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WT (PBS)

Figure 4  Lung sections stained with H&E. A:
Control WT mice. B: DT-treated WT mice who
received LPS. C: DT-treated CD206-DT receptor Tg
mice who received LPS. D: Semiquantitative
analysis of lung tissues by lung injury score. n =

C  t1gpor+ps) D

Lung Injury Score

PBS DT+ LPS PBS

510 7 (D). *P < 0.05, ***P < 0.001.

DT DT+LPS
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receptor is highly regulated and correlates with the functional
state of macrophages. Thus, fully mature activated M2 mac-
rophages express CD206 as a phenotypic hallmark.*®
Therefore, CD206 can be widely used to identify the M2
phenotype.3 The use of M2 macrophage markers Ym1 and
arginase-1 identified pulmonary CD206-positive cells as M2
macrophages. Furthermore, this was confirmed by our
immunofluorescence labeling study showing that CD206-
positive cells in BALF were labeled with arginase-1. Here-
in, DT administration on CD206-DT receptor Tg mice led to
conditional CD206-positive cell ablation, which implies that
pulmonary macrophages, which are M2 polarized under ho-
meostatic conditions, can be effectively depleted in vivo.
~Many M2 macrophages were found in the BALF- of
C57BL/6 mice under normal conditions. Lung sections from
normal C57BL/6 mice showed that M2 macrophages were
also detected in the alveoli. DT-mediated M2 macrophage
depletion in CD206-DT receptor Tg mice demonstrated that
mRNA levels of proinflammatory cytokines; IL-13, TNF-,
MCP-1, and IL-6, were up-regulated in lungs. We interpret
these observations to indicate that M2 macrophages lead to
a tonic inhibition of pulmonary production of proin-
flammatory cytokines. Blood levels of IL-13, MCP-1, and
IL-6 were apparently increased when abolition of M2
macrophages was made by administration of DT to CD206-

DT receptor Tg mice. This suggests that M2 macrophage- -

mediated tonic inhibition of the genesis of proinflammatory
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cytokines under basal subinflammatory conditions may be
found systemically. : :

Administration of LPS at a low dose did not substantially
alter expression of CD206 mRNA in mouse lungs, suggest-
ing that M2 macrophages may. be unchanged by a low dose of
LPS. In contrast, a recent report has shown that low doses of
LPS can effectively suppress expression of the M2 marker,
arginase-1, when bone marrow—derived macrophages were
treated with M2-skewing mediators.*® This report suggests
that M2 macrophages may be transformed into M1 macro-
phages after LPS stimulation to promote inflammation.
However, our present study indicates that the presence of M2
macrophages is important in the regulation of the inflam-
matory state during endotoxemia. DT-mediated depletion of
M2 macrophages in CD206-DT receptor Tg mice led to a
discernible enhancement of the LPS-induced increases in
pulmonary mRNA levels of proinflammatory cytokines.
Furthermore, this manipulation significantly aggravated
LPS-induced lung injury. These results strongly suggest that
M2 macrophages serve as a protective phenotype and can
lessen lung inflammation during endotoxemia. DT treatment
accelerated the deleterious effect of LPS on blood proin-
flammatory cytokine levels in CD206-DT receptor Tg mice,
implying that M2 macrophages-appear essential for appro-
priate moderation of systemic endotoxemic inflammation.

M2 macrophages may produce some anti-inflammatory
cytokines, as typified by IL-10, and maximize the IL-10
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Figure 5  Activation of proinflammatory tran-
scriptional factors in lungs of DT-treated WT and

CD206-DT receptor Tg mice who were challenged

WT Ty with LPS. A: NF-xB p65, AP-1 c-Jun, and AP-1 c-Fos

‘ DT + LPS DNA binding activities assessed using TransAM
NF-kB and TransAM AP-1 kits. B: Gel mobility shift

assays for NF-xB and AP-1—binding activity. The

AP-1 induced NF-icB and AP-1 shift bands are indicated.
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signal to dampen the immune response. However, we
observed that when LPS was challenged, the up-regulation
of IL-10 mRNA expression was increased, rather than
decreased, in CD206-depleted mice compared with WT.
Thus, CD206-positive M2 macrophages are umnlikely to be
the principle source of production of IL-10 in lungs.

We found a notable increase in neutrophils in BALF cell
contents in DT-treated CD206-DT receptor Tg mice. This
suggests that the depletion of M2 macrophages altered in-
flammatory cell recruitment to the lung. This may account
for the enhanced response to LPS in lungs of DT-treated
CD206-DT receptor Tg mice.

In quiescent cells, NF-kB is maintained in inactive form
by IxkB.*! LPS stimulates IxB-kinase that specifically phos-
phorylates IkB, resulting in IkB polyubiquitination and sub-
sequent degradation, followed by liberation of NF-kB 2 Many
M1 genes have kB sites in their promoter region, including
inducible nitric oxide synthase and cyclooxygenase 2.** Thus,
in M1 macrophages, NF-kB orchestrates the expression of
many proinflammatory genes in response to LPS. Herein, we
showed that M2 macrophage depletion resulted in a significant
reduction in LPS-induced NF-kB activity, suggesting that M2
phenotype-dependent counteraction of inflammatory insult
cannot be attributed to the inhibition of the NF-kB pathway. At
the préscnt time, however, we do not have a clear under-
standing of whether the reduced NF-«B activity was the result
of the critical regulation of the transcription factor by M2
macrophages. Reports from several laboratories suggest that
macrophages play arole in inducing the activation of NF-«B in

epithelial cells in lungs.**™#¢ M2 macrophage depletion
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" AP-1is shown in the presence of excess unlabeled
NF-xB and AP-1 oligodeoxynucleotides, respec-
tively. Values are means = SEM (A). n'= 5 to 7 mice
(A). *P < 0.05, **P < 0.01, and ***P < 0.001. NC,
negative control. B '

performed in the present study may have caused an alteration in
NF-«B activation in alveolar epithelial cells. Such a regulation
may be mediated by soluble mediators, such as TNF-o. and IL-
1B, because they have been shown to be involved in the
macrophage-induced modulation of NF-«B activity in alveolar
epithelial cells.*>*® ' :
Another major proinflammatory transcription pathway
within macrophages involves the AP-1 pathway, whose
proinflammatory targets overlap those of the NF-xB
pathway.*” AP-1 is a group of basic leucine zipper tran-
scription factors, including the Fos -and. Jun families of

‘transcription factors.*” We found that AP-1 c-Jun and c-Fos

activities were greatly enhanced when DT was given to
CD206-DT receptor Tg mice with endotoxemia, which
implies that M2 macrophages negatively regulate the AP-1
pathway. We, thus, suggest that AP-1 signaling is a key
transcriptional regulator involved in the inhibitory modula-
tion of lung inflammation by M2 macrophages. There were
slight differences in the extents of the enhancing effect of
DT treatment on an array of proinflammatory cytokine
levels in CD206-DT receptor Tg mice. This may be asso-
ciated with some differences in the dependence of the
transcription of cytokines on the NF-kB and AP-1 path-
ways. In accord with the importance of AP-1 in regulating
IL-10 promoter activity,48 a striking up-regulation of IL-10
mRNA was found when CD206-depleted mice were chal-
lenged with LPS. However, the increased AP-1 activity may
be secondary to the significant result of CD206 depletion
leading to-altered LPS responses. Further investigations are
required to delineate a mechanistic role of AP-1 in the
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increased pulmonary inflammatory response in CD206-
depleted mice.

We have previously demonstrated that short-term treat-
ment with high doses of statin can increase the number of
alveolar macrophages in mouse lungs.*’ These alveolar
macrophages display an unusual phenotype compared with
typical tissue’ macrophages. Thus, we have found that
alveolar macrophages express high levels of CD1 1c,” a
molecule that is not expressed by their counterparts in other
body sites and is generally expressed by dendritic ‘cells.>®
However, contrary to dendritic cells, alveolar macrophages
are unlikely to emigrate from the tissue and seem to have
distinct roles in the initiation and maintenance of immune
response.5 ! These alveolar macrophages may be now
identified as M2 macrophages. Our statin treatment has been
able to mitigate ALI and improve the survival of mice with
cecal ligation and puncture-induced sepsis.*’

In conclusion, our findings identify lung CD206-positive
M2 macrophages as key anti-inflammatory cells during
endotoxemic lung injury. We clearly demonstrate that the
depletion of M2 macrophages can aggravate lung inflam-
mation thatis linked with neutrophil recruitment to the lung.
Our finding may become part of a therapeutic strategy for
pulmonary inflammatory disease. '
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ABSTRACT

Syntenin-1 is an intracellular PDZ protein that binds multiple proteins and regulates protein trafficking,
cancer metastasis, exosome production, synaptic formation, and IL-5 signaling. However, the functions
of Syntenin-1 have not yet been clearly characterized in detail, especially in vivo. In this study, we gen-
erated a Syntenin-1 knock out (KO) mouse strain and analyzed the role(s) of Syntenin-1 in IL-5 signaling,
because the direct interaction of Syntenin-1 with the cytoplasmic domain of the IL-5 receptor o sub-
unit and the regulation of IL-5 signaling by Syntenin-1 have been reported. Unexpectedly, the number
of IL-5-responding cells was normal and the levels of fecal immunoglobulins were rather higher in the
Syntenin-1 KO mice. We also found that IgA and IgM production of splenic B cells stimulated in vitro
was increased in Syntenin-1 KO mice. In addition, we showed that a distribution of intestinal microbial
flora was influenced in Syntenin-1 KO mice. Our data indicate that Syntenin-1 negatively regulates the
intestinal immunoglobulin production and has a function to maintain the intestinal homeostasis in vivo.
The analysis of Syntenin-1 KO mice may provide novel information on not only mucosal immunity but

also other functions of Syntenin-1 such as cancer metastasis and neural development.
© 2014 The Authors. Published by Elsevier GmbH. This is an open access article under the CC

BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

Introduction

Syntenin-1 (Syndecan-binding protein, Sdcbp) was first iden-
tified as an intracellular scaffold protein interacting with the
transmembrane heparan sulfate syndecans (Grootjans et al., 1997).

Abbreviations: BAC, bacterial artificial chromosome; bp, base pair; CNS, central
nervous system; ES, embryonic stem; IL-5Ra, interleukin-5 receptor o subunit; KO,
knock out; L-LP, large intestinal lamina propria; LP, lamina propria; PC, peritoneal
cavity; PDZ, PSD-95/Discs large/zO-1; PEC, peritoneal exudate cells; PP, Peyer's
patch; rRNA, ribosomal RNA; sIgA, surface-IgA; S-LP, small intestinal lamina propria;
WT, wild type.
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It was also termed melanoma differentiation-associated gene-9
(MDA-9), which promoted cancer metastasis by regulating cell
adhesion (Boukerche et al., 2005, 2007, 2008; Lin et al., 1998). Sub-
sequently, Syntenin-1 has been reported to act as a multifunctional
intracellular adapter protein and to regulate protein trafficking and
recycling (Zimmermann et al., 2005), Notch signaling (Estrach et al.,
2007), IL-5 signaling (Beekman et al., 2009; Geijsen et al., 2001), T
cell chemotaxis (Sala-Valdes et al,, 2012), HIV infection (Gordon-
Alonso et al., 2012), exosome production (Baietti et al., 2012), and
synaptic formation in CNS (Hirbec et al., 2005; Jannatipour et al.,
2001; Ohno et al.,, 2004). Additionally, we previously found that

‘extracellular Syntenin-1 in human colostrum could preferentially

induce IgA production from cord blood naive B cells (Sira et al.,
2009).

IL-5/IL-5R signaling, one of the pathways interacting with
Syntenin-1, was reported to maintain mouse B-1 B cells and
promote secretion of mucosal IgA (Moon et al., 2004). IL-5 also
promotes eosinophil differentiation in humans and mice (Hiroi
et al,, 1999; Kopf et al., 1996; Moon et al,, 2004; Yoshida et al.,
1996). Structurally, IL-5R consists of two distinct subunits, an
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1L-5R-specific o subunit (IL-5Ra) and a common § subunit for the
GM-CSFreceptor family (Mitaetal., 1989). Syntenin-1 was reported
to associate with the cytoplasmic tail of IL-5Ra through the PDZ
(PSD-95/Discs large/z0-1) domain and to interact directly with the
transcription factor Sox4 (Beekman et al., 2009, 2012; Geijsen et al,,
2001). Interestingly, Sox4 promotes B cell development, as deter-
mined by analysis of Sox4 KO mice (Schitham et al., 1996; Sun et al,,
2013).

Although these various functions of Syntenin-1 in vitro have
been well reported including the relationship with IL-5R, little is
known about the distribution and role of this protein in vivo. To
clarify the physiological role(s) of Syntenin-1 in vivo, we generated
a Syntenin-1 KO mouse strain by gene targeting in this study. We
found that Syntenin-1 KO mice showed no obvious signs of diseases
under specific pathogen-free conditions and the Syntenin-1 was
widely expressed, particularly in immunologically related organs
and CNS. In addition, we focused on the relationship between
Syntenin-1 and IL-5 signaling in gut-associated tissues and found
that Syntenin-1 was not essential for the maintenance of IL-5-
responding cells, and rather negatively regulated immunoglobulin
production in the intestine.

Materials and methods

Generation of Syntenin-1 KO mice

Animal care and experimental protocols were approved by the

Animal Experiment Committee of the University of Toyama (Autho-
rization No. A2012-MED-35) and were carried out in accordance
with the Guidelines for the Care and Use of Laboratory Ammal of
the University of Toyama.

A bacterial artificial chromosome (BAC) genomic clone (RP24-
301N) originating from the DNA of C57BL/6 mice and containing
Syntenin-1 was obtained from BACPAC Resource Center CHORI
(Oakland, CA). A counter-selection BAC modification kit (Gene
Bridges, Dresden, Germany) and a MultiSite Gateway Three-
Fragment Vector Construction kit (Invitrogen, Carlsbad, CA) were
modified for the targeting vector construction. The nucleotide
sequence of the mouse genome was obtained from the National
Center for Biotechnology Information (NCBI Map Viewer, Mus
musculus Build 37.1) and the initiation site of translation in
Syntenin-1 (the A of ATG) refers to position +1 and the proceed-
ing residues are indicated by negative numbers in this report.
The 5 arm of ~5kbp (base pair) (Nos. —4769 to —334) and 3’
arm of ~5kbp (Nos. +322 to +4947) were subcloned into the
pDONR P4-P1R and pDONER P2R-P3 vectors, respectively, using
the counter-selection BAC modification kit. The 655-bp Syntenin-
1 (Nos. —333 to +321) gene fragment containing exon 2, part of
intron 1, and part of intron 2 was amplified by PCR and sub-
cloned between two loxP sequences of a modified pDONR 221
vector containing a pgk-Neo cassette flanked by two FRT sites. To
construct the targeting vector, these three plasmids were direc-
tionally subcloned into pDEST R4-R3 containing the diphtheria
toxin gene (MC1-DTA) by MultiSite Gateway LR recombination
reaction. The targeting vector linearized with Notl was electro-
porated into the embryonic stem (ES) cell line RENKA derived
‘from the C57BL/6N strain (Fukaya et al, 2006) as previously
described (Miya et al, 2008). After the selection with G418,

recombinant ES clone was identified by Southern blot analy-
sis using the 5’ probe (Nos. —5412 to —4923) on Spel- -digested
genomic DNA, the 3’ probe (+6740 to +7093) on Apal-digested
genomic DNA, and the Neo probe (Miya et al, 2008) on Apal-
digested genomic DNA. The obtained recombinant ES clone was
transfected with the pCre-Pac plasmid (Taniguchi et al,, 1998)
and pCAGGS-FLP plasmid (Gene Bridges, Dresden, Germany)

by electroporation to delete exon 2 and the pgk-neo cassette,
respectively. The PCR amplified fragments were. verified using
the DNA sequencer ABI PRISM 3100 (Perkm-Elmer Foster
City, CA).

The obtained clone was injected into eight-cell stage embryos
of the mouse strain ICR. The embryos were cultured to the blas-
tocyst stage and transferred to the pseudopregnant ICR mouse
uterus. The resulting male chimeric mice were crossed with
female C57BL/6 mice to establish the mutant mouse line. The
Syntenin-1 KO mice were further genotyped by PCR using the
following primers; 5’ forward, 5'-TGACCCTGGTTITAGCTGAGGA-3';
5’ reverse, 5'-TCTGTTCCCACAGCTACCCAA-3"; and 3’ reverse, 5'-
GCTCACAACCGTCTAACTCCAAC-3' (Fig. 1A).

Western blotting

At the age of 6 weeks, wild type (WT) and Syntenin-1 KO mice
were deeply anesthetized with pentobarbital sodium (100 mg/kg
body weight, intraperitoneal injection) and then perfused trans-
cardially with ice-cold PBS. Tissues were quickly removed and
homogenized in Mammalian Tissue Extraction Reagent (Pierce,
Rockford, IL) with Protease Inhibitor (Nacalai, Kyoto, Japan).
The homogenate was centrifuged at 14,500 rpm for 15min to

‘remove large debris. The protein concentration was determined

using a BCA Protein Assay kit (Pierce) and the protein sam-
ples were diluted at 1:1 in a sample buffer (50mM Tris-HCl,
pH 8.2, 2% SDS, 10% glycerol, 6% 2-mercaptoethanol, and 0.01%
bromophenol blue). After denaturation by heating at 95°C for
5min, 30pg of proteins were subjected to SDS-PAGE and
transferred onto a polyvinylidene difluoride membrane (Perkin-
Elmer). After blocking with 5% skim milk in Tris buffered saline
containing 0.1% Tween-20 for -1h, the membranes were incu-
bated with rabbit polyclonal anti-Syntenin-1 antibody (1:1000,
Abcam, Cambridge, UK) or mouse -monoclonal anti-B-actin anti-
body (1:10,000, Sigma-Aldrich, St. Louis, MO) overnight at 4°C,
then with HRP-conjugated goat anti-rabbit 1gG (1:25,000, Bio-
Rad, Richmond, CA) or goat anti-mouse IgG (1:25,000, Bio-Rad)
for 1h. Protein bands were detected using the ECL chemilu-
minescence detection system (GE Healthcare, Buckinghamshire,
UK).

Antibodies and reagents for flow cytometry

Antibodies used for flow cytometry were anti-mouse B220
(RA3-6B2), CD3g (145-2C11), CD5 (53-7.3), CD19 (1D3), CD23
(B3B4), and CD45 (30-F11) antibodies purchased from eBioscience
(San Jose, CA) and anti-mouse CD21/35 (7G6), surface-IgA (sIgA)
(C10-3), and Siglec-F (E50-2440) antibodies purchased from BD
Biosciences (San Diego, CA). FcyRs were blocked with anti-mouse
FcyR (2.4G2). Flow cytometry was performed using a FACSCanto I
(BD Biosciences). Dead cells were gated out by 7-aminoactinomycin
D staining (BD Biosciences). Flowjo (Tree Star, Ashland, OR) was
used for analysis.

Preparation of lamina propria cells

To obtain lamina propria (LP) cells, the small and large
intestines were harvested, and Peyer’s patchs (PPs) and cecal
patches were removed. The intestines were then opened lon-
gitudinally, washed twice with 40m! of Ca%*- and Mg2*-free
HBSS (Sigma-Aldrich) supplemented with 5% FCS, 1mM DTT,
and 5mM EDTA and then incubated at 37°C for 40min
with shaking at 150rpm. Tissues were minced and incu-
bated with RPMI 1640 (Invitrogen) supplemented with 5%
FCS. To the small intestine tissues, 1 mg/ml collagenase type |
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Fig. 1. Generation of Syntenin-1 KO mice with C57BL/6 genetic background. (A) Schematic representations of Syntenin-1 gene, targeting vector, targeted gene, and Syntenin-1
KO gene. The coding and noncoding regions of Syntenin-1 exons are indicated by closed and open boxes, respectively. Met in exon 2 is the initiation site of translation in
Syntenin-1. Inserted lox, FRT, and neomycin resistance gene (Neo) are shown. The relevant restriction enzyme sites (Apal and Spel), the location of probes used (5'probe, neo
probe, and 3'probe), and the PCR primers (5'forward, 5'reverse, and 3'reverse) are indicated. DTA, diphtheria toxin fragment A; BSK, pBluescript. (B) PCR analysis of genomic
DNA from Syntenin-1** (+/+), Syntenin-1*~ (+/-), and Syntenin-1-/~ (/=) mice. The 5'forward, 5'reverse, and 3'reverse primers were mixed at a molar ratio of 2:1:1. The
positions of DNA size markers are indicated on the left side. (C) Expression of syntenin-1 protein in spleen. Spleen homogenates from Syntenin-1** (+/+), Syntenin-1*- (+/-),
and Syntenin-1-I- (—/-) mice were separated by SDS-PAGE and immunoblotted with anti-Syntenin-1 antibody (upper) and anti-B-actin antibody (lower). The positions of

protein size markers are indicated on the right side.

(Sigma-Aldrich) was added, and 2 mg/ml collagenase was added
to the large intestine tissues. The tissues were then incubated
with 100ng/ml DNase I (Roche Diagnostics, Indianapolis, IN)
at 37°C for 40min with stirring. Collected cells were placed
on the boundary between 40/75% concentrations of Percoll
(GE Healthcare, Piscataway, NJ) solution and centrifuged at
1800 rpm at 20°C for 20 min. After centrifugation, the collected
cells were washed and used as LP lymphocytes.

ELISA

Freshly collected fecal samples were weighed, dissolved in
PBS (0.1g/ml), and centrifuged at 15,000rpm for 5min. The
supernatants were used as fecal extract. The levels of each
immunoglobulin isotype in fecal extract and serum were deter-
mined by sandwich ELISA using antibodies specific for each
murine immunoglobulin isotype (Southern Biotech, Birmingham,
AL) according to a protocol.

Splenic B cell purification and cell culture

For collection of resting B cells, single cell suspensions pre-
pared from the spleen isolated from WT and Syntenin-1 KO mice
were purified by magnetic-activated cell sorting (MACS) nega-
tive selection using biotin-conjugated anti-mouse CD43 antibody
(S7, BD Bioscience) and streptavidin MicroBeads (Miltenyi Biotec,
Auburn, CA). The purified resting B cells were cultured at a con-
centration of 2 x 10° cells/well in RPMI 1640 with 10% FCS, 50 uM
2-mercaptoethanol, 100U/ml penicillin, and 100 pg/ml strepto-
mycin, 1pg/ml LPS (Sigma-Aldrich), 1ng/ml TGF-B (R and D
Systems, Minneapolis, MN), and/or 5 ng/ml IL-5 (R and D Systems)
were added to the culture to induce IgA production. 0.1 or 1 wg/ml
LPS (Sigma-Aldrich) were used to induce IgM production. 1 p.g/ml
anti-CD40 antibody (R and D Systems) and 50 ng/ml IL-4 (R and D
Systems) were added to induce IgG1 production. The concentration
of IgA, IgM and IgG1 in the supernatants was measured by ELISA on
day 7, day 5 and day 5, respectively.
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DNA extraction from fecal samples and real-time PCR

Fecal samples were collected for 24 h from individually housed
Syntenin-1 KO and WT littermates (6 weeks of age) and stored at
—20°C until analysis. DNA extraction was performed on the fecal
samples using DNA stool mini kit (Qiagen, Venlo, The Netherlands).
Quantitative real-time PCR assays of 16S ribosomal RNA (rRNA)
gene were performed by Cosmobio Co. (Sapporo, Japan) using the
method of Matsuki et al. (2002, 2004). Three targets were analyzed:
all bacteria, phylum Firmicutes and Bacteroidetes. The relative ratio
of each phylum to all bacteria was measured.

Statistical analysis

All values are represented as mean s SD. The statistical sig-
nificance of difference between WT and Syntenin-1 KO mice was
determined by two-tailed Student’s t test. Values of p < 0.05 indicate
a statistically significant difference.

Results
Generation of Syntenin-1 KO mouse strain

To disrupt the Syntenin-1 locus in ES cells derived from the
C57BL/6 mouse strain, we constructed a targeting vector to intro-
duce the loxP sequence into intron 1 and another loxP and the
Neo cassette flanked with FRT sequences into intron 2 (Fig. 1A).
We obtained an ES cell clone in which the expected homologous
recombination occurred at the Syntenin-1 locus, as detected by
Southern blot analysis. The ES cells were treated with Cre and FLP
recombinases transiently to delete exon 2 containing the initiation
site of translation of Syntenin-1 and the Neo cassette, respectively.
Chimeric mice derived from this clone were mated with C57BL/6
mice to establish the mutant mouse line. The gene deletion in the
mutant mice was confirmed by Southern blot (data not shown) and
PCR analyses (Fig. 1B). Syntenin-1 protein expression was exam-
ined using the homogenate of spleen by Western blot analysis.
The rabbit anti-Syntenin-1 antibody recognized a protein detected
as a band of 32 kDa corresponding to Syntenin-1 in the WT mice,
whereas the band showed decreased intensity in the case of het-
erozygous mutant mice, and not detected in homozygous mutant
mice (Fig. 1C). These findings indicate that Syntenin-1-was success-
fully disrupted in the mutant mice.

) ‘Mice lacking Syntenin-1 were born at the expected Mendelian
ratio (Supplementary Table 1). The Syntenin-1 KO mice thrived and
reproduced as well as their WT littermates and showed no obvious
signs of diseases under specific-pathogen free conditions dunng
the first 1 year of life.

Syntenin-1 protein was Wx'dely expressed, especially in
immunologically related organs and CNS

To evaluate the detailed expression pattern of the Syntenin-1
protein in vivo, equal amounts of the protein from various organs of
WT mice were examined by Western blotting (Fig. 2). The Syntenin-
1 protein was widely expressed in mouse tissues, and relatively
high expression levels were detected in the spleen, thymus, and
brain. The Syntenin-1 expression levels in the liver and kidney
were lower than those in the other tissues. We used lysates of
human embryonic kidney (HEK) 293 cells transfected with a human
Syntenin-1 expression plasmid as a positive control. The Syntenin-
1 protein was not detected in any organs of Syntenin-1 KO mice
(Fig. 2 and data not shown), suggesting the spec1ﬁc1ty of the prlmary
antibody used against Syntenin-1.

The number of IL-5-responding cells was not affected in .
Syntenin-1-deficient mice

IL-5 signaling is a key regulator for the maintenance of B-
1 B cells, IgA production, and eosinophils in mice (Hiroi et al.,,
1999; Moon et al.,, 2004; Tominaga et al., 1991). To clarify whether
Syntenin-1 is involved in the development and maintenance of
the IL-5-responding cells, we examined the number of lympho-
cytes and eosinophils in the peritoneal cavity (PC), mesenteric
lymph node (MLN), PP, and small and large .intestinal lamina
propria (S-LP and L-LP, respectively). The proportions of B220*
slgA~, B220%*sIgA*, and B220~slgA* B cells in the S-LP and L-LP
and B220*sIgA~ and B220*sIgA* B cells in PP and MLN, as well
as CD3g™ T cells, were normal in Syntenin-1 KO mice (Supple-
mentary Fig. 1A). Siglec-F* eosinophils in the S-LP and L-LP of
Syntenin-1 KO mice also normally developed (Supplementary Fig.
1B). B-1a and B-1b cells (characterized as CD19*CD21~CD23-CD5*
and CD19*CD21-CD23~CD5™, respectively) and conventional B-
2 cells in PC seemed to be not affected by Syntenin-1 deficiency
(Supplementary Fig. 1C). The number of the analyzed immune cells
showed no significant differences between Syntenin-1 KO and WT
mice (Table 1). These results suggest that Syntenin-1 little affected
on the development of lymphocytes and eosinophils in the steady
state.

Production of fecal immunoglobulins were increased in
Syntenin-1-deficient mice

Given that IL-5 is a key cytokine for IgA production, isotype-
specific ELISA was performed to determine levels of IgA together
with those of IgG1 and IgM in the fecal extract and serum in
Syntenin-1 KO and WT mice. Although the levels of immunoglob-
ulins in the serum did not change, IgA, IgG1 and IgM levels in
the fecal extract increased significantly in Syntenin-1 KO mice
(Fig. 3Aand B). These results showed that Syntenin-1 negatively
regulates immunoglobulin productlon in the intestine.

In vitro analysis of immunoglobulins production

As intestinal immunoglobulin production was increased in
Syntenin-1 KO mice, we next examined the ability of B cells to
secrete immunoglobulins in WT and Syntenin-1 KO mice in vitro.
We purified splenic resting B cells by magnetic cell isolation and
cultured them in the presence of LPS, TGF-B, and IL-5 to induce IgA
secretion; LPS to induce IgM secretion; IL-4 and anti-CD40 antibody
to induce IgG1 secretion. IgA production was significantly higher
in B cells derived from Syntenin-1-deficient mice than in B cells
derived from WT mice (Fig. 4A). IgM production of Syntenin-1 KOB
cells stimulated with only LPS was also increased (Fig. 4B). 1gG1 pro-
duction had no significant difference between these mouse strains
(Fig. 4C). These results support the idea that Syntenin-1 negatively
regulates immunoglobulin production in the intestine and suggest
that such an enhanced immunoglobulin production occurs in a B

‘cell-intrinsic manner.

Distribution of intestinal microbiota was influenced in
Syntenin-1-deficient mice

Mucosal immunity including intestinal secretory immunoglob-
ulins is closely related to microbiota to maintain intestinal
homeostasis (Strugnell and Wijburg, 2010). The obtained results
in Syntenin-1 KO mice raise a question whether a distribution of
intestinal microbial flora could be influenced. We next examined
the percentages of total 16S rRNA gene of the phylum Firmicutes
and Bacteroidetes, which consist mostly of mouse intestinal micro-
biota. The percentage of Firmicutes in the stool of Syntenin-1 KO
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Fig.2. Expression pattern of syntenin-1 protein. Western blot analysis of protein extracts from cerebrum, cerebellum, hippocampus, thymus, heart, lung, liver, spleen, kidney,
and small intestine in WT mice and cerebrum in Syntenin-1 KO mice using anti-Syntenin-1 antibody (upper panels) and anti-B-actin antibody (lower panels). Equal amounts
(30 wg) of protein measured by BCA protein assay were loaded to all lanes. Lysate of human embryonic kidney (HEK) 293 cells (5 pg) transfected with the human Syntenin-1
expression plasmid was used as a positive control. The positions of protein size markers are indicated on the right side. Data are representative of at least three independent

experiments.

mice was significantly higher than WT mice, although the percent-
age of Bacteroidetes and the ratio of Firmicutes to Bacteroidetes were
not significantly different (Fig. 5).

Discussion

We have generated a Syntenin-1 KO mouse strain to clarify the
function(s) of Syntenin-1 in vivo. Although Syntenin-1 was widely
expressed in mouse organs, homozygous Syntenin-1-deficient mice
showed no obvious signs of diseases. We found that the levels of
fecal immunoglobulins in Syntenin-1 KO mice were higher than
those in WT mice. We also showed that the levels of IgA and IgM
secretion from LPS-stimulated splenic B cells were significantly
higher in Syntenin-1 KO mice, therefore the mechanism underly-
ing enhanced fecal immunoglobulins production in Syntenin-1 KO
mice is likely B cell-intrinsic. Additionally, we indicated a possi-
bility that the intestinal microbiota was influenced in Syntenin-1
KO mice. Taken together, our results imply that Syntenin-1 has a
function to maintain the intestinal homeostasis in vivo.

Structurally, Syntenin-1 is a 32-kDa protein with two PDZ
domains (Das et al., 2012). The PDZ domains can bind to short
amino acid sequences at the C-terminal end of the transmembrane
or intracellular proteins (Chimura et al, 2011). Through the PDZ
domains, Syntenin-1 is capable to bind to various proteins, such
as syndecans, the tyrosin kinase Src, IL-5Ra, CD63, Deltal, and

adhesion molecules, for synaptic formation in the CNS (Boukerche
et al,, 2008; Estrach et al., 2007; Geijsen et al, 2001; Grootjans
et al,, 1997; Hirbec et al,, 2005; Jannatipour et al., 2001; Ohno et al.,
2004; Pols and Klumperman, 2009). In general, several PDZ pro-
teins are reported to act as a negative regulator of various signals
and transcription factors (Alewine et al,, 2006; Gupta et al., 2012;
Stephenson et al., 2007). In fact, Chen et al. reported that Syn-
tenin specifically interacted with TNF receptor associated factor 6
(TRAF6) and played inhibitory role in TLR4-mediated NF-kB acti-
vation signaling pathway (Chen et al., 2008). Therefore, Syntenin-1
could potentially inhibit the signaling pathway of immunoglobulin
production. - '

Although the interacting partners of Syntenin-1 were well
reported, little has been known about the distribution of the
Syntenin-1 protein in vivo. Jeon et al. analyzed the expression
pattern of the Syntenin protein in mouse embryos by immuno-
histochemistry (Jeon et al., 2013). They reported that the Syntenin
protein was detected temporally during an early developmental
period, and that Syntenin may play a prominent role in celi prolifer-
ation and differentiation in normal mouse development. However,
in this study we found that the Syntenin-1 protein was widely
expressed in adult mouse organs, especially in the spleen, thymus,
and brain. Our expression data are consistent with various reports
which describe the functions of Syntenin-1 in the immune system
and CNS (Gordon-Alonso et al., 2012; Jannatipour et al,, 2001; Koroll

Table 1 :
Numbers of slgA* cells, T cells, eosinophils, and B-1a, B-1b, and B-2 cells in gut-associated lymphoid tissues and peritoneal cavity.
Syntenin-1 S-LP L-LP MLN PP PC
B220*sIgA~ 14303 3.0+ 09 11.1£32 83120
B220-sIgA* 19.6 + 8.2 1.1+04 ‘
B220%sIgA* 0.1+ 0.1 01401 1.0+ 03 1.0 +£ 04
CD3&*T cell 54+33 1.3 £ 0.6 224 +£95 23405
—[= Eosinophil 20+18 02+£01 :
B-1a 2915
B-1b 05+0.2
B-2 58+ 1.1
B220%sigA- 1.7+ 1.1 26+10 11.1+£7.1 105 £33
B220-sIgA* 19.6 + 10.3 1.1+ 04
B220*sIgA* 0.1+0.1 0.1£00 1.1+04 13+05
++ CD3&'T cell 52+ 17 1.4+ 0.7 20.7 +13.2 27 +12
Eosinophil 1.8+ 13 03 +02
B-1a 47+15
B-1b 09404
B-2 6.0 + 3.0

The results indicate the mean ,céll numbers + SD (x10°) calculated on the basis of Supplementary Fig. 1(n=5 for each group). There were not significantly different between
Syntenin-1 KO mice and WT mice. S-LP, small intestinal lamina propria; L-LP, large intestinal lamina propria; MLN, mesenteric lymph node; PP, Peyer’s patch; PC, peritoneal
cavity; slgA, surface-IgA. ’ )
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Fig. 3. Immunoglobulin levels in the fecal extract and serum of Syntenin-1 KO mice.
The concentrations of IgA, 1gG1, and IgM in fecal extracts (A) and serum (B)in WT(O)
-and Syntenin-1 KO (®) mice were determined by isotype-specific ELISA. Each spot
represents an individual mouse (6-8 weeks old). The mean levels of immunoglob-
_ulins are presented as bars. Asterisks indicate statistically significant differences
(*p<0.05), as calculated by two-tailed Student’s t test.

etal.,2001; Sala-Valdes et al., 2012) and imply that Sym:emn-i may
play important roles in these organs.

Despite the broad expression of the Syntenin-1 protein in all
the organs analyzed, the homozygous deletion of Syntenin-1 was
not lethal, and the Syntenin-1 KO mice showed no obvious signs
of diseases under specific pathogen-free conditions. It is possible
that some redundant proteins may provide compensatory signals to
maintain the homeostasis in vivo. In mice and humans, Syntenin has
two isoforms, Syntenin-1 and Syntenin-2. Syntenin-2 shares 61%
identity in amino acid sequence with Syntenin-1 in mice. Although
little is known about the functions of Syntenin-2, it is possible that
the presence of Syntenin-2 could compensate for the functions of

Syntenin-1 in Syntenin-1 KO mice. Dual deletion of those Syntenin

genes might reveal their roles in immunity.

In this study, we focused on the relationship between Syntenin-
1 and IL-5 signaling, IL-5 is one of the key regulators in mucosal
immunity in mice, especially the devélopment of B-1 B cells and
IgA-producing cells and the production of intestinal IgA (Hiroi
et al.,, 1999; Moon et al., 2004; Tominaga et al., 1991). Because
Syntenin-1 is reported to interact with IL-5Re in vitro and may
affect IL-5 signaling (Geijsen et al., 2001), we investigated the
role(s) of Syntenin-1 in gut-associated lymphoid organs. However,
the lymphocyte populations in gut-associated lymphoid tissues
were not significantly different between Syntenin-1 KO mice and
WT mice, and we found that the levels of lmmunoglobuhns in fecal
extract were higher in Syntenin-1 KO mice. These results suggest
that Syntenin-1 plays only minor roles in the IL-5/IL-5R pathway
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Fig.4. Increased levels of IgA and IgM secretion from B cells obtained from Syntenin-
1 KO mice in vitro. Purified splenic resting B cells from WT (3) and Syntenin-1 KO (W)
mice were cultured with LPS, TGF-B and/or 1L-5 for 7 days to induce IgA secretion
(A), LPS for 5 days to induce IgM secretion (B), and IL-4 and anti-CD40 antibody for 5
days to induce IgG1 secretion (C). The levels of immunoglobulins in the supernatants
were measured by ELISA. Data are shown as mean+SD and are representative of
two or three independent experiments performed in triplicate. Asterisks indicate
statistically significant difference (*p <0. 05) as calculated by two-tailed Student's ¢
test.

in the mucosal immune system and rather negatively regulates
immunoglobulin production in the intestine.

We showed that the IgA and 1gM production from stimulated
splee’n B cells increased in Syntenin-1 KO B celis. Under physiolog-
ical conditions, intestinal B cells differentiate into plasma cells via
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Fig. 5. Percentage of total 16S rRNA gene of phylum Firmicutes and Bacteroidetes
in stool from individually housed Syntenin-1 KO (B) and WT (O) lettérmate mice
(n=>5). Quantitative real-time PCR assays of 16S ribosomal RNA (rRNA) gene were
performed by using total bacterial primers and phylum-specific primers. The relative
ratio of each phylum to total bacteria was measured. Data are shown as mean + SD
and an asterisk indicates statistically significant differences (*p <0. 05) as calculated
by two-tailed Student’s ¢ test.

T cell-dependent and T cell-independent pathways, and secreted
immunoglobulins at LP are then transported to the lumen by
immunoglobulin receptors (Strugnell and Wijburg, 2010; Horton
and Vidarsson, 2013). We showed the lymphocyte populations
including intestinal B cells and B220~IgA* cells (which represent
plasma cells) were not significantly different and IgA secreting cells
in LP were not also different by using ELISPOT assays (data not
shown). Although the precise mechanisms were not delineated
in this study, our in vitro results indicate that such an enhanced
immunoglobulin production in the intestine is caused by exces-
sive immunoglobulin production of individual Syntenin-1-deficient
plasma cells.

Mucosal IgA plays crucial roles in host defense and rnamte-
nance of normal gut microbiota (Fagarasan et al., 2002; Horton and
Vidarsson, 2013; Strugnell and Wijburg, 2010; Suzuki et al., 2004).

Additionally, recent studies have shown that mucosal IgM and -

IgG can also provide humoral protection from various pathogens
(Horton and Vidarsson, 2013; Saeland et al., 2003; Stapleton et al.,
2011). On the other hand, mucosal IgG or IgM production is exces-
sively increased in patients with an inflammatory bowel disease
such as ulcerative colitis and Crohn’s disease (Helgeland et al., 1992;
Macpherson et al., 1996; Thoree et al., 2002). In this manner, the
relationship between host immunity and intestinal microbiota is
essential to maintain homeostatic balance in the gut. In this study,
we showed that a distribution of intestinal microbiota in Syntenin-
1 KO mice could be influenced at the phylum level. Although the
detailed analysis at the genus level was not examined in this study,
it is possible that Syntenin-1 is involved in the maintenance of
normal intestinal microbiota and mucosal immune balance by reg-
ulating immunoglobulin production.

Previously, we demonstrated that Syntenin-1 exists in the
human colostrum and could induce IgA production from naive B
cells (Sira et al,, 2009). In the present study, we found the nega-
tive regulation of Syntenin-1 in IgA production. These incompatible
functions of Syntenin-1 may be due to differences among species
or effector sites. As our present data might be influenced by the
function of extracellular Syntenin-1 in milk, we analyzed litter-
mate offspring from heterozygous breeding pairs to exclude such
differences in components of milk in this study. Further studies are
necessary to clarify the role and mechanisms of actions of Syntenin-
1 in the colostrum in vivo.

In summary, in this article we described the generation of
Syntenin-1 KO mice and provided new evidence that Syntenin-1
negatively regulates immunoglobulin production in the intestine.
Although Syntenin-1 has been reported to have various functions

in vitro, additional studies are needed to clarify the mechanisms in
detail, especially in vivo. Through future studies of Syntenin-1 KO
mice, it will be possible to provide novel evidence of the involve-
ment and functions of Syntenin-1 not only mucosal immunity but
also cancer metastasis, protein recycling, exosome formation, and
neural network formation.
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@4 Topiramate (TPM) & & U lamotrigine (LTG) O3%5-4% — AR

A L TPM ORSRBRAEMMETAPA (NBHRA 116 (KB 285 R—~HHWEBIR, B | TPM OJBERBEMNMEETA»A (MR B 12
B BB —FHEMR, C 1 LTG DIEREBERENET AP A CRNBHIEA 17 61) 12813 2345 —FWMNHME, D © LTG OIENGAIA R 758

HTADA VN ST BN 2B 28550 — A 4R,

B RIED 22 ) OS5 (mg/kg), PENIRAEMAH (Scizure reduction ratio) (%) = (X5 §i S {EHUE — 35BS MR HX 5T AR BUE & R 7.

Tz FTdHH GluN2B (NR2B, GluRe2) B X UF GluN1
(NR1, GR{1) W3 2 PikflEE %, GuN2B B &L UF
GluNI ® N (NT) & C3k (CT) OABRARTF FEFURL
L7 ELISA TR%L, H#THE LAY,

B2 HE L T BB TADP AR (PE-B) THikLst
DFREDIS T AP AER (PE-NE) (ZHATHEI GluN2B-
NT2 HiiEA Rl CHBMETSH o 722 (Mann Whitney test, p<
0.0001), fEMGEMEEETADA (SGE), West JEMEEETIE, M
PR IRE & T HER & MRV OFREHEDER TH EEILD
Lhedor (5). B GuN2B-CT Hifkd, BEZHRHE
ETBEEZLNIHSTAPAMES (PEB) TidiEst
DIRE DB T AL AEFICHRTEEICERF TEETH -
7235 (p=0.0001), SGE, West SEEHETIY, MAZHAL T
BER L RRLNOFRROEFATHAEEI RO LN 2o/
(R 5). B GuNI-NT LT, A HBEE T25EH L
M A DFHREROER TH EEIRDO SN o 7oh, B
GuN1-CT #ifkTid, MRLZMA L T HIMATA D AL &
SN OFEDIEF THEEIED SN (p=0.0166) (K 6).
IO LS RGOS T AP AER TR T O GluN2B
PiiER GuN1 i P EBICBETH Y, RELZBHLTWS
A REMEDTEI V.

NMDA %! GuR HiEDO/EH L LTiE, ONMDA # GluR ©
P7E{l (internalization), @7 5K b — ¥ AFH#E/EH, G®NMDA
# GluR D F v 4 )VH#5EE (long term potentiation, LTP) ##IA*

MONTVA9Y, (DNMDA %! GluR DRTEILIZIEA L~ A
2R RINA, Pl NMDAR B447%: & NMDA E! GluR
HURTHE S hTwT, NMDA B GuR o34 2 F5H/EH %
DI T 70, HWEIR, BERMOBEL LI ELS L
EFLTWS (@7). @7 F b~V A%BEEHI SLE BFD
B ETHESATHTY, ST Lr Ay v -2 F
WEARIY, TALARMED 2RSS TAL
ML T 59, @LTP ##lIdH NMDAR %% &0
NMDA % GuR Hih TR W T T, oEAmMEEL &
5 TALHEELTNAS,

5. MARKBEPIREE ORS

I FERBA P I MBI AERS, HIERE, 7A Moy boR
Zeke, EBM: CbBREh, PREMERZEELTY
5 BEBCHE 74 TR F L IVEOT—-S R
matrix metalloproteinase-9 (MMP-9) DERIZ L hEE X,
tissue inhibitor of metalloproteinase-1 (TIMP-1) 2 X 1) BT
P sns L2, RkzoomETHLOATYS, Ke
i¥ 46 BIDRE 5215 T A B AEFI T IS D MMP-9 & TIMP-1
FPREL, MERTAP»ATIIEEIC MMP-9 ASEET,
TIMP-1 ZMEMETH B L ZRE LA (M8)"™, MmMp-9o &
1 0~5ROMRBEREANTERT, MAREZRLIEMELH
T B EHEE NI, TIMP-1 {&fllL 0 ~ 20 ARICHMACTER L
TIEBITERT, MEARBRSELLVPIITETFL, 20
HIRMEZHRT 2 LTSN
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A. GlN2B-NT2 fiff
l GluN2B-NT2
25 -
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E 5.
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a *

104 &

——5! ". * v

2 05 “"’ «»mu

® 0.0 "”“ B5E e == = Whitney test, p<0.0001

PE E SGE-E West-E PE-NE SGE-NE West-NE Dravet

B. GuN2B-CT #ifk
N

309 GluN2B-CT

a

o

g; 2.0 4

=2

g 104w

g * o

£ . .

2 |#E T F o = = =

T v T T * 1 3 =
PE-E SOR-E Wes-E PE-NE SGENE West-NE Draver | Vann Whitney test, p=0.0001

5 BAEBTAPAICBITHEIE GluN2B Hifk
A ! GluN2B-NT2 Hifk, GluN2B (NR2B, GluRe2) @ N KATF FEHEE L ELISA (X 254K, B | GN2B-CT $iifk, GluN2B (NR2B, GluRe2)
O CHENTF FEPUR E L7 ELISA I & A5k,
MR, EHERCREBHE NI,
PE-E:partial epilepsy after acute encephalitis, SGE-E:symptomatic generalized epilepsy after acute encephalitis, West-E:West syndrome after acute encephalitis,
PE-NE:partial epilepsy by non-encephalitic causes, SGE-NE:symptomatic generalized epilepsy by non-encephalitic causes, West-NE: West syndrome by non-
encephalitic causes, Dravet: Dravet syndrome.

A. GluNI1-NT #ifk
GIuN1-NT

154

1.0+ .

v
051 o

ab to GluN1-NT{OD
o e
. “
*
-
.;.go:
S

PE-E SGE-E West-E PE-NE SGE-NE West-NE Dravet

B. GluN1-CT #ifk

20 1 . GluN1-CT
=)
o154
&
g 1.0 4 . %
(2 0.5 -..\ . »*
S Vo _%_ ¥ N
e - - Sus® —E—-
s .:EE: [ an:» _E’—
0.0 *Mann Whitney test, p =0.0166

PE-E SGE-E West-E PE-NE SGE-NE West-NE Dravet

6 BMRHETADAILBITZ T GuNI Hifk
A : GuN1-NT §ifk, GluN1 (NR1, GluR ¢ 1) ® Nk~_7F F 2 & L/ ELISA 12X 2514, B © GNI-CT Hifk.
GIuNt (NR1, GIiR{1) @ CHRARTF FZHURL L2 ELISA 12X 2k, MBUE, MERTRESBENLwI7, BB 5 258,
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CNSHEAT CNSA
i

N ANEY S T A ]
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IR - Heh || RO - R

IEEREE

BEMESETA»A

B7 BEBTAPAICET B RE, SRR
MMP-9: matrix metalloploteinase 9, TNFe :tumor necrosis factor @, NR:N-methyl-D-aspartate (NMDA) type GluR,
AMPA.: alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, GABA:y -aminobutyric acid, CNS:central nervous system,

AEDs : antiepileptic drugs.

BiRBE T AD ADMLTTRBIFIEEE, MMP-9, TIMP-1 DA%
5, IL-8 OYFSMERSAEVER b BE L TV A TEEE A X W,

2tk 5 0 T IR PR E A AT C B LT A 2 &
7, TADPAZSE - BAREEOEHE OB b o—RE 2 > Tw
BEREAL TS, MENBIMFIEEIZL Y, B TINF o X0
4 MAA BN, FEMREAYE 2 Y, AMPA B GuR
HiINE GABAZRBHERIPED Y, MBRAEREEDOTY
BEREMEATH 510, MHNBIFI RS X b B8 GluN2B Hifk
HESERL, LTP WHIAR I o TW B WHENM D 5.

AR T AP AEFTORT AP AEEETIE, 388%%
EERICRESHBET A, MENEPOBETIRTA»A
EOPRMERNOBTVFRVA D LN LTV 5E D,

6. SHEDES

B 2A% T AD A TS A 23.0% & B ICHTIT 219,
BEHIEGITITMIE RANTES 258 ¢, EEFHBICHES LT3
WHetED D B, WBET AL ADFERICITREEESHSE L
THEY, TUAF—RE2E0EERIREE ) 2T WiRET
HATMEEES L LEbISE, 2L, 2HHICESIHT

b, DLST % £ 4 BH I BMATELHEIDH D,
¥ & L:2)

B TADPATIE, BERESLTHA P U4 R EDORIE

HF, MMP-9 % TIMP-1 72 & DHALFERFIYREIC RS LT,
$EIE 2 TAD AR, HEECBBEINMEZ o TV A ATHEMEA
HL. ARELRIBHIPVLETH .

# 55 [ BAN B SRS BV IHELREOBRE T BS 2
WHSIEERE L, SORMEdS, WIS HEE, BEEE - SR R
LEWES., ZoOMRRTEAFRBOIE 2RI TiTbhl, B
3% 21591342, 23591238, 24591537 ; L4 FBFRLE A HIRETZE ;
G HER B TURBIE ; CAPABBEREUM R ; K 25 £E Rl
B BORESA v b7 — 7 HED%E.
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H1 NMDA B 7)) & X VS R HURIG T D —Hl

TR SRR Y 2 — « T P B ERY Y & — HiRAE Y SRR
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BN Y, ZEERORER Y, IR . EEVTET Y, BT
i B 0. BB SR
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FEFIE 39 DB, 2013 EARRE 30 A& b sh e B#. ABt20 Hllc &5 RS
FHFE, ABt15 HRiX b EAEERRE L & D BHREEA R T YRICER. BREE
BHRICSH~ B OFTERY BT, RIEEICREIBO LOE ¥ L% L LAFE S
BT DRMEN | RefReht, M ERPOHIR. BB HE- T, HERETHRMNKRE
IRMEARIE (2Hz 6 1K) DESIZ D, TALAREREZRDTIERBE TALOAERE
BE, WMRI CIIBRESHTREFRRI M o . BOCREMEMERR & BERZHT L.
AFuA R/ e bRgraT ) U RBREEREERT. 2 7—/VERREEROARE 35 BE
KBS & 2B RRREELNER, TORS THFEOMEERBIREL. BHERD
TEDFATREIIRRE T H - T2, RV U X AR EF G SICiEE U /EERELRIREL 5o
oo FFIOTEIROREENFIL, HENGRAEEHEEY SEEMANOYF SRICBITS
NMDA BT )V & X VEERARD O RBNERBFIC L3 EE T, REIcEM U AL
B2 —nVBREELIELDLEER LI,
Key words: i NMDA Bl 7'V & X VEERAGTFRBIERA. FINMDA V43X VERA
gtk FROEMEHIEE. MRRMAEEEE, KV XABE, L Mg say ) v ARBEEE, J
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EE, ABRRBAZIGCHE UT, BEEHEER
22T HBEOMME - BHEICHREMRETCEE
URBICBIS T 3 REREEOEVWETHEIHE
EhBE3icxb, HERBNEERR LBIEEH
TW3 % &HTH, 2007 ££IC Dalmau 5 A% NMDA
32 A 1K (anti-N-methy-D asparate receptor: NMDAR) IZ
X9 5ECHEOEER, MHRFEEEMESLER
BAPIOMmE L EREF THS M UTLE, H#

NMDA B8R LRI NB K S ichkol, FE.

BRREMNTERDIEND LER%R L. WBRBR
DIEDITIE BN,
BAZ2EMRERENVSBEFRL 2%
£, AFEBORKEEREEEC—FEER LU
NMDA )L 4 I VEER A& (NMDA-GIuR) Df4E
~HRETITRICBI3RBEY T REEICEBI3
BREZ TR ARET L A BI D BB HEREOBFICD
WTERL, :

- 122 -



