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Expression and purification of AG73-(VPGIG)5,

E. coli BL21 {DE3} pLysS {Life Technologies Corporation) was
transformed with the expression vector pET28(+) encoding
AG73-{VPGIG)sq, and fermented in 2x¥T medium supplemented
with 34 pg mL * of kanamycin at 30 °C. After incubation
{ODgyo = 0.5-0.6), protein expression was induced by the
addition of 0.1 M B-isopropyl thiogalactoside (IPTG) and E. coli
was harvested by centrifugation at 3500 » g at 4 °C for 15 min
following 3 b of continued growth. The bacterial pellet was
resuspended with a lysis solution (8 M urea) and frozen at
=80 °C. After thawing, bacteria were disrupted by sonication.
Insoluble debris was removed by centrifugation at 10 000 x g at
4 *C for 15 min, and then the supernatant was purified by using
a Histag affinity column {COSMOGEL His-Accept, Nacalai
Tesque, Kyoto, Japan). After dialysis (MwCo = 10 000 Da} in
deionized water at 4 °C, purified AG73-{(VPGIG)s, was obtained
by lvophilization.

Characterization of AG73-VPGIG

Purified AG73-{VPGIG]3, was dissolved in Milli-Q water (18 MO
em *; Millipore, Billerica, MA, USA) or phosphate-buffered
saline {PBS; pH 7.2, ionic strength 0.167) {Life Technologies
Corporation) at 4 °C at a final concentration of 10 pM. The
solution of water-soluble elastin derived from porcine aorta
[elastin-A {252 kDa); Wako Chemical Co., Osaka, Japan] was
also prepared at the same concentration to compare the prop-
erties with those of AG73-(VPGIG},;. The temperature-depen-
dent coacervation of AG73-(VPGIG)s, was determined by
dynamic light scattering {Zetasizer Nano ZS, Malvern Instru-
ments, Southborough, UK}, The temperature was gradually
increased at a rate of 1 °C per hour from 10 “C to 70 °C, and the
particle size was detected.

AG73-VPGIG adsorption on PLLA films

PLLA {My, = 106 006 Da) {(Musashino Chemical Laboratory, Inc.,
Tokyo, Japan) was used to fabricate the films. PLLA films
{diameter = 13.0 mm, thickness = 0.5 mm] were prepared by
using a hot-shrinking machine at 180 °C and sterilized by UV
irradiadon. In addition to AG73-{VPGIG}s, and elastin-a, the
AG73 peptide synthesized by the Fmoe solid phase procedure
was dissolved in PBS at a concentration of 10 pM. PLLA films
were placed into a 24-well cell culture plate, and 1 mL of PRS
{abbreviated as PLLA in all figures) or each sample solution was
poured onto PLLA films at 4 “C. PLLA films were incubated for
24 hat 4 °C or 37 °C. Samples were washed three times with 1
mL of PBS at 37 “C. Samples were dried for surface analysis or
immediately used for the cell adhesion test.

Surface analysis of PLLA films

The water contact angle was measured by using a contact-angle
meter {CA-X; Kyowa Interface Science Co., Ltd., Saitama, Japan).
fmages of the water spreading on the sample were recorded by
using 2 camers and then analyzed. Three samples were
measured for each group.
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The surface composition of the protein-adsorbed PLLA films
was determined by means of X-ray photoelectron speciroscopy
(XPS; ESCA-3400, Shimadzu Co., Kyoto, Japan). The X-ray source
was a monochromatic Mg K, X-ray emitted from a rotating
anode. Survey scans were measured from 0 to 1200 eV. Peak
positions and areas were analyzed and ratios for Cis, N1s, and
Ols were caleulated using the software provided by the
manufacturer.

Neurite outgrowth assay

The neurite outgrowth assay was performed using rat adrenal
pheochromocytoma {PC12} cells (RIKEN BioResource Center,
Ibaraki, Japan) as the model for neural stem cells. PC12 cells
were maintained in DMEM supplemented with 100 units per
mL penicillin, 100 pg mL * streptomycin {Life Technologies
Corporation}, 10% fetal bovine serum {FBS; MP Biomedicals,
Inc,, Solon, OH, USA}, and 7.5% hors¢ secrum (HS; Sigma-
Aldrich, Inc., St. Louis, MO, USA). PC12 cells were cultured in
poly-v-Lys-coated cell-culture dishes {Asahi glass Co., Ltd.,
‘Tokyo, Japan} and maintained at 37 °C in an atmosphere
composed of 5% CO, and 93% air. For the neurite outgrowth
assay, PC12 cells were culdvated in the DMEM/F12 medium
{Life Technologies Corporation) containing 100 ng mL ' nerve
growth factor (NGF; Sigma-Aldrich, Ine.) for 24 h on pelystyrene
cell-culture dishes. Then, the medium was gently changed to
the normal culture medium and cells were incubated for 30 min
at 37 °C in an atmosphere composed of 5% CO, and 95% air.
The cells were collected by gentle agitation and resuspended
with advanced DMEM/F12 containing 5 mg mL ' insulin {Life
Technologies Corporation), 100 ng mL * NGF, 20 nM proges-
terone, 100 mg mL ' transferrin, and 30 nM sodium sclenite
{Na,Se0,} (Nacalai Tesque, Inc., Kyoto, Japan). Collected cells
were sceded on PLLA films on which proteins were previously
adsorbed at 4 or 37 °C in 24-well cell-culture plates ata density
of 2.0 % 10° cells per film, and incubated at 37 *C for 24 h. Three
wells were ed for cach experi 1 condition. Adherent
cells on PLLA films were fixed with 10% formalin and stained by
using 4% crystal violet/methanol solution. The number of PC12
cells was counted and they were categorized based on the
neurite length according to the photographs taken at five arbi-
trary positions in each well. The statistical significance of total
adhering PC12 cells among cach surface was determined by
using one-way ANOVA and the Turkey post-hoc test.

Conclusions

An elastin-like peptide containing the laminin-derived neurite
outgrowth-promoting sequence AG73-(VPGIG);, was designed
and genetically synthesized. AG73-(VPGIG}3, showed tempera.
ture-dependent coacervation at 14 °C in PBS solution. AG73-
{VPGIG);, more efficiently adsorbed and immobilized onto
PLLA films viz a hydrophobic interaction when the temperature
was changed from 4 °C to 37 °C. Adhesion and neurite
outgrowth of PC12 cells were significantly enhanced on AG73-
(VPGIG);-immobilized PLLA films. This result showed that the
bioactive AG?3 domain was casily introduced on the PLLA
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surface by simple adsorption of AG73-{VPGIG)s,. PLLA is widely
used as a biodegradable scaffold for tissue engineering, but its
biological activity has to be supplemented by coating with bio-
derived proteins such as collagen. The simple immobilization
of AG73-{VPGIG}y is expected to replace the coating of bio-
derived proteins and shows the potential for future applica-
dons, including in vitro control of stem cell differentiation and
biological functionalization of scaffolds for the regeneration of
peripheral nerves.
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We developed a microfibrous poly(l-lactic acid) (PLLA) nerve conduit with a three-layered
structure to simultaneously enhance nerve regeneration and prevent adhesion of
surrounding tissue. The inner layer was composed of PLLA microfiber containing
25% elastindaminin mimetic protein (AG73-(VPGIG)z0} that promotes neurite outgrowth,
The thickest middle layer was constructed of pure PLLA microfibers that impart
the large mechanical strength to the conduit. A 10% polylethylene glycoll was
added to the outer layer to prevent the adhesion with the surrounding tissue.
The AG73-(VPGIGlay compositing of an elastindike repetitive sequence (VPGIG)s
and a lamininderived sequence (RKRLQVOLSIRT: AG73) was biosynthesized using
Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning
procedure. AG73-(VPGIGlz; was successfully mixed in the PLLA microfibers, and
the PLLA/AGT3-(VPGIG)z; microfibers were stable under physiological conditions. The
PLLA/AG73-(VPGIG}zy microfibers enhanced adhesion and neurite outgrowth of PC12
cells. The electrospun microfibrous conduit with a three-layered structure was implanted
for bridging a 2.0-cm gap in the tibial nerve of ‘a rabbit. Two months after implantation,
no adhesion of surrounding tissue was observed, and the action potential was slightly

improved in the narve conduit with the PLLAJAG73-(VPGIG) g inner layer.

Keywords: poly(Liactic acid), elasti

adhesion prevention

INTRODUCTION
Traumatic nerve injuries in which direct suturing of the proximal
and distal stumps is difficult due 1o the long nerve gap are gen-
erally treated with nerve autografts. However, autologous nerve
grafting has several disadvantages, such as size mismatch and per-
manent loss of donor function due to the extraction of normal
nerve. As an alternative, artificial nerve conduits have become
widely accepted for bridging gaps between nerve stumps (Ichihara
et al,, 2008; Lohmever et al., 2009; Sieminow and Brzezicki, 2009).
Artificial nerve conduits constructed of numerous polymeric
materials such as silicone (Lundborg et al, 1982), collagen
(Archibald et al, 1995), chitosan (Freier et al., 2005; Ao et al.,
2006), hyaluronic acid (Wang et al., 1998), poly(caprolactone)
{PCL), pely(glycolic acid) (PGA), and poly(lactic acid) {(PLA}
(Nakamura et al, 2004; Yoshitani et al, 2007) have been
investigated. Recently, an artificial nerve conduit composed of
poly(lactic-co-glycolic acid) (PLGA) mesh filled with animal-
derived collagen has been put into clinical use and has shown
good performance (Nakamura et al,, 2004). PLGA is hydrolyzed
and metabolized in vivo, and thus the PLGA conduit is absorbed
during nerve regeneration over the course of several months
{Mainil-Varlet ¢t al,, 1996). Because PLGA does not possess
any biological activity, collagen is used for promoting nerve

protein, microfiber, nerve conduit, tissue

regeneration. Collagen is a major component of the basement
membrane of nerve tissue and plays a key role in the recon-
struction of the axon network by Schwann cells (Thomas, 1964;
Chernousov ¢t al, 2008). Although collagen strongly enhances
nerve regeneration, animal-derived materials raise concerns
about viral infection and immune responses {(Lynn et al,, 2004).
The mesh structure of this conduit is effective for inhibiting
the intrusion of surrounding connective tissues and for allowing
the permeation of liquid factors and small molecules. However,
the mesh structure promotes adherence with surrounding tissues
and can cause painful traction neuropathies (Smit et al., 2004).
Hence, the ideal conduits for promoting nerve regeneration and
preventing tissue adhesion would not include animal-derived
materials,

To avoid the use of animal-derived materials, short peptide
sequences isolated from extracellular matrix proteins can be used,
because they show biological activity equal to that of full-length
proteins. For example, the RGD sequence of fibronectin provides
excellent cell adhesive properties (Hersel et al,, 2003). Focusing
on nerve regeneration, the IKVAV (Tashiro et al., 1989), YIGSR
(lwamoto et al,, 1987), and RKRLQVQLSIRT (AG73) (Nomizu
et al, 1996) sequences derived from laminin have been well
studied in the activation of neural cells. These small peptides are
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easily synthesized chemically or biologically and are useful for
imparting nerve regenerative activity to polymeric materials (Rao
and Winter, 2009; Kakinoki and Yamaoka, 2010). Suzuki et al.
prepared IKVAV- or YIGSR-immobilized tendon chitosan tubes
and demonstrated the efficacy of peptide immobilization for
assisting nerve regeneration in a rat model of nerve injury (Suzuki
et al., 2003a). Previously, we reported that poly(L-lactic acid)
(PLLA) nerve conduits modified with laminin-derived AG73 pep-
tides and a polyethylene glycol (PEG)-containing outer layer
are effective for preventing the adhesion of surrounding tissue
(Kakinoki et al., 2011). The AG73 peptide was immobilized onto
PLLA microfibers using oligo(D-lactic acid) (ODLA)-AG73 con-
jugates. The microfibers were fabricated by electrospinning of
a mixed solution containing PLLA and the ODLA-AG73 con-
jugate, resulting in stable immobilization of the AG73 peptide
via stereocomplex formation between the PLLA and the ODLA.
Regeneration of functional nerve tissue was observed in AG73-
immobilized microfibrous nerve conduit in the rat model of
nerve injury, but it required a long period of time, approximately
6 months. Thus, the efficiency of AG73-immobilized microfibers
is insufficient for nerve regeneration. We speculated that the effi-
cacy of AG73 immobilization was decreased immediately after
implantation by release of the low-molecular weight PDLA-AG73
conjugates from the microfibers in vivo,

To fabricate a more effective biological material for nerve
regeneration, we designed and biosynthesized a high molec-
ular weight elastin-laminin mimetic protein. The basement
membrane of nerve tissue is primarily constructed with col-
lagen, laminin, and elastin (Rutka et al, 1988). These pro-
teins cooperatively support the process of nerve regeneration.
Specifically, collagen and laminin function in axon exten-
sion, and elastin provides elasticity for the tissue structure
(Toyota et al., 1990). We previously biosynthesized an elastin-
laminin mimetic protein and used it for the functionalization
of PLLA scaffolds (Kakinoki and Yamaoka, 2014). This protein
is composed of 30 repeats of an elastin-like VPGIG repeti-
tive sequence and a laminin-derived AG73 sequence (AG73-
(VPGIG)30). AG73-(VPGIG)s0 showed temperature-dependent
coacervation in phosphate buffered saline (PBS) solution at
approximately 14°C. Because the AG73-(VPGIG)3p was insolu-
ble at body temperature, this protein was expected to serve as a
suitable scaffold for nerve regeneration. Our results showed that
the adhesion and neurite outgrowth of PC12 cells were enhanced
on the AG73-(VPGIG)3p adsorbed PLLA films in vitro.

In this study, we prepared PLLA microfibrous nerve conduit
with a three-layered structure that promoted nerve regenera-
tion and prevented tissue adhesion. The therapeutic efficacy of
peripheral nerve regeneration was evaluated using a rabbit model
of nerve injury. Microfibrous conduits composed of a PLLA,
PLLA/AG73, or PLLA/AG73-(VPGIG)3g inner layer, a PLLA mid-
dle layer, and a PLLA/PEG outer layer were fabricated using an
electrospinning procedure. Adhesion and neurite outgrowth of
PC12 cells on PLLA microfibers containing AG73-(VPGIG)3
were studied in vitro. Nerve autografts and microfibrous conduits
were implanted in rabbits to bridge a 2-cm tibial nerve gap. Two
months after implantation, nerve regeneration was evaluated by
electrophysiological measurements.

MATERIALS AND METHODS

EXPRESSION AND PURIFICATION OF THE ELASTIN-LAMININ MIMETIC
PROTEIN

The elastin-laminin mimetic protein (AG73-(VPGIG)3o) was
expressed by Escherichia coli BL21(DE3)pLysS (Life Technologies
Corporation, Carlsbad, CA, USA) that had been transformed
with the pET28(+) vector (Merck KGaA, Darmstadt, Germany)
encoding AG73-(VPGIG)sg, as described previously (Kakinoki
and Yamaoka, 2014). AG73-(VPGIG)3o expression was auto-
matically induced using an Overnight Express™ Autoinduction
System (Merck KGaA). Briefly, E. coli cells were incubated in
2 x YT medium supplemented with 34 jug/mL of kanamycin and
the reagents of the Overnight Express™ Autoinduction System
at 30°C for 24h. E. coli was harvested by centrifugation at
3500 x gat 4°C for 15 min. Bacterial pellets were resuspended
in lysis solution (8 M urea) and frozen at —80°C. After thaw-
ing, bacteria were disrupted by sonication on ice. Insoluble
debris was removed by centrifugation at 10,000 x g at 4°C for
15min, and the supernatant was purified on a His-tag affinity
column (COSMOGEL His-Accept, Nacalai Tesque, Kyoto, Japan).
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FIGURE 1| Silver staining of the gel after SDS-PAGE of purified
AG73-(VPGIG}30.

Frontiers in Chemistry | Chemical Biology

July 2014 | Volume 2 | Article 52 | 39

41



Kakinoki et al.

Protein and poly{l-lactic acid) nerve conduit

Following dialysis (MwCo = 10,000 Da) in deionized water at
4°C, purified AG73-(VPGIG)3o was obtained by lyophilization.
The purity of the AG73-(VPGIG)3p was confirmed by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
analysis with silver staining.

FABRICATION OF PLLA/AG73-(VPGIG)3o NON-WOVEN MICROFIBERS

A PLLA/AG73-(VPGIG)3p solution with a concentration of
20w% was prepared by dissolving PLLA (Mw: 106,000, Mn:
60,000, Mw/Mn: 1.77) (Musashino Chemical Laboratory, Inc.,
Tokyo, Japan) and AG73-(VPGIG)3 in hexafluoroisopropanol
(HFIP) at a weight ratio of 4:1. This solution was electrospun
using a plastic syringe equipped with a stainless steel needle
(length = 15.0mm, diameter = 20 G) at a constant feed rate
of 4mL/h. An aluminum plate was used as a target and the
distance between the target and the needle tip was 100 mm. The
solution was electrospun at a high voltage (15kV) for 5min.
Non-woven PLLA/AG73-(VPGIG)so microfibers were collected
and cut for subsequent experiments. Non-woven PLLA and
PLLA/AG73 microfibers were prepared using a similar procedure.
The concentration of the AG73 peptide (Purity > 82.6%; Sigma-
Aldrich, Inc.) in the PLLA/AG73 solution was adjusted to the
same molarity as that of the AG73-(VPGIG)s, in the non-woven
PLLA/AG73-(VPGIG)3p microfibers. After immersion in PBS
for 24 h at 37°C, the structure of the non-woven microfibers was
observed by scanning electron microscopy (SEM; JCM-5700,
JEOL, Tokyo, Japan).

NEURITE OUTGROWTH ASSAY

A neurite outgrowth assay was performed using rat adrenal
pheochromocytoma (PC12) cells (RIKEN BioResorce Center,
Ibaraki, Japan), which are widely used as a model for neural
stem cells. PC12 cells were maintained in Dulbecco’s modified
Eagles medium (DMEM) supplemented with 100 units/mL peni-
cillin, 100 pg/mL streptomycin (Life Technologies Corporation,
Carlsbad, CA, USA), 10% fetal bovine serum (FBS; MP
Biomedicals, Inc., Solon, OH, USA), and 7.5% horse serum
(HS; Sigma-Aldrich, Inc., St. Louis, MO, USA). PC12 cells
were cultured in poly-D-lysine-coated cell culture dishes (Asahi
Glass Co., Ltd., Tokyo, Japan) and maintained at 37°C in a
5% CO; atmosphere. Prior to the neurite growth assay, PC12
cells were cultivated in DMEM/F12 medium (Life Technologies
Corporation, Carlsbad, CA, USA) with 100 ng/mL nerve growth
factor (NGF; Sigma-Aldrich, Inc.) for 24h on polystyrene cell
culture dishes. The medium was refreshed with normal cul-
ture medium, and cells were incubated for 30 min at 37°C in
a 5% CO; atmosphere. Cells were harvested by gentle agita-
tion and resuspended in advanced DMEM/F12 containing 5
mg/mL insulin (Life Technologies Corporation, Carlsbad, CA,
USA), 100 ng/mL NGE, 20nM progesterone, 100 mg/mL trans-
ferrin, and 30nM sodium selenite (Na;SeOs) (Nacalai Tesque,
Inc., Kyoto, Japan), and seeded on non-woven microfibers fixed
with Cell Crown (Scaffdex Ltd., Tampere, Finland) in 24-
well cell culture plates at a density of 2.0 x 10 cells/sample.
After 48h incubation at 37°C in a 5% CO, atmosphere,

A PLLA

PLLA/AGT73

PLLA/AGT73-(VPGIG)3

s aw
Dia=199+083 (pm‘)wz
EE G E

at 37°C. Yellow arrows indicate fusion points.

Dia=128+0.77 (um)

PLLA/AGT3

FIGURE 2 | SEM images of electrospun PLLA, PLLA/AG73, and PLLA/ AG73-(VPGIG)3, micro-fibers (A) before and (B) after immersion in PBS for 24h

Dia.=084£0.25 (um)

www.frontiersin.org

July 2014 | Volume 2 | Article 52 | 40

42



Kakinoki et al.

Protein and poly{l-lactic acid} nerve conduit

cells adherent to the non-woven fibers were fixed with 10%
formalin and stained with 4% crystal violet/methanol solu-
tion. The number of adherent cells observed in the stained
images were counted and categorized according to neurite
length.

FABRICATION OF PLLA/AG73-(VPGIG)3o MICROFIBROUS CONDUIT

We designed the electrospun microfibrous conduits with 3 layer
structure, PLLA, PLLA/AG73, or PLLA/AG73-(VPGIG)3, inner
layer, PLLA middle layer, and PLLA/polyethylene glycol (PEG)
outer layer. For fabricating conduits, a rotating stainless steel
tube (outer diameter = 2.0 mm, speed = 1500 rpm) was used
as a target. Other conditions for electrospinning were completely
same to nonwovens. First, inner layer (PLLA, PLLA/AG73, or
PLLA/AG73-(VPGIG)30) was electrospun as described previously
for 5min. Middle layer was electrospun with 20w% of PLLA
solution for 30 min. Then, the mixed solution at 20w% contain-
ing PLLA and PEG (9:1) was electrospun for 10 min as an outer
layer. The matrices mass for inner, middle, and outer layer were
adjusted to 1: 6: 2 for covering inner and outer surface of the
mechanically strong middle layer. Microfibrous conduits were cut
to length of 22 mm, and immersed in 70%-ethanol for the ster-
ilization. After drying in vacuo, conduits were used for animal
experiment.

IMPLANTATION OF MICROFIBROUS CONDUITS
Electrospun microfibrous conduits were implanted into 2.0-cm
gaps in the left tibial nerve of a total of 12 New Zealand white

rabbits (3.0-3.5 kg, male) (Oriental Yeast Co., Ltd., Tokyo, Japan).
This study was performed in accordance with the animal exper-
imental guidelines of the National Cerebral and Cardiovascular
Center Research Institute. Rabbits were anesthetized by intra-
muscular injection of 0.1 mL/kg of Selactar (Bayer Yakuhin, Ltd.,
Osaka, Japan) and anesthesia was maintained by inhalation of
3% Escain isoflurane (Mylan Inc., Canonsburg, PA, USA). Under
an operating microscope, the left tibial nerve was exposed and a
2.0-cm segment was removed. A section of microfibrous conduit
was filled with physiological saline solution and sutured with 10-0
vicryl (Ethicon, Somerville, NJ, USA) to bridge the gap between
the proximal and distal stumps. Both nerve stumps were pulled
1.0 mm inside the conduits. In addition, the removed nerve tissue
was inverted on its proximal—distal axis and implanted as an auto-
graft control. Muscle and skin were closed with 3-0 silk sutures
(Ethicon), and the rabbits were allowed to recover in a controlled
environment.

ELECTROPHYSIOLOGICAL ANALYSIS

Two months after implantation, nerve regeneration was evalu-
ated by electrophysiological analysis. Rabbits were anesthetized
in the same manner as for transplantation of the microfibrous
conduits, and the implanted site was exposed from the proximal
to the distal portions. In order to record electromyograms at the
implantation site, a pair of stimulating and recording electrodes
was attached to the proximal and distal portions, respectively.
Both electrodes were connected to an electric stimulator (SEN-
3401, Nihon Kohden, Tokyo, Japan) and a data acquisition system

A PLLA

PLLA/AGT3

PLLA/AGT3-(VPGIG)s,

Number of adherent PC12 cells
(cells/sample)

FIGURE 3 | Adh and neurite h of NGF-treated PC12 cells
on electrospun nanofibers, (A} Morphology of NGFRtreated PC12 cells 48h
after seeding. Yellow arrows indicate neurites. (B} The number of adherent

PC12 cells categorized as non-neurites, short neurites {< 50 umj, and long
neurites (> 50 pm). * and T indicate statistically significant differences,
p < 0.05 vs, PLLA and PLLA/AG73, respectively (Student’s t-test).
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(PowerLab 8/30, ADInstruments, Colorado Springs, CO, USA).
The stimulation parameters were as follows: strength = 1V,
current = 1mA, duration = 10s, pulse width = 0.1ms.
The active potential was amplified using a PowerLab system
(ADInstruments, Burlingame, CA, USA), and recorded as the
average of 50 traces.

RESULTS AND DISCUSSION

EXPRESSION AND PURIFICATION OF ELASTIN-LAMININ MIMETIC
PROTEIN

SDS-PAGE analysis of purified AG73-(VPGIG)3 is shown in
Figure 1. A single band was observed at 17-18 kDa, which is con-
cordant with the theoretical molecular weight. Sixty milligrams
of high-purity AG73-(VPGIG)s, was successfully obtained from
1 L of culture medium. As previously reported, PBS solution con-
taining AG73-(VPGIG)s; demonstrated temperature-dependent
coacervation at 14°C, indicating that the protein is insoluble at
37°C in a physiological environment (Kakinoki and Yamaoka,
2014).

MORPHOLOGY AND STABILITY OF ELECTROSPUN NON-WOVEN
MICROFIBERS

SEM images of PLLA, PLLA/AG73, and PLLA/AG73-(VPGIG)s0
non-woven microfibers before and after PBS immersion are
shown in Figure2. The diameter of the PLLA microfibers
was approximately 2.0 pm (Figure 2A). When AG73 or AG73-
(VPGIG)30 was mixed with the PLLA, the diameter of the

PLLA/PEG

PLLA

PLLA
AGT73
PLLA/AG73-(VPGIG)s,

Inner layer
(PLLAJAGT73~(VPGIG)s0)

Outer layer
(PLLA/PEG)

FIGURE 4 | Micro-fibrous nerve conduit with a three-layered structure.
(A} Whole image, (B} SEM images of cross-sections and inner and outer
layers.

microfibers decreased to approximately 1.3 and 0.9 um, respec-
tively. The diameter of electrospun microfibers is known to be
influenced by solution viscosity and electronic charge (Huang
etal,, 2003). The PLLA concentration was decreased by the addi-
tion of the AG73 and AG73-(VPGIG)s, thus decreasing the
viscosity of the solution. Furthermore, the electronic charge of
the solution should be positive because AG73 is positive due to
its Arg and Lys residues. We assumed that the diameter of the
microfibers was decreased by the changes in solution viscosity
and electronic charge with the addition of the AG73 and AG73-
(VPGIG)3¢. The surfaces of the PLLA/AG73 and PLLA/AG73-
(VPGIG)3¢ were smooth, without phase separation, suggesting
that the AG73 and AG73-(VPGIG)3, were homogeneously
mixed.

The morphology of the microfibers following immersion in
PBS for 24h is shown in Figure2B. The shape of the PLLA
microfibers did not differ before and after immersion in PBS.
However, the morphology of PLLA/AG73 microfibers became
rough and some fusion appeared (Figure 2B; indicated with yel-
low arrows) after PBS immersion. These morphological changes
suggested that the PLLA/AG73 microfibers partially dissolved
in PBS. In contrast, the morphology of PLLA/AG73-(VPGIG)3
microfibers did not change after PBS immersion, indicating that
the PLLA/AG73-(VPGIG)s¢ microfibers were stable in a physio-
logical environment.

NEURITE OUTGROWTH OF PC12 CELLS ON NON-WOVEN MICROFIBERS

The morphology and number of PC12 cells adherent on non-
woven microfibers are shown in Figure 3. On PLLA, the rate of
adherence of PC12 cells was approximately 3750/sample. Most of
the adherent cells were non-neurites, and cells with long neu-
rites were not observed. On PLLA/AG73, a similar number of
adherent cells was observed, but neurite outgrowth was slightly
enhanced in comparison to PLLA. PC12 cells have been reported
to adhere to AG73-immobilized substrates through syndecans
and the NGF pathway has been reported to be activated, result-
ing in neurite outgrowth (Suzuki et al., 2003b). Thus, AG73 must
be stably immobilized on a substrate to express its biological func-
tion. The AG73 was removed from the surface of the PLLA/AG73
microfibers in culture medium, resulting in poor enhancement of
adhesion and neurite outgrowth of PC12 cells. On PLLA/AG73-
(VPGIG)3o microfibers, the adhesion and neurite outgrowth
of PCI12 cells was significantly accelerated compared to PLLA
and PLLA/AG?73. Because the hydrophobicity of the (VPGIG)3g
region renders AG73-(VPGIG)sq insoluble in PBS, it was stably
bound to the PLLA. The hydrophilic AG73 region was available
to contact PC12 cells at the outermost surface of the microfibers,
resulting in promotion of adhesion and neurite outgrowth of
PC12 cells.

NERVE REGENERATION IN THE RABBIT MODEL OF NERVE INJURY

The electrospun microfibrous conduits had a three-layered struc-
ture, including a PLLA/PEG outer layer, a PLLA middle layer,
and a PLLA, PLLA/AG73, or PLLA/ AG73-(VPGIG)3 inner
layer, as shown in Figure4. PEG was used in the outer layer to
prevent the adhesion of surrounding tissues, because the adhe-
sion of surrounding tissues to nerves causes painful traction
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Table 1| Peak time and i of active p Is d d

using el hysiological analysi

Experimental Peak of active N Average SD

group potential 1 3

PLLA Time {ms) 0.21 019 017 018 0.02
Intensity (mV}  0.11 0.03 0.12 0.08 0.05

PLUVAG73 Time (ms) 0.16 017 0.16 0.16 0.01
Intensity (mV})  0.28 0.13 008 0.16 0.10

PLUVAG73-(VPGIGlzo Time (ms) 0.177 015 014 015 0.02
Intensity (mV}) 0.24 018 018  0.21 0.03

neuropathies (Tashiro et al., 1989). The microfibrous conduits
were approximately 500-pm thick, and the diameter of the
PLLA/PEG microfiber outer layer was approximately 2.0 pm.
Intraoperative photographs of the autografts and the microfi-
brous conduits in the rabbit tibial nerve gap were taken imme-
diately after the implantation, and are shown in Figure5. The
conduits possessed sufficient strength for suturing and main-
tained their tubular shape after implantation. Two months after
implantation, the nerve autografts were strongly adhered to the
surrounding tissue and muscle, as shown in Figure 5. In contrast,
the microfibrous conduits were easily located because the PEG
in the PLLA microfibers of the outer layer had suppressed tissue
adhesion. All conduits maintained their tubular structure during
the 2 months, due to the slow degradation of the high molecular
weight PLLA.

Reinnervation by nerve autografts or conduit implantation
was analyzed by electrophysiological detection of active potentials

(Figure 6). The action potential of healthy tibial nerve was 0.9 mV
at 0.12ms. The intensity and peak time of the action potential
are summarized in Table 1. No action potential was detected in
implanted nerve autografts, due to the abnormal adhesion of sur-
rounding tissues, but action potentials were reproducibly detected
for PLLA microfibrous conduits. In unmodified PLLA conduit,
the time and intensity of the action potential were 0.19ms and
0.09 mV, respectively. Mixing the AG73 peptide in the inner lay-
ers lightly improved the action potential, to 0.16 mV at 0.16 ms.
The microfibrous conduit with a PLLA/AG73-(VPGIG)so inner
layer carried an action potential of 0.15ms at 0.21 mV. This
recovery is far from functional reinnervation, but nerve regen-
eration was slightly enhanced by mixing PLLA with AG73-
(VPGIG)3p, compared to PLLA and PLLA/AG73 nerve conduits
due to the stable interaction of AG73-(VPGIG)sy with PLLA
microfibers.

CONCLUSION

PLLA microfibers containing the AG73 peptide or the elastin-
laminin mimetic protein AG73-(VPGIG)3o were fabricated using
an electrospinning procedure. AG73-(VPGIG)3y was homoge-
neously mixed in PLLA microfibers, and the fibers were insolu-
ble in a physiological environment. Neurite outgrowth of PC12
cells was promoted on the PLLA/AG73-(VPGIG)s) non-woven
microfibers compared to that on the PLLA and PLLA/AG73 non-
woven microfibers. In addition, we prepared electrospun microfi-
brous conduits with a three-layered structure: a PLLA/PEG
outer layer, a PLLA middle layer, and a PLLA, PLLA/AG73,
or PLLA/AG73-(VPGIG)3o inner layer. When microfibrous con-
duits were implanted into a 2.0-cm gap in an injured rab-
bit tibial nerve, their tubular structure was maintained after
suturing. Although nerve autografts strongly adhered to the
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surrounding tissue, PLLA microfibrous conduits did not, owing
to PEG mixed in the outer layer. The active potential was slightly
improved in PLLA/AG73-(VPGIG )3¢ microfibrous conduit com-
pared to PLLA and PLLA/AG73 microfibrous conduits. However,
this recovery was insufficient to achieve functional reinnerva-
tion. Microfiber orientation has been reported to influence the
differentiation and proliferation of neural stem cell {Bashur
et 4l., 2006; Ghasemi-Mobarakeh et al, 2008). In this study,
the structure of the AG73-(VPGIG)zq microfibers of the inner
layer was random. Alignment of the inner-layer fibers of con-
duits is expected to enhance reinnervation. The results of this
study demonstrate that the ¢lectrospun PLLA microfiber con-
duit with a PEG-mixed outer layer and an AG73-(VPGIG)z-
mixed inner layershows excellent potential for enhancing nerve
regeneration.
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