con-
trast, in brain parenchyma, it would be difficult to recognize
these traces. Therefore, there is a limitation to recognizing
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pericyte alterations in the human brain. However, the
importance of pericytes for maintaining the neuron and the
blood-brain barrier has recently been recognized.'>'"? The
involvement of pericytes has been observed in patients and a
mouse model of cerebral autosomal-dominant arteriopathy
with subcortical infarcts and leukoencephalopathy, a heredi-
tary SVD,*®¥ or idiopathic basal ganglia calcifica-
tion. 2223303960 Ty it would be interesting to investigate
the contribution of pericytes in cerebral SVD.

The other unique component in the capillary unit is the
astrocyte. The morphology and molecular signature of as-
trocytes is different between those in the cortex and white
matter.?**3! Fibrous astrocytes are plentiful in the white
matter, and have cylindrical processes with dense glial fila-
ments stained with glial fibrillary acidic protein. Protoplas-
mic astrocytes are popular in the gray matter, and have
more irregular processes and few glial filaments. Protoplas-
mic astrocytes contact and sheathe synapses and blood ves-
sels. Therefore, there is a possibility that an alteration on a
specific type of astrocyte results in the vulnerability of spe-
cific areas in the brain. For example, the mutation of the
glial fibrillary acidic protein, which is a fundamental skeletal
protein in the astrocyte and more popular in the fibrous as-
trocytes than protoplasmic astrocytes, causes demyelination
in the white matter. Although in the patients with a muta-
tion in the GFAP gene, the astrocytes in white matter are
predominantly affected, the clinical manifestations of the
patients are quite different from the SVD. Thus, it might be
difficult to consider that the astrocyte takes a primary role
in the pathogenesis of SVD.

Finally, the perivascular space, known as the Virchow-
Robin space, is a unique structure in the small vessel sys-
tems in the brain. Several hypotheses for the significance of
the space between the adventia and parenchyma (glia limi-
tans) in the brain have been provided.®' One of the hypothe-
ses is that the space functions as a pathway for drainage of
fluid or proteins from the brain parenchyma.>® Weller
et al. use the term, “protein elimination-failure angiopathy,”
for the disorder caused by the impairment of drainage path-
way by small vessels.” Cerebral amyloid angiopathy, which
predominantly involves the cortical and pial arteries, has
been considered part of the elimination failure disorders.’
The disease has been classified into two types depending on
the presence or absence of amyloid accumulation in capillar-
ies.”%%%4 In cerebral amyloid angiopathy, amyloid deposit in
the internal space of the mural cells results in the disappear-
ance of smooth muscle cells. In addition, WMHI is well
observed in patients with Alzheimer’s disease. Although the
elimination failure hypothesis is promising, more evidence
should be accumulated to prove that the perivascular space
functions as a drainage system in the brain.

Alteration of the signaling pathway
between the cell components of the
microcirculation system causes SVD

The identification of the gene responsible for hereditary
SVD provides the molecular pathway for SVD. Several
molecular mechanisms have been identified in SVD: (i) the
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alteration of structural proteins in the small vessel system;*
(ii) accumulation of the abnormal proteins or dysfunctional
metabolism in the small vessel system;**%” and (i) alter-
ation of the cell signaling pathway in the small vessel sys-
tem. The present review will focus on the contribution of
the cell signaling pathway on the pathogenesis of SVD.

We recently identified the causative genes for hereditary
SVD, cerebral autosomal recessive arteriopathy with subcor-
tical infarcts and leukoencephalopathy (CARASIL).®® Muta-
tions in the high-temperature requirement A (HTRA) serine
peptidase 1 (HTRA1) gene cause the disease. Disorganization
of the internal elastic membrane and loss of vascular smooth
muscle cells were observed in small cerebral arteries in
CARASIL.* These pathological findings resemble those
observed in patients with non-hereditary cerebral SVD.3*%
HTRAI has a serine protease activity, and decreases trans-
forming growth factor-B (TGF-P) family signaling.”® CARA-
SIL-associated mutant HTRAL show decreased protease
activity and fail to decrease TGF-p family signaling.®*”' Fur-
thermore, the fibronectin containing extra type I1I domain A
and versican, which are induced by increased TGF-B signal-
ing, accumulate and TGF-B! is increased in the media intima
of small cerebral arteries of patients with CARASIL.%"!
These findings show that increased TGF- signaling plays a
pivotal role in the pathogenesis of SVD in CARASIL.
HTRAL decreases TGF-B1 signaling by interfering with the
maturation of proTGF-B1 in the intracellular space. HTRA1
cleaves the pro-domain of proTGF-B1, and cleaved proTGF-
Bl is degraded.”" Consequently, the amount of mature TGF-
Bl is reduced. The intracellular cleavage of proTGF-BI is a
novel mechanism to regulate the amount of TGF-81.7%7? The
relationship between the dysregulation of TGF-B signaling
and the loss of smooth muscle cells in small cerebral vessels
might show an emerging molecular mechanism for cerebral
SVD. TGF-B is a well-known cytokine that is secreted from
endothelial cells, pericytes and astrocytes.'>'” The receptors
for TGF-p are also expressed in these cells. Therefore, TGF-B
signaling could affect autocrine or paracrine signaling.
Although it is still not clear in which cell HTRAL is
expressed, the endothelial cell is a possible candidate and reg-
ulates TGF-B signaling.”*"

Another component of the cell signaling pathway, which
functions between endothelial cells and pericytes, is the
platelet-derived  growth  factor-p  (PDGFB).'>'7  The
decreased PDGFB or receptor for PDGFp decreases the
number of pericytes, and results in the dysfunction of the
blood-brain barrier accompanied with neurodegeneration.?*
24 Mutations in PDGFP or receptor for PRGFB cause idio-
pathic basal ganglia calcification.’® Although the neuro-
pathological findings with these mutations have not been
reported, neuropathological findings in patients with idio-
pathic basal ganglia calcification showed calcium deposition
in pericytes.*® The mural cells have the capacity to transition
into several characteristic states. For example, smooth mus-
cle cells transition from the contracting type to the non-con-
tracting type as well as the osteogenic type, depending on
the balance of the signaling pathway.”’> It would be inter-
esting to investigate the transition of pericytes to osteogenic
pericyte as a result of decreased PDGF-f signaling.
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Conclusion

Small cerebral vessels are a lost world in the brain architec-
ture. In the pharmacological field, the role of the small ves-
sels in the brain in relation to the function of the blood—
brain barrier and the molecules in the tight junction has
been investigated. Indeed, the tight junction plays an impor-
tant role in maintaining the barrier function; however,
recent advances in small vessel research show that selective
endocytosis in the capillary also plays an important role in
the barrier function.'> Furthermore, the capillary unit also
functions in the draining of interstitial fluid.> The fine regu-
lation of microcirculation in the cortex might also be impor-
tant to maintain brain function."'**! The pericytes,
astrocytes and neuronal regulation could take an important
role for these functions. To clarify the pathogenesis of SVD,
further research on the anatomical and functional heteroge-
neity in the small vessels and surrounding cells is required.
Furthermore, additional insight on how the cell signaling
pathway maintains the small vessel units will provide useful
information for the development of a new therapeutic strat-
egy to prevent the progression of SVD.
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he cerebral small vessel system plays a fundamental role

in maintaining higher brain function.! Although lacunar
stroke has been recognized as a disease in which small vessels
are mainly affected, advances in neuroradiological examina-
tion extend our knowledge of small vessel disecase to white
matter lesions, microbleeds, and cortical microinfarction.?
Accumulating evidence indicates that the risk factors and the
therapeutic strategies are different for large vessel disease
and small vessel disease.” Moreover, the recent discoveries
on monogenic disorders, which mainly affect small vessels,
clearly indicate that the human cerebral small vessels have
distinct molecular characteristics of cerebral large vessels.*
However, little is known about the molecular pathogenesis of
small vessel disease and how it is different from that of large
vessel disease. The investigation of hereditary small vessel
disease is necessary to clarify the molecular pathogenesis of
cerebral small vessel disease (CSVD).

Cerebral autosomal dominant arteriopathy with subcorti-
cal infarcts and leukoencephalopathy is the most common
dominant inherited CSVD, whereas cerebral autosomal reces-
sive arteriopathy with subcortical infarcts and leukoencepha-
lopathy (CARASIL) is a rare form of inherited CSVD.3¢
Fukutake®” has proposed the clinical triad for CARASIL,
leukoencephalopathy, alopecia, and lumbago and has sum-
marized the clinical findings of CARASIL in these patients.
The identification of the causative gene for CARASIL allows
anew understanding of the molecular pathogenesis of CSVD.?
Although CARASIL has been considered to be restricted to
Japan, we now know that CARASIL exists in other popu-
lations. In this review, we update the clinical findings of
CARASIL confirmed by genetic analysis and molecular
pathogenesis of CARASIL.

What Is CARASIL?
In 1976, Maeda et al® reported familial unusual encephalopa-
thy of the Binswanger’s type without hypertension in siblings
whose parents were consanguineous. They showed early

adult-onset dementia, pseudobulbar palsy, and pyramidal
and extrapyramidal symptoms. Postmortem studies revealed
diffuse and focal demyelination with sparing of U-fibers,
multiple small foci of perivascular softening in the cerebral
white matter and the basal ganglia, and severe arteriosclerotic
changes in the meningeal small arteries and long arteries in
the cerebral white matter. The other characteristic features
were severe lumbago and alopecia during the teenage years.
In 1995, Fukutake and Hirayama® studied the reported cases,
including their own cases of juvenile-onset Binswanger-type
encephalopathy accompanied by alopecia and lumbago in an
autosomal recessive form and proposed new disease criteria
for CARASIL.

In 2009, Hara et al® identified that the mutation in the high-
temperature requirement serine peptidase Al (HTRAI) gene
codes a protease in patients with CARASIL. To date, 10 muta-
tions in the HTRAI gene have been identified in 12 families
(Figure 1A; Table).36%-" Most patients with CARASIL have
been reported in Japan; however, in families with CARASIL,
we cannot find any founder haplotype that explains this
regional accumulation. Moreover, 2 Chinese families,'>!¢ 2
white families,"'® and 1 Turkish family'" have been identified
as having CARASIL. As described later in this review, clini-
cal heterogeneity has been recognized in CARASIL. These
findings indicate that CARASIL is not unique to the Japanese
population and might be underdiagnosed.

Clinical Features of CARASIL
We have obtained and summarized clinical features of
patients with genetically proven CARASIL from the litera-
ture or medical records (Table).>¢-!? Patients with CARASIL
present with early adult-onset dementia, gait disturbance, alo-
pecia, and low back pain.*® Motor and mental abnormalities
develop at the age of =30 years (dementia: mean age of onset,
35.1 years [range, 24-50 years]; gait disturbance: mean age of
onset, 30.7 years [range, 23—39 years]). Then, a diffuse sym-
metrical white matter lesion is noticed on neuroradiological
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p.Ala252Thr -*————f /

p.Arg274Gln
p.Pro285Leu

\_—— p.Leu364Pro
p.Val297Met

\———— p.Gly295Arg

= p.{Glud2f5];[ Ala321 Thr] (compound heterozygote)

p.Arg302end
p.Arg370end

nsulin-like growth factor binding protein domain

B Kazal-type serine protease inhibitor domain

B Trypsin-like serine protease domain

PDZ domain

Figure 1. HTRAT mutations and brain MRI findings in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoen-
cephalopathy. A, Distribution of HTRAT mutations. HTRAT gene consists of 9 exons (squares): those encoding the insulin-like growth
factor-binding protein domain (red; 35-111 aa); the Kazal-type serine protease inhibitor domain (blue; 114-155 aa); the trypsin-like ser-
ine protease domain (orange; 204-364 aa); and the PDZ domain (green; 382-473 aa). All individuals are homozygotes for missense or
nonsense mutations, except for the patient with p.[Glu42fs];[Ala321Thr].5%-1° B, Brain images of fluid-attenuated inversion recovery of
the patient with p.Arg370end. Extensive white matter lesions involving the anterior temporal lobe are seen. These findings are accompa-
nied by multiple lacunes in the periventricular regions and the thalami. The hyperintensities in the external and internal capsules are also

observed.

examination, suggesting CARASIL. The patients do not have
hypertension or diabetes mellitus, which are the major risk
factors for sporadic CSVD. Diffuse thinning of hair with-
out hairline recession beginning during the teenage years or
when patients are in their 20s has been recognized in 9 of 12
families (mean age, 16.7 years; range, 0-27 years). Pubic hair
loss and body hair loss have not been reported. Acute mid- to
lower-back pain has been noticed at a mean age of 24.9 years
(range, 14-39 years). Mood changes (apathy and irritabil-
ity), pseudobulbar palsy, hyper-reflexia, Babinski sign, and
urinary incontinence are frequently observed. Motor and cog-
nitive functions slowly decline, and 7 of 13 patients needed
wheelchairs by 30 to 40 years of age. An acute ischemic
stroke event has been reported in 23.1%, and no hemorrhagic
stroke events have been reported. Five of 13 patients (38.5%)
have experienced horizontal nystagmus. Two of 13 patients
(15.4%) have experienced advanced-stage seizures. Obvious
migraines have not been reported in these patients, and there
has been no skin color change in the extremities. Retina and
kidney involvement have not been reported; however, in
other small vessel diseases, involvement of retinal vessels or
involvement of renal dysfunction has been reported.

Neuroradiological Findings in CARASIL
We have directly reviewed brain MRI results from 7 patients
with CARASIL (Table).>¢!!-14 White matter hyperinten-
sity on T2-weighted or fluid-attenuation inversion recovery
images is symmetrically distributed and located periventricu-
lar to subcortical white matter (Figure 1B). Abnormalities are
observed in the white matter of the anterior temporal lobe,
cerebellum, brain stem, and external capsule. Although these
findings resemble those of cerebral autosomal dominant

arteriopathy with subcortical infarcts and leukoencephalopa-
thy, it is not clear whether the white matter changes in the
anterior temporal poles and external capsule, which are char-
acteristic early signs in cerebral autosomal dominant arteri-
opathy with subcortical infarcts and leukoencephalopathy,?
are also observed in early stages of CARASIL. The magnetic
resonance spectroscopy finding of a patient with dementia
and pyramidal signs has shown a normal N-acetyl aspartate
peak in the white matter lesion, indicating the absence of
neuroaxonal degeneration.?' In contrast, the choline peak was
elevated, which is a finding consistent with ischemia-induced
demyelination. Lacunar infarctions are detected in the thala-
mus, basal ganglia, and deep white matter. At the progres-
sive stage, diffuse brain atrophy and both lobar and nonlobar
microbleeds in cerebral cortex, thalamus, and cerebellum are
observed. U-fibers are relatively preserved even during the
late stage. Brain magnetic resonance angiography and con-
ventional angiography do not show any pathological changes.
Single-photon emission computed tomography shows hypo-
perfusion in the frontal lobe. On spinal MRI, spondylosis
deformans and disk degeneration are observed in cervical
and lumbar spine at the age of #30 years. Interestingly, these
findings have not been identified during their early stages.
Therefore, it is still unknown why lumbago symptoms occur
during the teenage years.

Cerebral Small Vessel Pathology in CARASIL
The autopsy findings of CARASIL have been reported in
3 instances: in a patient with p.Arg302end, a mutation in
the HTRAI gene; in a sibling with p.Ala252Thr; and in the
original patient.®!>%22 In the cerebral small arteries, smooth
muscle cells were extensively lost, even in arteries without



Table. Summary of Clinical Features in Patients With Cerebral Autosomal Recessive Arteriopathy With Subcortical Infarcts and Leukoencephalopathy and HTRAT Mutations

Mean Ages at
Onset, y (Range)

Patient

Reference

Family

Consanguinity of family

Mutation (nucleotide and
amino acids)

Age at time of study, y
Sex

Brain MRIs were dierctly
reviewed by author

Symptoms, y
Migraine
Alopecia
Spinal spondyiosis
Gait disturbance
Acute stroke event
Mood change
Urinary incontinence
Dementia
Seizure
Wheel chair bound
Neurological findings
Horizontal nystagmus
Pseudobulbar palsy
Hyper-reflexia of limbs
Babinski sign
Rigidity
Optic fundi

Risk factors
Hypertension
Diabetes meflitus
Dyslipidemia
Alcohol
Smoking

5,12
|
Yes

C.754G>A
p.A252T

48
F
Yes

Teens
39
38

Slight
arteriolosclerosis

13,14
I
Yes

¢.821G>A
pR274Q

41
M
Yes

39
38

38

41

Not done

+

+

3
14
I
Yes

¢.821G>A
pR274Q

44
F
Yes

37
37

43

43

42

Normal

4
16
il

Yes

€.854C>T
p.p28sL

26
F
No

26
23

24
24
24

+

Not done

5
17
1%
No

C.8836>A
p.G295R

43
M
No

34
34

34
34

43

+

Not done

+

+

510
v
Yes

¢.889G>A
p.V297M

33
M
No

14
33
29

29
33

o+ o+

+

Not done

5,11
i
Yes

.889G>A
p.v297M

50
F
Yes

16
39
31

50
50

+

Normal

8

56
\
Yes

¢.904C>T
p.R302end

44
M
Yes

16
22
26
31

38
37
42
37

+

+

Not done

9

59
Vil
Yes

©.904C>T
p.R302end

46
F
Yes

14
32
29

29
31
29
31
32

o+t

Normal

10
15
X
Yes

¢.1091T>C
p.L364p

27
F
No

27
26
27

Not done

Yes

¢.1108C>T
p.R370end

44
F
Yes

18

21

35

35

35

+ o4+ o+

Not done

Yes

¢.1108C>T
p.R370end

27
F
No

27
27
27

Not done

No

c.[126delGL;[961G>A]
p.[E42fs];[A321T]

29
F
No

29
24
24

Not done

16.7 (0-27)

30.4 (21-39)
30.7 (23-39
31.0 (24-38
33.0 (24-43)
34.3 (24-50)
35.1 (24-50)
365 (31-42)

(

)
)

40.3 (32-48) -

Information from the patients whose clinical features are available.>5*' + indicates present; and —, not available.
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sclerotic changes. Sclerotic changes were mild and infre-
quent; most of the arteries were enlarged rather than exhib-
iting luminal stenosis. Tunica media of the cerebral small
arteries exhibited hyalinosis and were immunopositive for
fibrinogen. These pathological findings resemble those
observed in nonhereditary ischemic CSVD.? In the patients
with nonhereditary ischemic CSVD, marked degeneration
of vascular smooth muscle cells with collapse and dilata-
tion in the cerebral small arteries, the so-called earthen pipe
phenomenon, were observed.? These changes might disturb
autoregulatory mechanisms for cerebral blood flow, resulting
in ischemic changes in the deep white matter.?

The internal elastic membrane, which is composed of elas-
tin, is split into multiple layers and fragmented. Some intima is
thickened with fibrosis and involves myointimal cells, which
were sparsely stained by a-smooth muscle actin antibody.
Arterial adventitia was thin and decreased immunoreactivity
for type I, type III, and type VI collagens.”® These changes
were relatively limited in cerebral small arteries and were not
detected in intracranial large arteries and extracranial arteries.
Lysosome-like bodies were found in the cytoplasm of smooth
muscle cells in small arteries.'? No obvious deposit or inclu-
sion, including granular osmiophilic material or amyloid, was
observed. Diffuse myelin pallor in the cerebral white matter
with sparing U-fibers and multiple small foci of perivascular
softening in the cerebral white matter, basal ganglia, and brain
stem were observed.

Loss of HTRA1 Protease Function
Causes CARASIL

The HTRAI gene consists of 9 exons producing HTRAL, a
serine protease belonging to the HTRA protein family whose
members have dual activities as chaperones and serine pro-
teases (Figure 1A).26 HTRA1 has an N-terminal insulin-like
growth factor-binding protein domain, a Kazal-type ser-
ine protease inhibitor domain, a trypsin-like serine protease
domain, and a C-terminal PDZ domain.”’ HTRA! proteases
exist as trimers, thus allowing communication between adja-
cent subunits to regulate protease. The activation cascade is
initiated by the ligand-dependent interaction of neighboring
HTRAIs in a trimer, thereby inducing the proper adjustment
of the activation domain His220, Asp250, and Ser328 in the
trypsin-like serine protease domain.®%

To date, 10 mutations in the HTRAI gene have been identi-
fied in 13 patients from 12 families (Figure 1A).5"' They
include 7 missense mutations, 2 nonsense mutations, and 1
deletion mutation. The premature termination codons, which
are caused by the nonsense or deletion mutations, fulfill the
criteria of the nonsense-mediated mRNA decay, indicating
the marked reduction of the amounts of mRNA from these
alleles.™™ All of the missense mutations were located in or
around the protease domain of HTRA 1, suggesting the reduc-
tion in the protease activity. The disease-associated mutant
HTRAls (p.Ala252Thr, p.Arg274Gln, and p.Val297Met)
decrease their protease activity.>* These findings indicate
that CARASIL. is caused by the loss of HTRALI or its prote-
ase activity. Among the mutations with HTRA1, the residual
HTRAL activity of p.Arg302end, which completely loses its

protease domain, should be the lowest. Therefore, we can
speculate that patients with p.Arg302end show the most severe
phenotype with CARASIL; however, the onset and the clinical
severities are similar for the patients with p.Arg302end and
other patients (Table).

Dysregulation of Transforming Growth Factor-
B Signaling Underlies Molecular Pathogenesis
in CARASIL
Studies have shown that HTRA protein decreases transform-
ing growth factor-p (TGF-f3) family signaling.3! TGF- is a
cytokine that promotes cell differentiation and fibrous pro-
liferation in response to tissue damage and has an important
role in vascular integrity.’? Loss of HTRA1 activity leads
to an increase in TGF-f signaling. CARASIL-associated
mutant HTRA1s fail to decrease TGF-f3 family signaling.’
Moreover, the extra domain A of fibronectin and versican,
which are induced by increased TGF-§ signaling, accumu-
late in the hypertrophic intima of cerebral small arteries.® In
addition, hyaluronan, an extracellular matrix protein that is
induced by TGF-$1 signaling, also accumulates in the small
cerebral arterial walls.® In endothelial cells of small cerebral
arteries, the expression of phosphorylated Smad2, which is
induced by TGF-f31 signaling, increased. Finally, TGF-$1 and
latency-associated peptide, which forms a complex with TGF-
B1, increase in the cerebral small arteries of patients with
CARASIL.5* No expression of extra domain A of fibronectin
was detected in arterial walls of coronal tissue, renal arteries,
or the aorta from a patient with CARASIL. These findings
indicate that the increased TGF-f3 signaling plays a pivotal
role in the pathogenesis of CSVD in CARASIL. Acceleration
of TGF-f signaling might cause the degeneration of vascular
smooth muscle cells because TGF-3 signaling has an impor-
tant role in the differentiation of vascular smooth muscle
cells. In extracentral nervous system symptoms of CARASIL,
upregulation of TGF-f family signaling might cause alopecia

or spondylosis deformans.*3

How the HTRA1 Inhibits TGF-p Signaling
TGF-f signaling is temporally and spatially regulated by
balance among maturation, sequestration, and presenta-
tion (Figure 2).°2% TGF-f is synthesized as a homodimeric
proprotein (proTGF-f) and is subsequently cleaved into
an N-terminal latency-associated peptide and a C-terminal
mature TGF-3 by a proprotein convertase, such as furin, in
the trans-Golgi network. Latency-associated peptide forms
a noncovalent complex with a dimer of mature TGF-3. This
complex binds to a latent TGF-B-binding protein, and the
bound complex is then secreted and anchored to the extracel-
lular matrix, resulting in the sequestration of the mature TGF-
B in the extracellular space. The sequestered mature TGF-f3
is activated by serine protease, matrix metalloproteinase,
or acidic microenvironments in the extracellular space. The
extracellular matrix, which stores TGF-§ in a complex with
latency-associated peptide and latent TGF-B-binding protein,
also regulates the bioavailability of TGF-f3. The activation of
mature TGF-f3 is the rate-limiting step for TGF-f3 signaling.
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Figure 2. The schema of transforming growth factor-p (TGF-p) processing and possible interactions between TGF-f and HTRA1. A,
TGF-f is synthesized as a proprotein (proTGF-f3), which undergoes proteolytic processing.®>® The proTGF-f is then cleaved by furin
convertase. The cleaved products yield a small latent TGF-f3 complex, in which the latency-associated peptides and the TGF-f3 dimer
are connected. The small latent TGF-} complex binds with latent TGF-f} binding protein and is secreted into the extracellular space and
anchored in the extracellular matrix. Chemical stress or proteases can open small latent TGF-} complex to release the TGF-f} dimer. The
TGF-B dimer binds to TGF-} receptor. HTRA1 might cleave (A) proTGF-f,% (B) TGF-f} dimer,*'?¢ (C) TGF-f receptor,*” or (D) extracellular
matrix proteins.?® The cleaved products are degradated, resulting in the reduction of TGF-f} signaling.

Tighter regulation of bioavailability of TGF-f} in intracel-
lular and extracellular spaces is important for regulating its
signaling.

For the downregulation mechanism of TGF-f} signaling by
HTRAI1, we have proposed that HTRAI cleaves the prodo-
main of proTGF-$ 1 in the endoplasmic reticulum before furin
processes proTGF-p1 in the trans-Golgi network.™ The aber-
rant cleaved products of proTGF-f1 are degradated by the
endoplasmic reticulum-associated degradation system, lead-
ing to a reduced amount of mature TGF-f31. In contrast, it has
been reported that HTRA 1 cleaves mature TGF-f1 or TGF-f31
receptors in extracellular space.*'**¥ However, all results in
regard to the downregulation of TGF-f3 signaling by HTRA 1
were obtained by the overexpression conditions; thus, the
downregulation mechanism under physiological conditions is
still unclear.

Why Vascular Pathology Is Predominant in
Cerebral Small Vessels
The selectivity of cerebral small vessels in CARASIL is not
explained by the expression of HTRAI. Although the specific-
ity of the antibodies has not been evaluated fully, HTRAI is
ubiquitously expressed in various human tissues.® Therefore,
we have to consider a unique role of HTRA1 or TGF-§} family
signaling in maintaining the integrity of cerebral small ves-
sels. TGF-B1 is secreted from astrocytes, microglia, smooth
muscle cells, and endothelial cells in neurovascular units and
plays an important role in maintaining their function and sur-
vival.® HTRALI is expressed in endothelial cells and astro-
cytes in cerebral small vessels.” HTRA1 cleaves proTGF-31
and downregulates TGF-$1 synthesis in these cells. The
intracellular cleavage of proTGF-f1 is a unique mechanism
for regulating the amount of TGF-f family protein, indicating

that this mechanism has some specific role for circumstance-
dependent regulation of TGF-§ signaling in cerebral small
vessels.

The other factors that regulate TGF-f signaling are an acti-
vation system and receptors for TGF-f. Fibrinogen-bound
latent TGF-f interacts with astrocytes, leading to active TGF-
B formation. In CARASIL patients, fibrinogen deposited in
tunica media of cerebral small arteries might accelerate the
TGF-p signaling in cerebral small vessels. TGF-f31 binds type
Iand type II receptors on the plasma membrane, and each type
involves several different receptors. On ligand-induced het-
eromeric complex formation, the type I receptor is phosphor-
ylated by the type II receptor. TGF- signaling is temporally
and spatially regulated by the diversity of these receptors and
coreceptors in each cell type.*! Different expressions of the
receptors in each type of cell in cerebral small arteries might
be associated with the vascular pathology of CARASIL. The
profiles of the receptors and coreceptors in the cerebral small
arteries should be elucidated.

Clinical Heterogeneity of CARASIL
Although leukoencephalopathy, lumbago, and alopecia are
the clinical triad of CARASIL, we have realized that some
patients with mutations in the HTRAI gene do not show signs
of alopecia (Table). The frequency of alopecia in families with
genetically proven CARASIL is 72.7%. Moreover, when low
back pain begins, sometimes there is no apparent neuroradio-
logical finding in the lumbar spine.

We have to be cautious because most of the reported cases
of CARASIL are suspected because of the existence of early-
onset leukoencephalopathy. However, there is a possibility
that residual protease activity could affect the severity of the
disease. Thus, we imagine that some patients show later-onset



