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Figure 3. Verification of the alternation of PGAM1 using the other internal protein, tubulin alpha (TUBA). The methods are similar to
the Figure 2, except that tubulin alpha (TUBA) was used for the internal standard. a) PGAM1, b) PSME1, c) WARS. Scatter plots show the ratio of each
protein to an internal standard protein, TUBA, measured by densitometric scanning of the band intensities. The PGAM1/TUBA ratio was significantly
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higher in patients with bipolar disorder compared with controls (p<0.05). Number of the subjects is 8 for bipolar disorder and 8 for controls,

respectively.
doi:10.1371/journal.pone.0053855.g003

pathway. The categories pertained to carbohydrate metabolism
(8.38E-10-3.27E-02, 14 molecules) and cell death (2.04E-05-
4.72E-02, 20 molecules) (Fig. 1B). Pathway analysis and gene
ontology classification using PANTHER and DAVID were
conducted on the same protein IDs. These analyses also showed
pathways and categories associated with glycolysis and anti-
apoptosis. Taken together, most proteins identified in the present
study were related to glycolysis and neurological diseases.

Case—control study by Western blot analysis

We postulated that the differentially expressed proteins might be
candidate biomarkers for bipolar disorder. To validate the findings
from the proteomic profiling study and to examine the possibility
of biomarkers for bipolar disorder, Western blot analyses were
performed using a case—control sample set consisting of eight
subjects with bipolar disorder and eight healthy control subjects.
To compare the protein levels across individuals, protein
concentration was measured by the Bradford method, and equal
amounts of proteins were loaded onto the gels. Commercially
available antibodies for the candidate 7 proteins (PSME1, RPLPO,
TPI1, ALDOC, ANXA4, PGAMI, and WARS) were searched
for, and among available antibodies, those against PSMEI,
WARS, and PGAM!1 showed good performance, and thus they
were chosen for quantification by Western blot analysis. The levels
of PGAMI, PSMEI, and WARS were quantitatively investigated
by Western blot analysis using NM23A as a standard (Fig. 2).
Expression of PGAM1 was recognized by the presence of a single
band at around 28 kDa and its protein expression was increased
by 197% in bipolar disorder compared with controls (p<<0.05).
However, the levels of the other proteins were similar between
bipolar disorder and controls in this case—control sample set
(Fig. 2).

The absolute band intensity for the PGAMI1 was also
significantly higher in patients with bipolar disorder (0.93%0.23
[mean = standard deviation] [arbitrary unit]) than control
subjects (0.39£0.18, p<<0.0005). In addition, we also performed
an independent experiment using the other, more popular house-
keeping protein, tubulin alpha (TUBA), as an internal standard.
This analysis also showed higher PGAMI levels in patients with
bipolar disorder than controls (p<<0.05) (Figure 3).

Discussion

In this study, we identified 53 proteins that were differentially
expressed between a pair of monozygotic twins discordant for
bipolar disorder; 34 were up-regulated and 19 were down-
regulated. The differentially expressed proteins included those
previously implicated in psychiatric disorders, such as ALDOC,
ENOI, and PRDX2 [10,33]. Differences for ALDOC, ANXA4,
PGAMI1, PSMEL, RPLPO, TPI1, and WARS between twins were
regarded as robust because they were identified in three of four
experiments with high scores.

To evaluate whether identified proteins might be biomarkers for
bipolar disorder, we performed a case—control study for several
proteins by Western blot analysis using available antibodies. An
increased level of PGAMI1 was observed in samples from patients
with bipolar disorder. PGAMI is an enzyme of the glycolytic
pathway that catalyzes the conversion of 3-phosphoglycerate to 2-
phosphoglycerate [34]. This enzyme also promotes glycolysis and
ATP production via the TCA cycle and the electron transport
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system. Although previous studies using postmortem brains of
patients with bipolar disorder and schizophrenia suggested altered
protein expression of glycolysis enzymes, including PGAMI
[10,35], the results were controversial. The differentially expressed
proteins between bipolar disorder and healthy control including
PGAMI, might be a clue to understand the biological basis of
bipolar disorder.

To examine whether the 53 identified proteins were related to
each other and constituted a global molecular network, pathway,
or category, we applied IPA to our data. The results showed that
the networks having a high score belonged to cell death, energy
production, and glucose metabolism categories. The cell death
category included the following proteins: NPM1, PAHB, LGALS3,
CASP3, PDIA3, ATP5A1, GAPDH, ANXA4, HSPA5, RPLPO,
UCHLI, STMNI, ENOI1, ANXA5, MZB1, PSMBI1, ALDOA,
VDACI, LDHA, HSPB1, and PRDX2 (Fig. 1). These results are
consistent with previous studies. Benes et al. [36] showed increased
expression of pro-apoptotic gene transcripts in postmortem brains
of bipolar disorder patients. Furthermore, Herbeth et al. [21]
indicated altered cell death and inflammation-related proteins in
peripheral blood mononuclear cells and serum from patients with
euthymic bipolar disorder. Brain imaging studies demonstrated
reductions in the mean gray matter volume of brains from patients
with bipolar disorder [37]. Previous studies reported a decreased
density of nonpyramidal neurons in layer II of the anterior
cingulate and a lower number of glial cells in layer IIT with bipolar
disorder [38]. Meta-analyses of volumetric magnetic resonance
imaging studies showed reduced volume of gray matter in the
anterior cingulate and bilateral insula [39,40]. Neuropathological
studies of bipolar disorder showed decreases of each brain field
and neuronal cells. Because mood stabilizers and antidepressants,
which are used for treatment of bipolar disorder, have neuropro-
tective actions [5,41,42], it has been suggested that cells derived
from patients with bipolar disorder are more vulnerable to factors
related to cell death than those from controls. Patients with
unipolar or bipolar depression exhibit decreased brain-derived
neurotrophic factor levels [43]. Moreover, mood stabilizers have
neuroprotective effects by increasing bcl-2 levels [42,44,45]. These
findings suggest cellular vulnerability has a role in the pathology of
bipolar disorder. Dysregulation of the apoptotic process found in
the monozygotic twins discordant for bipolar disorder might be
relevant to this hypothesis.

We examined the relationship of the identified proteins with
canonical pathways and found that the proteins were related to the
glycolysis pathway. The proteins included PKM2, ALDH2,
ENOI, PGAMI, GAPDH, ALDOA, LDHA, and ALDOC.
Glycolysis, or anaerobic respiration, is a fundamental metabolic
process that produces energy for all cells. In order to maintain its
functions, the brain needs an enormous amount of energy
compared with other tissues. ALDOC is a brain-specific glycolysis
enzyme that catalyzes the reversible aldol cleavage of fructose-1,6-
biphosphate and fructose-1-phosphate to dihydroxyacetone phos-
phate and either glyceraldehyde-3-phosphate or glyceraldehyde
[46]. In the present study, we found a decrease of the ALDOC
protein level in the affected twin. However, previous reports
showed that protein expression level of ALDOC was increased in
the frontal cortex of patients, including those with mood disorder
[35,47]. This discrepancy might reflect differences between tissues.
Moreover, we found differential expression of many essential
enzymes of glycolysis such as TPIl, ALDOA, and PGAMI1. A

February 2013 | Volume 8 | Issue 2 | e53855

- 189 -



previous report using positron emission tomography showed that
familial bipolar depressive paticnts had decreased blood flow in the
cerebrum and a decreased rate of glucose metabolism in the
ventral anterior cingulate cortex [37]. As indicated by an
alteration in energy metabolism, compromised metabolic function
has been reported in bipolar disorder [48,49]. In these studies,
alteration of mitochondrial proteins was reported. Mitochondria
are involved in processes including the TCA cycle, glycolysis and
gluconeogenesis, lipogenesis, and malate-asparate shuttle [50].
Thus, changes in these proteins may lead to major alterations in
the energy pathways, thus affecting ATP production. Recently,
many reports have suggested that mitochondrial dysfunction is
involved in bipolar disorder and other psychiatric disorders
[51,52,53]. Mitochondria are also involved in other essential
processes such as apoptosis, oxidative stress, and calcium
regulation [50]. Thus, a decrease in energy production due to
mitochondrial dysfunction in the brains of patients with bipolar
disorder may be compensated for by an increase in energy
production by glycolysis. It is possible that mitochondrial
dysfunction affects neuronal cell death. Further study is needed
to know whether these alterations in glycolysis-related proteins are
a cause or consequence of the disease process.

This is the first study to our knowledge to apply proteomics for
the analysis of monozygotic twins discordant for bipolar disorder,
and it has major limitations. First of all, we analyzed only a single
pair of monozygotic twins. Thus, results cannot be applied to
bipolar disorder in general. Another limitation is the tissue
examined; that is, lymphoblastoid cells. Although brain samples
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may be optimal to identify molecules directly related to bipolar
disorder, brain samples of twins are difficult to access. In addition,
accessible tissues such as body fluid and peripheral cells such as
serum, plasma, cerebrospinal fluids, saliva, urine, and peripheral
blood cells should be used for biomarkers. In this study, we used
lymphoblastoid cells and avoided a possible effect of medication by
culturing the cells in drug-free media. However, a possibility that
the effect of medication at the collection of blood last even after
culturing the cells in drug-free media for a month cannot be totally
ruled out. The other major limitation is the small number of case—
control samples.

In summary, we performed a protcomic analysis of lympho-
blastoid cells in a pair of monozygotic twins discordant for bipolar
disorder. The identified proteins were mainly categorized as those
involved in cell death and glycolysis. In a case—control study,
protein expression of PGAMI, which is related to glycolysis, was
significantly higher in patients than in healthy controls. The
present findings suggest future new targets that may be relevant to
the pathology of bipolar disorder. The present results need to be
tested in a larger, independent sample set to reach a valid
conclusion.
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Covalent modifications of nucleotides, such as methylation or hydroxymethylation of cytosine, regulate gene
expression. Early environmental risk factors play a role in mental disorders in adulthood. This may be in part
mediated by epigenetic DNA modifications. Methods for comprehensive analysis of DNA methylation and
hydroxymethylation include DNA modification methods such as bisulfite sequencing, or collection of
methylated, hydroxymethylated, or unmethylated DNA by specific binding proteins, antibodies, or restric-
tion enzymes, followed by sequencing or microarray analysis. Results from these experiments should be
interpreted with caution because each method gives different result. Cytosine hydroxymethylation has
different effects on gene expression than cytosine methylation; methylation of CpG islands is associated with
lower gene expression, whereas hydroxymethylation in intragenic regions is associated with higher gene
expression. The role of hydroxymethylcytosine is of particular interest in mental disorders because the
modification is enriched in the brain and synapse related genes, and it exhibits dynamic regulation during
development. Many DNA methylation patterns are conserved across species, but there are also human
specific signatures, Comprehensive analysis of DNA methylation shows characteristic changes associated
with tissues, brain regions, cell types, and developmental states. Thus, differences in DNA methylation status
between tissues, brain regions, cell types, and developmental stages should be considered when the role of
DNA methylation in mental disorders is studied. Several disease-associated changes in methylation have
been reported: hypermethylation of SOX10 in schizophrenia, hypomethylation of HCG9 (HLA complex group
9) in bipolar disorder, hypermethylation of PRIMA1, hypermethylation of SLC6A4 (serotonin transporter) in
bipolar disorder, and hypomethylation of STEGALNAC! in bipolar disorder. These findings need to be repli-
cated in different patient populations to be generalized. Further studies including animal experiments are
necessary to understand the roles of DNA methylation in mental disorders.
This article is part of a Special Issue entitled ‘Neuroepigenetic disorders’.
© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

mechanisms of DNA demethylation are still not completely un-
derstood (Franchini et al,, 2012).

It is well known that DNA contains the code for the amino acid
sequence of proteins. In addition, the DNA molecule has informa-
tion on the regulation of gene expression, which is mediated by
DNA-protein or DNA—RNA interactions. The amino acid sequence is
determined by the sequence of four nucleotides. Similarly, DNA-
protein interactions that mediate gene expression regulation are
regulated by the covalent modifications of nucleotides. The most
studied covalent modification of nucleotides in mammals is
methylation of the cytosine residue (Suzuki and Bird, 2008). The
process of DNA methylation has been well studied; however,

* Corresponding author. Tel.: +81 48 467 6949; fax: +81 48 467 6947.
E-mail address: kato@brain.riken.jp (T. Kato).

0028-3908/$ — see front matter © 2013 Elsevier Ltd. All rights reserved.
http:/jdx.doi.org/10.1016/j.neuropharm.2013.12.019

DNA damage produces several types of oxidative DNA adducts
including 8-oxoguanine and 8-hydroxyguanine (Cadet et al., 2003),
and 5-hydroxymethylcytosine (5hmC) had also been regarded as one
of such DNA adducts. Identification of ten-eleven translocation (TET)
proteins as the enzymes that catalyze hydroxymethylation (Ito et al.,
2010; Tahiliani et al., 2008) and enrichment of 5hmC in brain cells
(Kriaucionis and Heintz, 2009) suggested its role in brain function
and neuropsychiatric diseases. 5hmC is involved in the demethyla-
tion of cytosine (Cortellino et al,, 2011; Guo et al,, 2011; Hackett et al,,
2013; He et al,, 2011; Ito et al,, 2011; Shen et al,, 2013), it also plays a
functional role by binding to methyl CpG biding protein 3 (Mbd3)
(Yildirim et al,, 2011), methyl CpG biding protein 3 (MeCP2) (Mellen
et al., 2012), and Uhrf2 (Spruijt et al, 2013). TET proteins further
oxidize 5-hmC into 5-formylcytosine (5fC) and 5-carboxylcytosine
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(5caC) (Ito et al., 2011). Recently, 5fC was found to be enriched at
poised enhancers in mouse embryonic stem (ES) cells, suggesting its
functional significance in gene regulation (Song et al., 2013).

The role of DNA methylation in mental disorders has long been
suggested (Petronis, 2010). Epidemiological studies show a role for
both genetic and environmental factors in mental disorders.
Among environmental factors, early adversities such as childhood
abuse or maltreatment are suggested in depression or post-
traumatic stress disorder, whereas perinatal problems such as vi-
rus infection, malnutrition, and perinatal complication, are sug-
gested in psychoses. However, it is unknown how these early
environmental factors affect behavioral phenotypes in adulthood.
DNA methylation can be affected by environmental factors, and
methylation remains relatively stable over time. Thus, the role of
DNA methylation as a mechanism of the effect of early environ-
mental factors on adult mental disorders has drawn attention.

However, there have been no well-replicated findings of altered
DNA methylation of candidate genes in mental disorders. It is
suggested that genetic association studies of candidate genes
frequently encounter false positive findings (Hirschhorn et al.,
2002). Recently, there has been a greater focus on genome-wide
association analysis rather than candidate gene approaches. The
genome-wide approach can also be applied to the study of DNA
methylation and hydroxymethylation.

In this review, recent studies on the comprehensive analysis of
DNA methylation and hydroxymethylation in the human brain are
summarized. A particular focus on the roles for methylation in
mental disorders is given. Therefore, animal experiments and
studies regarding brain tumors are not discussed here.

2. Methods for the comprehensive analysis of DNA
methylation and hydroxymethylation

There are several approaches for genome-wide analysis of DNA
methylation or hydroxymethylation. A common method utilizes the

modification of cytosine to uracil by sodium bisulfite (Hayatsu et al.,
1970). Methylcytosine (mC) is not converted into uracil by sodium
bisulfite, allowing the identification of methylated cytosine. Bisulfite
sequencing has been widely used for DNA methylation analysis since
its discovery in 1970. However, this method cannot discriminate
5hmC from mC. A modified method, however, enables this discrim-
ination (Fig. 1). For mC-specific analysis, called oxidative bisulfite
sequencing (0xBS-Seq), 5ShmC is selectively oxidized to 5fC, which is
then converted to uracil after bisulfite treatment (Booth et al,, 2012).
Tet-assisted bisulfite sequencing (TAB-Seq) specifically analyzes
5hmC (Yu et al, 2012). In this method, all cytosine modifications
except for glucose-protected 5hmC are converted to uracil by first
treating with the Tet enzyme followed by bisulfite modification. In
addition, specific analysis of 5caC has also been developed by pro-
tecting 5caC with 1-ethyl-3-[3-dimethylaminopropyl}-carbodiimide
hydrochloride before bisulfite modification (chemical modification
assisted bisulfite sequencing; CAB-seq) (Lu et al., 2013). Similarly, a
method for base-pair level analysis of 5fC has also been reported
wherein 5fC is protected with O-ethylhydroxylamine before modifi-
cation with bisulfite (Song et al., 2013). Bisulfite-modified DNA is
subject to analysis by next-generation sequencing or bead arrays
(Bibikova et al., 2006). Bead arrays can determine predefined repre-
sentative CpG sites for each gene. Reduced representation bisulfite
sequencing (RRBS), which can selectively analyze CpG-rich regions, is
also often used. RRBS is popular because the cost of whole genome
bisulfite sequencing analysis is still high (Meissner et al., 2005). For
the analysis of specific CpG sites, other methods such as Sanger
sequencing, pyrosequencing, or mass-spectrometry are used.

In the other type of comprehensive analysis method, methyl-
ated, hydroxymethylated, or unmethylated DNA is collected using
specific binding proteins or antibodies. For example, MBD2b con-
jugated beads are used to collect methylated DNA. Similarly, DNA
containing 5hmC can be collected using streptavidin magnetic
beads after glucosylation of 5hmC and subsequent biotinylation. To
collect unmodified DNA, unmethylated DNA-specific binding

Bisulfite sequencing (BS-Seq) Reads
tllrn \?m
-CG- -CG- “c’
T T
-CG- > -CG- [ > “‘cr
Bisulfite
_CG- treatment _ . e
Oxidative bisulfite sequencing (oxBS-Seq)
4 {
-CG- -CG- -UG- T
i i i
-CG- = -CG- — -CG- [ > ‘c’
Oxidation Bisulfite
-CG- .CG- treatment _yg. wpn
Tet-assisted bisulfite sequencing (TAB-Seq)
I*'lm hm hm hm
-CG- -CG- -CG- -CG- “c’
T T
-CG- — -CG- — -CG- — -UG- — “T
Glucose Tet Bisulfite
_CG- protection  _~ 5 _ CG- treatment ;5 w

Fig. 1. Specific analysis of methylcytosine and hydroxymethylcytosine. Recently developed modified versions of bisulfite (BS) sequencing enable mC or 5hmC-specific analysis at the
base pair resolution. In oxidative BS sequencing (0xBS-Seq) (Bowth et al,, 2012), 5ShmC is selectively oxidized to 5fC. 5fC is converted to uracil after BS treatment. 5hmC reads as T
instead of C when sequenced. In TAB-Seq (Yu et al, 2012), genomic DNA is pretreated with glucosyltransferase to modify 5hmC with glucose, which is resistant to BS treatment.
Genomic DNA is then treated with the Tet enzyme. Sequence reads of all cytosine modifications except 5ShmC would be T, and 5hmC would be C. Note that after BS treatment two
other cytosine modifications, 5-carboxylmethycytosine and 5-formylcytosine, would be read as T. mC, methylcytosine; 5hmC, 5-hydroxymethycytosine; C, cytosine; T, thymine; BS,
bisulfite; oxBS-Seq, oxidative bisulfite sequencing; TAB-Seq, Tet-assisted bisulfite sequencing.
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proteins can be used. Similarly, anti-mC antibody or anti-5hmC
antibody can be used to collect methylated or hydroxymethylated
DNA, respectively. Selective digestion of non-methylated DNA by
methylation-sensitive restriction enzymes can also be used to
enrich methylated DNA. On the other hand, McrBC, a restriction
enzyme that can selectively digest methylated DNA, is used for the
enrichment of unmethylated DNA. Glucosylation of 5hmC inhibits
the activity of methylation sensitive restriction enzymes, and thus
this can also be used to discriminate 5hmC and mC. After the
collection of DNA, the samples are subjected to tiling arrays or deep
sequencing analysis. The resolution of these methods is not at the
base pair level; therefore, tiling arrays and deep sequencing would
be equally useful for this analysis.

Both bisulfite sequencing and collection of methylated DNA
have strengths and weakness. Bisulfite sequencing can reveal DNA
modifications (methylation or hydroxymethylation) at the base pair
level, but cannot discriminate between the types of modifications
through a standard method. Collection of methylated DNA followed
by sequencing can analyze methylation and hydroxymethylation
separately, but not at the base pair level. Thus, both methods can be
combined to obtain a genome-wide picture of DNA methylation
and hydroxymethylation. As discussed above, sodium bisulfite
sequencing cannot discriminate DNA methylation and hydrox-
ymethylation, and, therefore, it would be appropriate to refer to
these results as “DNA modification” or “DNA (hydroxy)methyl-
ation.” In the following sections, the results of this method are
written as “DNA methylation” for simplicity.

In summary, a number of different experimental techniques are
available to analyze DNA methylation and hydroxymethylation
status. The results of these analyses are dependent on the meth-
odologies used. Methodological differences should be carefully
considered when results are interpreted and compared across
different studies.

3. DNA methylation
3.1. Functional significance

DNA methylation has important roles in the regulation of gene
expression, imprinting, and X-chromosome inactivation (Bird,
1980). Cytosine methylation predominantly occurs at, but is not
restricted to, the CpG site in genomic DNA in mammals. CpG site is
less frequent than simple mathematical probability predicts
because methylated cytosine can be mutated to thymine during
evolution (Bird, 1980). CpG-rich genomic regions, called CpG
islands, are frequently found around the transcription start sites.
CpG islands of house-keeping genes are generally unmethylated;
lower DNA methylation at CpG islands on the promoter is usually
associated with higher gene expression (Suzuki and Bird, 2008).
Methylation at the region surrounding a CpG island, called the CpG
island shore, is involved in tissue differentiation (Doi et al., 2009).
DNA methylation of CpG islands in intragenic or intergenic regions
is associated with alternative promoter usage (Maunakea et al,
2010). DNA methylation in gene body is related to enhanced tran-
scription (Ball et al,, 2009).

In conclusion, DNA methylation can affect a wide-range of
cellular functions, and it is hypothesized to play a role in diseases.

3.2. DNA methylation signature of tissues, brain regions, and cell
types

An early study using a BAC (bacterial artificial chromosome)
microarray identified tissue-specific DNA methylation of SHANK3.
SHANK3 was found to be unmethylated and highly expressed in the

human brain but not in peripheral blood lymphocyte (Ching et al.,
2005).

Using Restriction Landmark Genomic Scanning (RLGS), Ghosh
and colleagues searched for brain-specific DNA methylation dif-
ferences and identified loci showing differential methylation in the
human brain. RLGS is a traditional method of comprehensive DNA
methylation analysis involving digestion using methylation-
sensitive restriction enzymes, followed by two-dimensional elec-
trophoresis. This study demonstrated that LHX2 is methylated and
CNPY1 is hypomethylated in cerebellum (Ghosh et al.,, 2010). This
study also found clear differential methylation of several loci be-
tween gray matter and white matter. The authors suggest that this
might be mediated by differential methylation between neurons
and glial cells (Ghosh et al., 2010). However, the loci showing dif-
ferential methylation between gray and white matter were not
identified.

Using bead arrays that can examine 1505 CpG sites from 807
genes, Ladd-Acosta and colleagues studied the DNA methylation
status of 76 human brain samples including patients with autism
and bipolar disorder (Ladd-Acosta et al., 2007). By hierarchical
clustering analysis, they clearly showed that DNA methylation
status is different between brain regions including cerebral cortex,
cerebellum, and pons. DNA methylation differences of five genes,
RASSF1, HDAC7A, GABRB3, EN2, and HTR2A between the cerebral
cortex and cerebellum were confirmed in an independent cohort.

To identify the differences in methylation signature between
neurons and non-neuronal cells such as glial cells, we separated
neurons and non-neurons from human postmortem brains and
performed comprehensive DNA methylation analyses using bead
arrays of bisulfite modified DNA and tiling array analysis of DNA
collected by MBD-conjugated beads (Iwamoto et al, 2011). We
found that neurons are hypomethylated, and the DNA methylation
status of bulk cortex mostly reflects non-neurons. Genes expressed
in astrocytes were methylated in neurons, and genes related to
neuronal function were methylated in non-neurons. Interestingly,
inter-individual difference of DNA methylation is larger in neurons
than in non-neurons. This difference might reflect environment-
dependent changes of DNA methylation in neurons.

Considering the differences in DNA methylation status between
tissues, brain regions, and cell types, the tissues and cell types to be
analyzed are crucial when the role of DNA methylation in mental
disorders is studied.

3.3. Developmental aspects

DNA methyltransferases (DNMTs) and MBDs play an important
role for de novo and maintenance DNA methylation as well as the
recruitment of proteins involved in transcriptional regulation.
Expression of these genes undergo complex regulation from early
neuronal development to the adult brain, establishing a develop-
mental and cell-type-specific DNA methylation signature in the
brain (Yao and Jin, 2013). Importantly, mutations within DNMTs or
MBDs are known to cause neurological disorders. For example,
mutations in MECP2 causes Rett syndrome (Chahrour and Zoghbi,
2007) and those in DNMT3B lead to immunodeficiency-
centromeric instability-facial anomalies syndrome, which is char-
acterized by mental retardation (Hansen et al, 1999). DNA
methylation profiles in brain are drastically altered throughout
development. Siegmund and colleagues performed a real-time
PCR-based quantitative methylation assay of 50 genes in 125
postmortem brains. They identified four typical patterns of changes
during development: age-dependent linear increase, biphasic dis-
tribution, stochastic accumulation, and a decrease in DNA
methylation (Siegmund et al., 2007). This study also found higher
DNA methylation of PAX8 in patients with schizophrenia than in
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controls (Siegmund et al,, 2007). Numata and colleagues examined
about 27,000 CpG sites from 14,500 genes using bead arrays in the
prefrontal cortex of 108 human subjects of various ages from fetal
to elderly. DNA methylation showed drastic changes during the
prenatal period, but showed continuous changes during aging.
Typical alterations were characterized by prenatal demethylation
and increase of methylation with aging (Numata et al., 2012). It was
suggested that sex differences in methylation observed in this
study are attributable to cross reactions to the sex chromosomes
(Chen et al, 2012). Recently, Lister and colleagues performed
genome-wide bisulfite sequencing analysis of the mouse and hu-
man brain (Lister et al.,, 2013). This study identified developmen-
tally regulated DNA methylation changes, and found that genome-
wide reconfiguration of the DNA methylation pattern occurs during
the fetal to young adult stage. They also identified age-dependent
accumulations of non-CpG methylation in neurons, but not in
non-neurons. Although presence of non-CpG methylation in brain
has been previously suggested (Xie et al., 2012; Varley et al,, 2013),
finding a specific accumulation in neuronal cells implies a unique
epigenetic regulation in the brain. This underscores the importance
for the consideration of the complexity of brain cell-types in future
studies.

These studies show that data should be interpreted in the
context of developmental- and aging-associated changes when we
study DNA methylation in mental disorders.

3.4. Evolutionary aspects

Xin and colleagues performed comprehensive DNA methylation
analysis in human and mouse brains by digestion using
methylation-sensitive restriction enzymes, followed by deep
sequencing. They identified that DNA methylation is evolutionally
conserved in CpG dense regions, regardless of sequence conserva-
tion across species (Xin et al., 2011). DNA methylation patterns on
the CpG island shore of promoters were different between the
prefrontal cortex and auditory cortex. The authors of this study
built a database named “MethylomeDB” with their data of DNA
methylation in human and mouse brains (Xin et al,, 2012). Wang
and colleagues identified 150 differentially methylated regions
(DMRs) between human and rhesus macaque using the Chip-Seq
approach (Wang et al., 2012a). Through extensive validation ex-
periments, they identified four DMRs (K6IRS2, ProSAPiP1, ICAM1,
and RNF32). Among them, ICAM1 and ProSAPiP1 encode neuronal
function-related proteins. Another study compared whole-genome
bisulfite sequencing data of the prefrontal cortex between humans
and chimpanzees (Zeng et al,, 2012). They revealed extensive dif-
ferences in the DNA methylation profile. These changes mostly
consisted of hypomethylated genes in the human brain. Impor-
tantly, they found enrichment of DMRs in genes related to neuro-
logical and psychological disorders.

These studies show partial conservation of DNA methylation
patterns across species; however, there are also human specific
signatures. Comparative evolution studies of DNA methylation
profiles will not only provide insight into the evolution of human-
specific traits, but also important candidate genes for neuropsy-
chiatric disorders.

3.5. Disease-associated changes

DNA methylation analysis of the candidate genes have been
widely performed using postmortem brains of patients with
mental disorders. These included genes coding.for BDNF, COMT,
serotonin receptors, glutamate receptors, dopamine transporters,
and serotonin transporters. Results from these studies have been
reviewed elsewhere (Dempster et al., 2013; Nishioka et al,, 2012).

Comprehensive gene expression analyses in patients with
schizophrenia  consistently identified downregulation of
oligodendrocyte-related genes. Thus we searched for DNA
methylation changes of transcription factors that can explain the
global downregulation of oligodendrocyte genes. We found that
higher DNA methylation of SOX10 is related to lower gene expres-
sion of many oligodendrocyte-related genes. DNA methylation of
SOX10 was higher in the gray matter than in the white matter
(Iwamoto et al., 2005). Consistent with the initial findings, subse-
quent analysis showed a marked difference in DNA methylation
status of SOX10 between neuronal and non-neuronal cells
(lwamoto et al., 2011).

Mill and colleagues performed comprehensive DNA methyl-
ation analysis using DNA microarrays to study human postmor-
tem brains obtained from patients with schizophrenia and
bipolar disorder as well as control subjects (Mill et al., 2008).
CpG island microarray analysis of DNA after restriction enzyme-
based enrichment revealed disease-specific methylation differ-
ences in numerous loci, including genes involved in gluta-
matergic and GABAergic neurotransmission and brain
development. Genes involved in mitochondrial function, brain
development, and stress response were differentially methylated
between groups. The strongest candidate gene obtained from
this comprehensive analysis was HLA complex group 9 (HCG9).
The authors confirmed lower DNA methylation of HCG9 in bi-
polar disorder (Kaminsky et al, 2012). Sabunciyan and col-
leagues performed a comprehensive analysis of DNA methylation
in the frontal cortex of patients with major depression (N = 39)
and controls (N = 26) using Comprehensive High-throughput
Arrays for Relative Methylation (CHARM), a methylation-
sensitive restriction enzyme-based method (Sabunciyan et al.,
2012). Among the 224 genes showing robust differential
methylation, genes related to neuronal growth and development
were enriched. Among the 10 genes that were experimentally
validated by pyrosequencing, hypermethylation of PRIMAT in
patients under depression was most robust. PRIMA1 encodes a
protein that anchors acetylcholinesterase in the neuronal
membrane, and thus its decrease might cause enhanced
cholinergic neurotransmission. The authors confirmed that
acetylcholinesterase-like immunoreactivity was decreased in
postmortem brains of patients with major depression. These
findings are compatible with the cholinergic hypothesis of
depression (Sabunciyan et al., 2012).

Several candidate genes in the brain have been identified from
the comprehensive analysis of DNA methylation differences be-
tween monozygotic twins discordant for mental disorders. We
enriched methylated DNA using MBD-conjugated beads and
searched for DNA methylation differences between monozygotic
twins discordant for bipolar disorder using tiling arrays
(Sugawara et al., 2011). We found that the CpG island shore of
SLC6A4, which encodes a serotonin transporter, was differentially
methylated between twins. Hypomethylation of SLC6A4 was
verified in lymphoblastoid cells and postmortem brain samples of
patients with bipolar disorder. Dempster and colleagues found
altered DNA methylation of ST6GALNACI, which encodes an
enzyme that transfers sialic acid to O-linked N-acetylgalactos-
amine residues, in monozygotic twins discordant for bipolar
disorder or schizophrenia (Dempster et al, 2011). Hypo-
methylation of this gene was also found in postmortem brains of
patients.

As discussed above, comprehensive DNA methylation studies
found interesting candidate genes. However, these studies are only
a start point to identify the pathophysiological significance of these
methylation changes. These findings need to be replicated in
different patient populations to be generalized. Further studies
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including animal experiments should be performed to understand
the roles of DNA methylation in mental disorder.

4. Hydroxymethylation
4.1. Changes during development

In contrast to DNA methylation studies, the functional and
pathophysiological roles of hydroxymethylation have only recently
been proposed. Therefore, there are few studies in human brain on
hydroxymethylation. The majority of studies on 5hmC focus on ES
cells (Ficz et al., 2011; Pastor et al,, 2011; Stroud et al,, 2011; Wu
et al., 2011; Yu et al,, 2012). ES cells were found to contain high
levels of 5ShmC that decreases after differentiation (Kinney et al,,
2011; Szwagierczak et al, 2010). 5hmC increases with age in
neuronal cells (Szulwach et al,, 2011b).

4.2. Location of 5hmC in genome

Glucosylation-mediated enrichment of hydroxymethylated DNA
and subsequent deep sequencing has been used to examine DNA
derived from mouse cerebellum. The authors found that 5hmC is
enriched in gene bodies and proximal upstream and downstream
regions relative to transcription start sites, transcription termina-
tion sites, and distal regions (Song et al, 2011). Higher hydrox-
ymethylation in intragenic and proximal regions is associated with
higher gene expression. Hydroxymethylation in these genomic
regions was higher in the cerebellum of adults compared to post-
natal day 7 mice. Increases in hydroxymethylation during aging
were enriched in genes related to neurodegenerative disorders,
angiogenesis, and hypoxia response. These findings suggest that
hydroxymethylation might play a role in age-related
neurodegeneration.

Jin and colleagues mapped 5hmC in the frontal lobe by immu-
noprecipitation with an anti-5hmC antibody (Jin et al, 2011). In
human brains, 5hmC was enriched at promoters and gene bodies
but absent in non-genic regions. Enrichment of 5hmC in gene
bodies was correlated with higher gene expression. This correlation
was more prominent than that between mC and gene expression.

4.3, 5hmC in the brain

Consistent with the initial report that 5hmC is enriched in brain
cells (Kriaucionis and Heintz, 2009), 5ShmC was most abundant in
the brain than in other human tissues (Li and Liu, 2011).

Szulwach and colleagues mapped 5hmC using a glucosylation-
based enrichment method (Szulwach et al., 2071a) in the human
and mouse cerebellum. The level of 5hmC was increased with
development, from around 1% (postnatal day 7) to 2.5—5% (one
year) in adult mice. 5ShmC was enriched in the 5/-UTR (untranslated
region) and exons but was depleted in introns. 5ShmC was affected
by the gene dosage of MeCP2. These studies were confirmed and
extended in the developing human cerebellum (Wang et al,
2012b). This study found that 5hmC is enriched in exons and 5~
UTRs but depleted in introns. Fetus-specific or adult-specific
differentially hydroxymethylated regions overlapped with genes
that are enriched with the target sequence of FMRP (fragile X
mental retardation protein) and CpG island shores.

Immunohistochemistry analysis detected 5hmC in various cell
types in the brain (Orr et al, 2012). However, while 5hmC is
robustly detected in neuronal nuclei, some oligodendrocyte nuclei
lack in 5hmC immunoreactivity.

Khare and colleagues examined the genomic distribution of
5hmC using enzyme digestion of glucosylated DNA followed by
microarray analysis. They found that 5hmC is enriched in genes

with synapse related functions in the human and mouse brain.
They also found tissue-specific differential distribution of 5hmC at
the exon—intron boundary. Constitutive exons contained higher
levels of 5hmC than alternatively spliced exons (Khare et al., 2012).

In summary, the role of 5hmC is of particular interest in mental
disorders because it is enriched in the brain and in synapse-related
genes. Hydroxymethylation of cytosine can occur in positions of the
genome different from methylation, and it can regulate gene
expression in several ways. 5hmC modifications are also regulated
by development and aging. The possible role of 5hmC in mental
disorders is a contemporary area of research.

5. Future directions

The role of DNA methylation in neuropsychiatric disorders is
currently an active area of investigation. However, the role of
hydroxymethylation and other cytosine modifications in neuro-
psychiatric disorders should be studied as well. As discussed above,
patterns and regulation of cytosine modifications in brain cells are
more complex than previously expected. Comprehensive studies of
cytosine modifications in the human brain have recently begun.
The role of epigenetic regulation in the physiology and pathology of
the brain should be further studied in detail in the coming decade.
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SLC6A4 (solute carrier family 6, member 4) gene encodes
a serotonin transporter (5-hydroxytryptamine transporter,
HTT), which transports synaptic serotonin into presynaptic
terminal. SLC6A4 is known to be the target of antidepressants
such as selective serotonin reuptake inhibitors (SSRIs). Inhi-
bition of HTT increases synaptic serotonin concentration and
thereby exerts antidepressant efficacy. A large number of
genetic studies suggest the contribution of genetic variations
of SLC6A4 to various psychiatric disorders. The most studied
genetic variation, HTT-linked polymorphic region (HTTLPR),
is located at the promoter region of SLC6A4. It consists of two
major alleles: short (S) and long (L). Each allele contains
further variations (Nakamura et al., 2000). The HTTLPR has
been reported to affect the gene expression level of SLC6A4
(Heils et al., 1996; Lesch et al., 1996; Bradley et al., 2005),
and individuals carrying the low-expressing S allele of
HTTLPR revealed anxiety-related personality trait (Lesch
et al., 1996). Furthermore, it was reported that the HTTLPR
moderates the influence of stressful life event on depression
(Caspi et al., 2003; Kendler et al., 2005). These results suggest
the contribution of gene—environment (G x E) interaction
involving SLC6A4 to psychiatric disorders.

Epigenetic factors also contribute to the mechanism of
G x E interaction. DNA methylation is affected by environ-
mental factors (Feinberg, 2007; Petronis, 2010). Epigenetic
gene regulation by DNA methylation contributes to long-
lasting gene expression changes (Bird, 2002). Here, we
searched for recent articles relevant to DNA methylation of
SLC6A4 (Table 1), and focused on recent progress in the

* Corresponding author. Tel: 481 48 467 6949, fax: +81 48 467 6947.
E-mail address: kato@brain.riken.jp (T. Kato).

research on the roles of epigenetic regulation of SLC6A4 by
DNA methylation of SLC6A4 in psychiatric disorders such as
mood and anxiety disorders.

THE INTERACTION OF DNA METHYLATION AND
GENOTYPE ON GENE EXPRESSION LEVEL
OF SLC6A4

The majority of DNA methylation occurs at the fifth
position of cytosine residue in the dinucleotides CpG
sequences in mammals. While cytosine residues in the dinu-
cleotides are generally methylated, CpG-rich regions, which
are called “CpG island” and located within and around the
regulatory promoter regions, are less methylated. Usually, the
extent of methylation at the promoter region CpG island
inversely correlates with the extent of gene expression.

The S allele of HTTLPR has been shown to have the lower
promoter activity compared with L allele, which is associated
with decreased mRNA expression (Heils et al., 1996; Lesch
et al., 1996; Bradley et al., 2005). Philibert et al. (2007)
examined the relationship between DNA methylation at the
promoter region CpG island and gene expression level of
SLC6A4 using lymphoblastoid cell lines (LCLs). There was no
significant association between total DNA methylation and
mRNA levels. However, DNA methylation was associated
with decreased mRNA levels under the control of HTTLPR
genotype (Philibert et al., 2007). They could not replicate this
finding in the second study (Philibert et al., 2008). On the
other hand, in infant rhesus macaques, carriers of the S allele
exhibited higher methylation of CpG island, and this was
associated with lower gene expression of SLC6A4 in periph-
eral blood mononuclear cells (PBMCs) (Kinnally et al., 2010).
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Table 1

Articles relevant to SLC6A4 methylation
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Environmental factors

Biological factors

Methods
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Table 1 (continued)

Examination

Source

Subject

Reference

Biological factors

Environmental factors

Methods

MZ: monozygotic; BD: bipolar disorder; C: control; AD: alcohol dependence; PTSD: posttraumatic stress disorder; DZ: dizygotic; MD: major depression; ASPD: antisocial personality disorder; PBMCs:
peripheral blood mononuclear cells; LCLs: lymphoblastoid cell lines; HTTLPR: serotonin transporter-linked promoter region; PCR: polymerase chain reaction; RT-PCR: reverse transcribed-PCR; RFLP:

restriction fragment length polymorphism.
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Moreover, we found that DNA methylation of the CpG island
shore of SLC6A4 was significantly correlated with mRNA
level in individuals with the S/S genotype (Sugawara et al.,
2011a). The other group also reported that DNA methylation
of the CpG island of SLC6A4 was associated with total gene
expression, whereas that in the CpG island shore was associ-
ated with gene expression of a specific splice variant
(Vijayendran et al., 2012). In an in vitro study, the HTTLPR
genotype was found to affect the transcription factor binding
and chromatin modifications of SLC6A4 in response to cocaine
in JAr cells (Vasiliou et al., 2012).

These findings collectively suggest that the DNA methyl-
ation level of the CpG island and/or CpG island shore of
SLC6A4 controls its mRNA expression by interacting with
HTTLPR. Further studies are needed to elucidate the molec-
ular mechanism underlying this interaction.

EFFECTS OF ENVIRONMENTAL FACTORS ON DNA
METHYLATION OF SLC6A4

Weaver et al. (2004) reported that hippocampal hyper-
methylation of the glucocorticoid receptor gene induced by
low maternal care may play a role in stress vulnerability in
rats. This suggested that DNA methylation might play a role as
an epigenetic mark of G x E interaction. In rhesus macaques,
higher methylation of SLC6A4 was associated with higher
reactivity in adults that experienced early life stress as infants
(Kinnally et al., 2011), whereas DNA methylation level was
not associated with rearing condition (Kinnally et al., 2010). In
humans, maternal depressed mood was associated with
decreased DNA methylation of promoter region of SLC6A4 in
leukocytes of both maternal peripheral blood and neonatal
cord blood (Devlin et al., 2010). Furthermore, Beach et al.
(2010) reported that DNA methylation level of the CpG
island was increased in the subjects who had a history of
childhood physical abuse. This result was replicated in an
independent study in women (Beach et al., 2011). The other
group reported that higher levels of SLC6A4 promoter meth-
ylation were observed in both T cells and monocytes in the
adult males with high childhood-limited aggression, who had
lower in vivo serotonin synthesis in the orbitofrontal cortex
detected by positron emission tomography (Wang et al., 2012).
Therefore, environmental factors might affect the methylation
status of SLC6A4, though the direction of the alteration is not
consistent.

The number of traumatic events is reportedly associated
with posttraumatic stress disorder (PTSD), and this association
was suggested to be modified by the methylation level of
SLC6A4. Subjects with more traumatic events were at
increased risk for PTSD if they showed the lower methylation
level of SLC6A4. On the other hand, those who showed the
higher methylation level were considered to be protected from
PTSD (Koenen et al., 2011). The other report showed that
DNA methylation of SLC6A4 promoter affected the impact of
HTTLPR genotype on psychological sequelae. Higher levels
of methylation predicted more unresolved loss or trauma in the
subjects with L/L allele, whereas they were associated with
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less traumatic experience in the subjects with S/S allele (van
Ijzendoorn et al., 2010). Vijayendran et al. (2012) reported
that sexual abuse influenced the methylation of SLC6A4 by
interacting with HTTLPR.

In summary, there is a complex interaction between DNA
methylation status of SLC6A4, HTTLPR, and environmental
factors, with regard to psychiatric disorders.

DNA METHYLATION OF SLC6A4 IN PSYCHIATRIC
DISORDERS

A vast amount of genetic studies of SLC6A4 have been
reported in various psychiatric disorders. A meta-analysis
showed a significant association of HTTLPR and alcohol
dependence (Feinn et al., 2005). On the other hand, there was
no difference in the methylation status of SLC6A4 promoter
region of PBMCs between patients with alcohol dependence
and control subjects (Park et al., 2011). Using LCLs, Philibert
et al. (2008) reported that the DNA methylation level of
SLC6A4 promoter tended to be higher in subjects with a life-
time history of major depression than those without a history
of major depression. History of alcohol dependence did not
affect the DNA methylation status of SLC6A4.

A role of G x E interaction between SLC6A4 and stress has
been reported in depression (Caspi et al., 2003; Kendler et al.,
2005). Olsson et al. (2010) examined the DNA methylation
status of SLC6A4 promoter in buccal cells. DNA methylation
status of the buccal cells, which are derived from ectoderm,
might be more similar to that of neuronal cells compared with
peripheral blood leucocytes (PBLs), which are derived from
mesoderm (Olsson et al., 2010). Whereas there was no asso-
ciation between depressive symptoms and methylation leve] or
HTTLPR genotype, depressive symptoms were more comimon
among those with elevated methylation levels in S allele
carriers (Olsson et al., 2010). This result implicated that an
interaction of epigenetic and genetic factors involving SLC6A4
is related to depressive symptoms.

Because DNA methylation differences between mono-
zygotic (MZ) twins discordant for a disease might be rele-
vant to the discordant phenotype, we performed
a comprehensive analysis of DNA methylation profiles of
promoters in LCLs of MZ twins discordant for bipolar
disorder (BD) (Sugawara et al., 201la). After careful
filtering, the only robust DNA methylation difference
between twins was the hypermethylation at the CpG island
shore of SLC6A4 in a bipolar twin. Causal relationship
between such DNA methylation difference and discordant
phenotype is unknown, because the differences of methyla-
tion patterns between MZ twins reportedly increase with age
(Fraga et al., 2005). However, hypermethylation of SLC6A4
in BD was confirmed in a case-control study. DNA methyl-
ation level of SLC6A4 was negatively correlated with gene
expression in an HTTLPR genotype-specific manner.
Importantly, hypermethylation of SLC6A4 at the same CpG
sites was also found in the postmortem prefrontal cortices of
patients with BD. In a study of MZ twins, Wong and
colleagues showed that the variation of DNA methylation in

SLC6A4 was attributable to unique environmental factors
rather than heritable factors (Wong et al.,, 2010). Taken
together, these results suggest that epigenetic modification of
SLC6A4 might be implicated in the G % E interaction
involved in the pathophysiology of BD.

PERSPECTIVE

In some studies, methylation level of SLC6A4 is reportedly
higher in females than in males (Philibert et al., 2008; Beach
et al., 2010; Koenen et al., 2011). The molecular basis and
consequence of the gender difference remain unclear. Further
studies are needed to elucidate the gender difference of
SLC6A4 methylation. Meanwhile, we should pay a careful
attention to the gender in designing the case-control associa-
tion study.

Many of the studies presented here have focused on
methylation at the CpG island of SLC6A4 promoter region,
where DNA methylation levels are relatively low. In contrast,
the region identified in our study was located about 300 bp
downstream of the CpG island. Such a region, known as a CpG
island shore, plays an important role in tissue specific regu-
lation of gene expression (Irizarry et al., 2009). Therefore,
DNA methylation status of the CpG island shore of SLC6A4
might serve as a more sensitive marker for G x E interaction.

Most of the studies have examined SLC6A4 methylation
using the peripheral tissues, and only one study examined in
postmortem brains (Sugawara et al., 2011a). Among the
peripheral tissues, LCLs are often used for the epigenetic
studies, which were established through transformation of B
Iymphocyte by Epstein—Bar (EB) virus. This process can alter
the epigenetic status of B lymphocyte (Antequera et al., 1990).
In our study, we comprehensively analyzed the genomic
regions whose methylation status was affected by the trans-
formation (Sugawara et al., 2011b). In order to avoid the
artifacts caused by the EB virus transformation, these regions
were excluded from the analysis.

In addition, most of patients with psychiatric disorders are
taking medication, which can affect the DNA methylation
status. Indeed, cocaine reportedly alters chromatin modifica-
tions and DNA-binding activity of selected transcription
factors depending on the HTTLPR genotype in vitro in the JAr
cell lines (Vasiliou et al., 2012). In the case of patients treated
with drugs, culturing the LCLs in drug-free medium for
several weeks after blood sampling might eliminate the effect
of medication. However, it is not known to what extent pre-
existing drug-induced epigenetic changes are reversed by
culturing in drug-free medium. The possible effect of medi-
cation, including antidepressants, mood stabilizers and anti-
psychotics, on the DNA methylation pattern of SLC6A4 should
be assessed in the future studies.

In conclusion, recent studies suggested the important role
of DNA methylation of SLC6A4 in G X E interaction leading
to psychiatric disorders. Further studies are needed to under-
stand the molecular basis of G x E interaction and to develop
a biological marker of psychiatric disorders.
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LETTER

Tlpepldme in adolescent patients with depression:
a 4 week, open-label, preliminary study

Dear editor
Depression in children and adolescents is a common, recurrent, and debilitating condi-
tion associated with increased psychosocial, and medical morbidity and mortality.!

The global prevalence of depression in children and adolescents is 1%—2% and
3%—8%, respectively.? Depressive symptoms are also associated with significant func-
tional impairment in school and the work place (often requiring legal interventions),
and an increased risk for substance abuse and suicide.*® Clinical guidelines suggest
the use of two selective serotonin reuptake inhibitors (SSRI), namely fluoxetine and
escitalopram, both of which are effective with generally acceptable safety profiles in
the treatment of adolescent depression.’® Additionally, combination treatment with
an SSRI and psychotherapy, typically cognitive behavioral therapy (CBT), has shown
benefit in this cohort.!” However, caution is warranted since antidepressants therapy in
children and adolescents is associated with increased rates of suicidal ideation'"* and
adverse effects, characterized by excessive emotional arousal or behavioral activation.!*
These results highlight the need for new therapies in adolescent patients with depres-
sion, particularly therapies with fewer side effects.

Tipepidine (3-[di-2-thienylmethylene]-1-methylpiperidine) has been used as a
non-narcotic antitussive in Japan since 1959. The safety of short-term tipepidine use in
children and adults has already been established. Furthermore, no suicide related side
effects have been documented for tipepidine. It appears to act by inhibiting G-protein-
coupled inwardly rectifying potassium (GIRK) channel currents.!® The activation of
the GIRK channels causes membrane hyperpolarization through potassium efflux. This
inhibition is thought to modulate monoamine levels in the brain, since GIRK channels
are coupled with G-protein-coupled receptors, such as 5-hydroxytryptamine (5-HT),,,
adrenaline o, and dopamine D, receptors.'® Using in vivo microdialysis, Kawaura et al
demonstrated that tipepidine increases levels of 5-HT and catecholamines, including
dopamine, in the prefrontal cortex of rats.!® Furthermore, Kawaura et al'’ showed that
tipepidine produces antidepressant-like effects in rats subjected to the forced swimming
test (a model of depression), by modulating these monoamine systems. Furthermore,
our recent preliminary study suggests that tipepidine therapy may prove to be an
effective alternative treatment for pediatric patients with ADHD.!® Considering these
results, we hypothesize that tipepidine can improve adolescent depressive symptoms
by modulating monoaminergic neurotransmission, through the inhibition of GIRK
channel coupling to monoamine receptors in the brain.
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We report six cases where tipepidine treatment (30 mg/day)
proved effective in treating the symptoms of adolescent
depression. The ethics committee of Chiba University Graduate
School of Medicine approved the study protocol (G24062),
which was performed in accordance with the Declaration of
Helsinki II. All subjects and their parents provided written
informed consent for study participation, after receiving a
full explanation of the study, as well as any potential risks
and benefits. This trial was registered on the official database
of clinical research (Clinical Trials.gov), on April 17, 2013.%

Statistical analyses were performed using the software package
SPSS Version 21.0, for Macintosh (SPSS Statistics Desktop;
IBM Corporation, Armonk, NY, US).

We recruited a total of ten outpatients from Chiba
University Hospital, who were diagnosed according to the
ICD-10 criteria for depressive episodes.”® However, four
subjects dropped out of the trial, because of feelings of
mild irritation (n=2) and mild skin eruptions (n=2) less
than 2 weeks into the study. These symptoms disappeared
several days after the discontinuation of tipepidine. Overall,
six subjects received tipepidine hibenzate tablets (Asverin;
Mitsubishi Tanabe Pharma Corporation, Osaka, Japan),
taken orally at 30 mg/day (10 mg after breakfast, 10 mg after
lIunch, and 10 mg after supper), for 4 weeks. Six adolescent
subjects with depression (66% female, mean age 15.7 years,
standard deviation (SD) 2.2 years; mild depressive episode
subtype, n=1; moderate depressive episode subtype, n=1;
severe depressive episode subtype, n=4) were studied. The six
subjects were Japanese adolescents. The mean height (cm),
weight (kg), and tipepidine hibenzate dosage (mg/kg/day)
of the six subjects were 158.2 cm+9.3; 57.3 kgt4.9; and
0.527 mg/kg/day +0.044 mg, respectively. Four subjects were
receiving drug treatment before entry into this trial, namely,
quetiapine (25 mg/day, 500 mg/day, n=2), milnacipran (100
mg/day, n=1), and a combination of lamotrigine and blonan-
serin (400 mg/day and 4 mg/day, respectively, n=1), while
two subjects were drug-naive. These treatment regimes were
stable for at least 4 weeks prior to enrollment and remained
stable through the duration of the trial.

The Mini International Neuropsychiatric Interview for
Children and Adolescents (MINI-KID)* was conducted to
document any current or past, personal or familial history of
mental illness. One subject had a family history of depression
in their mother, one subject had a family history of bipolar
disorder in their mother, while four subjects had no family
history of psychiatric disease. The six subjects completed the
Children’s Depression Rating Scale-Revised (CDRS-R).”
As aresult, no significant changes were revealed in general

state, weight, height, blood pressure, or heart rate, during
the 4 week follow-up period in the six subjects who com-
pleted the trial. In the six subjects who completed the trial,
a comparison of baseline and the 4 week endpoint showed
that CDRS-R total scores (baseline score, 58.83%10.83;
4 week endpoint score, 38.8713.33; P=0.003, df=5, 1=5.384)
and subscores for Difficulty Having Fun (baseline score;
4.33+0.82, 4 week endpoint score; 2.67+0.52; P=0.011, df=5,
t=3.953), Social Withdrawal (baseline score; 4.00£0.89, 4
week endpoint score; 2.83+0.75; P=0.013, df=5, =3.796),
Appetite Disturbance (baseline score; 3.00+0.63, 4 week
endpoint score; 2.00+0.89; P=0.012, df=5, =3.873), Physi-
cal Complaints (baseline score; 3.67+0.82, 4 week endpoint
score; 1.5040.84; P=0.006, df=5, t=4.540), Excessive Guilt
(baseline score; 3.17+0.75, 4 week endpoint score; 1.8310.75;
P=0.010, df=5, +=4.000), Low Self-Esteem (baseline score;
4.0010.89, 4 week endpoint score; 2.33+1.03; P=0.011, df=5,
1=3.953), Depressed Feelings (baseline score; 4.17+£1.47,
4 week endpoint score; 2.33+1.21; P=0.038, df=5, 1=2.803),
Excessive Weeping (baseline score; 3.8322.40, 4 week

- endpoint score; 1.67+0.82; P=0.027, df=5, +=3.081); and

Depressed Facial Affect (baseline score; 3.83+1.17, 4 week
endpoint score; 2.17+0.75; P=0.004, df=5, 1=2.524),
improved significantly using paired #-test. Wilcoxon signed
rank test also detected statistical significance in the CDRS-R
total score (P=0.027), as well as subscores for Difficulty
Having Fun (£=0.039), Social Withdrawal (P=0.038), Appe-
tite Disturbance (P=0.034), Physical Complaints (P=0.038),
Excessive Guilt (P=0.020), Low Self-Esteem (P=0.039),
and Depressed Facial Affect (P=0.026). However, a com-
parison between baseline and the 4 week end-point found
subscores for Impaired Schoolwork, Sleep Disturbance,
Excessive Fatigue, Irritability, Morbid Ideation, Suicidal
Ideation, Listless Speech, and Hypoactivity showed no sig-
nificant changes. The Wilcoxon signed rank test also failed
to detect any statistical significance in subscore changes
for Impaired Schoolwork, Sleep Disturbance, Excessive
Fatigue, Irritability, Depressed Feelings, Morbid Ideation,
Suicidal Ideation, Excessive Weeping, Listless Speech, or
Hypoactivity. Tipepidine was well tolerated in the six sub-
jects who completed the trial, with no further dropouts due
to side effects. Furthermore, three patients with adolescent
depression have been continuing the oral use of tipepidine
(30 mg/day) for its efficacy against depressive symptoms for
3 months or more after this trial.

Tipepidine improved symptoms of adolescent depres-
sion in the six subjects who completed the trial, as shown
by CDRS-R scores. To our knowledge, this is the first report
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demonstrating a beneficial effect for tipepidine in adoles-
cent depression. Tipepidine inhibits GIRK channels and is
predicted to modulate brain monoamine levels, in a similar
manner to SSRIs, serotonin and norepinephrine reuptake
inhibitors (SNRIs) and other antidépressants. Four subjects
with depression dropped out during the trial due to feelings
of mild irritation and mild skin eruptions. One possible
reason for having dropout patients is diagnostic error. There
is a chance that some of these children with depression may
have been suffering from the onset of bipolar disorder or
schizophrenia. Therefore, a follow-up check may be required
for the dropout patients to examine their progression.

Recent mapping the of c-Fos-like immunoreactivity (FLI)
induction in rat brains identified FLI-positive neurons in
several brain areas after acute dosing with different classes
of antidepressants.”® Very recently Kawahara et al** showed
that a single injection of tipepidine (20 mg/kg or 40 mg/kg)
in rats, increased FLI-positive neurons in the central nucleus
of the amygdala (CeA) in a manner similar to the tested anti-
depressants, as well as inducing the characteristic increase in
FLI-positive neurons in six other brain regions, including the
nucleus accumbens (NAcc). This latter effect was not observed
with other antidepressants. Therefore, further detailed studies
investigating tipepidine induced dopamine activation in the
CeA, NAc, and its neural pathways are warranted.

The main limitation of our study is its small sample size
(n=6 evaluable subjects). Another is the low proportion of
drug naive subjects. Additional trials are needed to evalu-
ate the efficacy and safety for tipepidine use in adolescent
depression. Although tipepidine is widely used, however,
there are reports®? indicating a possible toxic effect like
agitation, fixed drug eruption and toxic epidermal necrolysis
also in pediatric populations. So we must pay attention to the
mood symptoms, especially irritability and cutis symptoms,
because there were patients for whom a feeling of irritation
and a cutis symptom appeared in this tipepidine study. Also,
future studies with greater analytical power, using larger
sample sizes and more drug naive subjects will be necessary
to determine tipepidines efficacy and safety.

In conclusion, our pilot study suggests that tipepidine
therapy may prove to be an effective alternative treatment
for adolescent patients with depression. However, the long-
term safety of tipepidine still needs to be assessed, as a cough
suppressant therapy is usually completed within 1 week. In
addition, the side effects detected here need careful evalua-
tion, as part of more detailed randomized, double-blind stud-
ies into this encouraging finding for tipepidine in adolescent
depression.
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