Classification of TDP-43 proteinopathy

Fig.3 Trans-activation response (TAR)
DNA-binding protein of M, 43kDa
(TDP-43)-positive structures in other neuro-
degenerative disorders. Neuronal cytoplas-
mic inclusions (NCIs) and short dystrophic
neurites (DNs) stained with the pTDP-43-
specific antibody (pS403/404) in the temporal
cortex of the Alzheimer’s disease (AD) case
(A) and the dementia with Lewy bodies
(DLB) case (B). (C-E) Double-label immu-
nofluorescence histochemistry of the tempo- -
ralcortex of AD (C) and DLB (D) and of the
amygdala of argyrophilic grain disease
(AGD) (E). The green fluorescence reveals
the immunoreactivity for phosphorylated tau
(AT8) in C and E, and that for phos-
phorylated alpha-synuclein in D, while the
red fluorescence represents the immuno-
positivity for pS403/404 in C—E. Arrows indi-
cate the colocalization of tau and pTDP-43 in
C and E, and that of alpha—svnuclem and
pTDP-43in D. '

still unclear. A higher Braak NFT stage in the TDP-43
positive patients than in the TDP-43 negative ones was
found in DLB+AD cases” and in our study of AD cases.”
We also reported parallel distribution of TDP-43 positive
structures and tau positive grains and higher AGD stages
in cases with TDP-43 immunoreactivity than in those
without TDP-43 immunoreactivity in AGD.” Double-label
immunofluorescence microscopy reveals partial colocali-
zation of tau and TDP-43 in AD, DLB, AGD, Guamanian
PDC and CBD®*# 8879099 or of or-synuclein and TDP-43 in
DLBS% These findings suggest that there may be
common factors or mechanisms that affect the conforma-
tion or modification of these protems leading to their
intracellular accumulation. '

 Regarding the typing of TDP-43 pathology, neocomcal
TDP-43 pathology in AD and DLB corresponded to type
AS%% Immunoblot analyses of the sarkosyl insoluble
fraction from AD and DLB cases with neocortical TDP-43

pathology also showed that the band pattern of these CTFs -

in AD and DLB corresponded to that of type A, These
results suggest that the morphological and biochemical
features of TDP-43 pathology are common between AD or
DLB and a specific subtype of FTLD-TDP. Since all
FTLD-TDP cases with GRN mutations show type A
_pathology,® there may be genetic factors, such as mutations
or genetic variants of GRN underlying the co-occurrence

of abnormal deposition of TDP-43, tau and o-synuclein. -

Indeed, recently, GRN loss-of-function mutation has been
confirmed in patients clinically diagnosed with AD'1%
and Parkinson’s disease.'” The association between 1s5848

variant in the 3’ untranslated region of GRN and risk of

~AD has been reported in a Taiwanese population,'” sug-

gestmg that homozygous TT genotype accentuates the risk
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of AD. These findings suggest that PGRN reduction may
induce both TDP-43 pathology and AD pathology.

Cell death and TDP-43 pathology

A report using a cell culture system showed that intracellu-

lar aggregate formation of TDP-43 induced cell death.” In

brains of FTLD and ALS cases, basically, the occurrence of

TDP-43-positive neuronal structures is related to degenera-

tive changes.’® However, the issue of the relation between

the formation of TDP-43-positive inclusions and cell death

may not be straightforward, since neuronal loss was not

evident in the hippocampal granule cells* and the neo-

striatum'® where TDP-43-positive structures were present
in ALS cases. The reason for such a discrepancy between the

results of the cell culture experiments and the findings of .
diseased brains should be discussed as a future issue.

CONCLUSION

The relevance of the pathological classification of TDP-43
proteinopathy is supported by clinical, biochemical and
genetic correlations, although there is still highly significant
heterogeneity in cases with type A pathology (Table 2).
The results of the biochemical analyses of the diseased
brains and the cellular models suggest that different strains

- of TDP-43 with different conformations may determine the

clinicopathological phenotypes of TDP-43 proteinopathy,
like prion disease. Detecting each TDP-43 strain in biologi-
cal fluids may be useful for the differential diagnosis of

TDP-43' proteinopathy. Furthermore, elucidating the

mechanism of the conformational changes leading to the

formation of multiple TDP-43 strains may be important for .
developing disease-modifying therapy for these diseases.
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Table 2 Clinical, pathological and genetic associations of TDP-43 proteinopathy and other neurodegenerative disorders

Pathological subtype ~ Associated genes Clinical phenotypes Other diseases
bvFTD  PNFA SD MND
Semantic aphasia ~ Prosopagnosia ;
A GRN, C90RF72 + S+ PLS, ALS AD,DLB
B C90ORF72 : + + ALS
C ' +
+ PLS
D VCP + ALS

ALS, amyotrophic lateral sclerosis; AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; DLB, dementia with Lewy
bodies; MND, motor neuron disease; PLS, primary lateral sclerosis; PNFA, progressive non-fluent aphasia; SD, semantic dementia.
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C9ORF72 repeat-associated
non-ATG-translated polypeptides are

- distributed independently of TDP-43 in a
Japanese patient with ¢c9ALS

Hexanucleotide (GGGGCC) repeat expansion in a
noncdding region of CY9ORF72 is the major genetic
cause of frontotemporal dementia and - amyotrophic
lateral sclerosis (cOFTD/ALS) in the Caucasian popula-
tion [1], but it is very rare in the Japanese population,
possibly because of the difference in genetic background
[2,3]. TDP-43 pathology indistinguishable from that of
non-mutational ALS/FTLD-TDP has been observed in
c9FTD/ALS [4]. In addition, the presence of p62-,
ubiquitin- and ubiquilin-positive, and TDP-43-negative
inclusions in the cerebellar cortex and hippocampus has
been reported to be a unique' and consistent feature in
Caucasian patients: with c9FTD/ALS [5,6]. Recently, it
was demonstrated that these TDP-43-negative inclusions
are derived from aggregated dipeptide repeat (DPR) pro-
teins bidirectionally translated from the expanded repeat
in C9ORF72 by repeat associated non-ATG (RAN) trans-
lation, and that such DPR protein pathology is widely
distributed in the central nervous system (CNS) [7,8].
However, it still remains unknown whether these distinct
neuropathological features are also reproduced in Japa-
nese patients with ¢9FTD/ALS. In the present study, we
performed an immunohistochemical analysis focusing
especially on DPR proteins in a Japanese patient with

C90ORF72 repeat expansion (c9ALS) [2], who to our-

knowledge represents the only autopsy case of this
genetic disease to have been reported in the Japanese
population so far.

The present study was conducted with approval from
the Institutional Review Board of Niigata University. The
clinical and pathological findings in this case have been
reported previously (case 4 [9]). Briefly, the patient had a
sibling who had also been diagnosed as having ALS. At the
age of 61, he noticed hand clumsiness, and progressively
developed bulbar palsy and limb weakness. He died 20
months after disease onset due to respiratory failure. He
had no clinical features suggestive of dementia. The pres-
ence of C9ORF72 repeat expansion was confirmed by
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repeat-primed PCR using the frozen cerebellar tissue [2].
The accurate hexanucleotide repeat length was unknown,
because we could not perform Southern blot analysis due
to lack of the amount of genomic DNA. Histologically,
neuronal loss and gliosis were evident in the spinal ante-
rior horns, brainstem motor nuclei and motor cortex, as
well as degeneration in the anterior and lateral columns of
the spinal cord. Bunina bodies and ubiquitin—positive
skein-like inclusions were observed in the remaining lower

_motor neurones. Neuronal and glial (oligodendrocytic)
" cytoplasmic inclusions (NCIs and GCls) recognized with

anti-TDP-43 (polyclonal, Protein Tec Group, Chicago, IL,
USA; 1:4000) were present in the lower motor nuclei and
motor cortex, and much less frequently in the subcortical
non-motor nuclei, such as the basal ganglia, whereas no
such NCIs or GCIs were observed in the cerebellar cortex

and hippocampus [9]. There were p62-positive and TDP-

43-negative NCIs in the cerebellar granule cells and in
the granule cells and pyramidal CA4-CA2 neurones
of the hippocampus; at that time, we failed to show
phosphorylated TDP-43 (pTDP-43)-positive NCIs in the
lower motor nuclei and motor cortex [2].

In the present study, we confirmed that NCIs and GCIs
recognized with a ‘polyclonal” antibody against pTDP-43
(pS409/410; Cosmo Bio, Tokyo, Japan; 1: 1000) were

- present with the same distribution pattern as that of

TDP-43 mentioned above (Figure 1a,c). Immunostaining
with an antibody against another RNA-binding protein,
RNA-binding motif 45 (RBM45) (polyclonal, Sigma-
Aldrich, St. Louis, MO, USA; 1:50), which has been
known to accumulate in inclusions in ALS [10], also
revealed a distribution of positive inclusions strikingly
similar to that of TDP-43-positive inclusions, although
such NCIs and GCIs were comparatively small in number.
The characteristic morphologies of NCIs and GCIs were
shared by both anti-TDP-43/anti-pTDP-43 and anti-
RBM45 (Figure la—d).

We generated polyclonal antibodies against putative
DPR proteins from the GGGGCC repeat by RAN transla-
tion [11]. Although immunostaining with three antibod-
ies against different polypeptides, poly Gly-Ala (GA), poly
Gly-Pro and poly Gly-Arg, arising from RAN translation
revealed similar DPR protein pathology, abundant positive
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Figure 1. Immunohistochemical study. (a—d) Skein-like cytoplasmic inclusions positive for phosphorylated TDP-4.3 (pTDP-43) (a) and
RBM45 (b) in the cervical anterior horn cells. C-like or fibrillary tangle-like glial cytoplasmic inclusions positive for pTDP-43 (c¢) and RBM45
(d) in the motor cortex. Note glial cytoplasmic inclusions indicated by arrows (c,d). (e-h) Numerous poly Gly-Ala (GA)-positive neuronal
cytoplasmic and intranuclear inclusions (arrowheads) are observed widely beyond the regions showing TDP-43-positive inclusions [(e)
hippocampal dentate gyrus, (f) temporal cortex, (g) cerebellar granular-Purkinje layer, (h) cerebellar molecular layer; also see Table 1]. A
Purkinje cell also contains a positive cytoplasmic inclusion (g). Punctate or linear inclusions in the neuropil of the cerebellar molecular layer
are also evident (h). (i) Here, an oligodendroglial cytoplasmic inclusion is shown in the precentral subcortical white matter. (j-m) In the
cerebellar granular layer, it is evident that GA-positive neuronal cytoplasmic inclusions (j) are also positive for ubiquilin (k), ubiquitin (I) and
p62 (m). Note GA-positive intranuclear inclusions indicated by arrowheads (j). Bars: 10 um (a—m).

inclusions were recognized most clearly with anti-poly GA
(1:1000). The distribution pattern of DPR protein-positive
NCIs was apparently different from that of TDP-43-
positive NCIs, the latter being clearly associated with
neuronal loss in the lower and upper motor neurones
systems. DPR protein-positive NCIs were widely distrib-
uted in the brain (Figure le-h,j), with the highest fre-
quency in the hippocampal dentate gyrus (Figure le) and
cerebellar granular layer (Figure 1g,j), and were distrib-
uted almost evenly in the cerebral neocortex examined
(Figure 1f). DPR protein-positive GCIs were comparatively
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rare (Figure 1i), although TDP-43- and RBM45-positive
GCIs were observed frequently (Figure 1c,d). Neuronal
intranuclear inclusions were frequently associated with
anti-DPR proteins (Figure le,gh,j), but not with anti-
TDP-43. DPR protein-positive punctate or filamentous
structures were also encountered in the neuropil of the
cerebellar molecular layer (Figure 1h), which were never
recognized with anti-TDP-43, and only rarely with anti-
ubiquilin (monoclonal, clone 5F5, Abnova, Walnut, CA,
USA; 1:10 000). DPR protein-positive NCIs appeared
as irregular dot-like, granular or star-like inclusions

NAN 2014; 40: 783-788
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Table 1. Summary of regional immunohistochemical findings
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- Lower motor Motor . Non-motor Dentate Hippocampal ‘Cerebellar
neurones™ cortex cortext gyrus CA4 granule cells
Neuronal loss’ St + - - - ~
TDP-43 + + -~ - - ~
pTDP-43 + + - - - -
RBM45 + + - ~ - -
p62 + ++ ++ ++ +t 4
Ubiquitin + + + + + ++
Ubiquilin - + + 4 : + ++
DPR} - o - ++, S o 4+

Severity of neuronal loss are represented as: — = not noted, + = mild, ++ = moderate-scvere.
Neurones containing each antibody-positive inclusions were counted per 100 neurones in high-power fields, and ratio is reprcsented as:

—~=none, +=~10%, ++ = 10~30%, +++ = >30%. "
*Cervical anterior horn cells and hypoglossal nucleus
1Frontal and temporal cortex were examined.

fpoly Gly-Ala.

Figure 2. Immunoelectron microscopy for the presénce of ubiquilin. (a) A cerebellar granule cell is seen to have a round filamentous
cytoplasmic aggregate. (b) Higher-magnification view of the aggregate, showing immunogold partxcles on the randomly arranged
approximately 10-nm-wide filamentous structures Bars: (a) 500 nm, (b) 200 nm. :

_(Figure le-h,j) that generally differed in morphology from
TDP-43- and RBM45-positive NCIs (Figure la~d). Such
inclusions were frequently labelled with antibodies
against ubiquilin, ubiquitin (polyclonal, Dako, Glostrup,
Denmark; 1:800) and p62 (monoclonal, BD biosciences,
San Jose, CA, USA; 1:500) (Figure 1j-m). The immuno-
histochemical findings are summarized in Table 1.
~ Under immunogold-labelling electron microscopy for
ubiquilin in the cerebellar granular layer tissue, the
labelled NCIs were shown to be composed of randomly
arranged filamentous structures (Figure 2a,b); their mor-
phological features were very similar to those of ubiquitin-
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positive and TDP-4:3-negative NCIsin the entorhinal cortex
in a case of c9FTD/ALS [12]. Double-labelling immuno-
fluorescence revealed that co-localization of TDP-43
(monoclonal, clone 2E2~D3, Abnova, Taipei, Taiwan;
1:250) and RBM45 (Figure 3a—c), but not TDP-43 (2E2-
D3) and DPR proteins (Figure 3d-f), was a feature in the
cytoplasmic inclusions. The majority of p62-positive NCIs
were positive for DPR proteins, whereas p62-positive GCIs
were negative for DPR proteins (Figure 3g—i). -

“In the present Japanese case of c9ALS, the histological
and molecular pathology of sporadic ALS was observed:
especially, the occurrence of Bunina bodies and TDP-43-
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Figure 3. Double-labelling immunofluorescence for the presence of TDP-43, RBM45, DPR proteins and p62. (a—i) Inclusions observed in
the motor cortex cells. (a—c) Colocalization of RBM45 (a, green) and TDP-43 (b, red) is evident in the cytoplasmic inclusions in an
oligodendrocytic cell (c, merge). (d-f) Poly Gly-Ala (GA) (d, green) and TDP-43 (e, red) never co-localize in the cytoplasmic inclusions (f,
merge), although co-existence of poly GA- and TDP-43-positive inclusions are rarely observed in the same cells, mostly in the neuronal &ells
(asterisks) (df). (g-i) Co-localization of poly GA (g, green, arrow) and p62 (h, red, arrow) is evident in cytoplasmic inclusions in a neuronal
cell (i, merge, arrow). Poly GA-negative (g, green) and p62-positive inclusions (h, red, arrowheads) are also evident in two oligodendrocytic
cells (i, merge, arrowheads). Bars: 10 pm (a—).

positive NCIs was confirmed. It is important to note that
the TDP-43 pathology and neuronal loss were correlated
with each other; this was also the case for another RNA-
binding protein, RBM45, which has been reported to be
increased in the cerebrospinal fluid of ALS patients, and
also colocalized with TDP-43 in inclusions of patients
with ALS and FTLD-TDP [10]. In addition, the occurrence
of p62-positive, and TDP-43-negative granular or star-
shaped NCIs in the cerebellar cortex and hippocampus
was a feature. Importantly, such p62-positive and TDP-
43-negative NCIs were also labelled with- antibodies
against DPR proteins we generated. The DPR protein

© 2014 British Neuropathological Society

pathology was distributed independently of TDP-43
pathology: co-localization of DPR proteins and TDP-43
was extremely rare, if present, in the same inclusion, indi-
cating that unlike TDP-43 and RBM45, there was no cor-
relation between DPR protein pathology and neuronal
loss (Table 1), or between DPR protein pathology and
clinical symptoms, as pointed out previously in Caucasian
cases of c9FTD/ALS [13].

It is noteworthy that most recently, the DPR proteins
have been reported to be translated from not only a sense
direction of the repeats but also an antisense direction
(CCCCGG); in fact, two additional DPR proteins (poly
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