Definition. Let [, g be G-isovariant maps. We call f and g isovariantly G-
homotopic if there exists a G-isovariant map H : X x I — Y, called a G-isovariant
homotopy, such that H(—,0) = f and H(—,1) = g.

Let [X, Y] denote the set of G-isovariant homotopy classes of G-isovariant
maps.
By the definition of isovariance, we easily see the following.
(1) Let X and Y be free G-spaces. Then G-equivariance is equivalent to G-
isovariance.
(2) If f: X — Y is an injective G-map, then f is G-isovariant.
(3) If there exists a G-isovariant map f : X — Y, then Iso (X) C Iso(Y),
where Iso (X') is the set of isotropy subgroups of X.
Example 1.1. Let X = G/H and Y = G/K.
(1) There exists a G-map [ : G/H — G/K if and only if (H) < (K). ie.
H < aKa™' for some a € G.
(2) There exists a G-isovariant map f: G/H — G/K if and only if (H) = (K).
In this case, a G-isovariant map f is defined by f(gH) = gaK, H = aKa™}.

2. ISOVARIANT MAPS BETWEEN REPRESENTATIONS

The following result says that isovariant maps between representations are es-
sentially same as those between representation spheres.

Proposition 2.1. Let V, W be (orthogonal) G-representations. The following are
equivalent.
(1) There exists a G-isovariant map f:V — W.
(2) There exists a G-isovariont map f:VE™ — WG
(3) There exists a G-isovariant map f : S(VE") — S(WE™),
Here VC© s the orthogonal complement of VC in V. In particular, if VC =
WC =0, then there exists a G-isovariant map f 'V — W if and only if f . SV —
SW.

Proof. (1) = (2} = (3) Composing the inclusion i and the projection p with
[:V — W, we have an isovariant map

Fove Ly Lw 2o

Composing the inclusion j and the normalization map with f, we have an iso-
variant map
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Let g : S(V¥) — S(WY") be an isovariant map. By the radial extension, we
have an isovariant map

Gve W

By adding the zero map to g, we have an isovariant map

hi=g@0: V=V aVveiws aws =W

By further arguments, we also obtain
Proposition 2.2. When V¢ = WY =0, there is a one-to-one correspondence
[V, W]eey = [SV, SWs,
We here provide some examples. Let G = ), = {¢) be a cyclic group of order n,
where ¢ is a generator of C'. Consider the irreducible representations of C'. Let
U (=C)(0<k<n~1)
denote the irreducible representation with the linear action:

. . 27/ —1
c-z=E%2(zelUy), &= exp(»-m—?-r—-).
Assume n = pq, where p, ¢ are distinct primes and G = C),.
Example 2.3. If (k,pq) = (I,pg) = 1, then there exist a G-isovariant map [ :

S Uk - SU[.
In fact, fix ¢ such that ks = 1 mod pg. We define a map f by

f(z)=2% zeSU,.

Then one can check that

(1) f is G-equivariant,
(2) G acts freely on SU and SU;.

Hence f is G-isovariant.
Further arguments show that the degree of maps classifies isovariant homotopy

classes, and we have
Uk, U&= [SU, SUEY = Z.
and the representatives are given by

fmlz) =2t 2 € SU.. meZ.

See [3], [4] for the detail.
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Example 2.4. There do not exist isovariant maps f : U, — U, and g : Uy — U,
In fact, if f: X — 1 is an isovariant map, then Iso (X) C Iso (Y'). However

Iso(U,) ={C,. G} ¢ Iso(U,) = {Cy, G}
and
Iso (Uy) = {1,G} € Iso (U,) = {C,. G}.
Example 2.5. There exists an isovariant map f: U} — U, & U,
In fact there are isovariant maps
fag :SUL = S(U, & U,)

defined by
Jog(z) = (07000 L1000 0. 5 €2, 2 € SUL.

These are isovariant maps since
Gvfavﬁ(z) = G 14agp N Goarapg = 1 (Z € SU;).
In this case, the multidegree classifies isovariant maps and one sees
00Uy @ Ui = (ST, S(U, & Ui = 28 2.
See [3], [4] for the detail.
Example 2.6. There does not exist a G-isovariant map f: Uy & Uy — U, & Us.
If there is an isovariant map, then the isovariant Borsuk-Ulam theorem stated

in the next section shows
dim U, & Uy — dim(U, @ U,)% < dim U, @ U, — dim(U, & U,)°"

I I
1-0=4 4-2=2
This is a contradiction.
Remark. There isa G-map f : S (U; aUy) — S(U,&U,). In fact there are G-maps

fi : SU; — SU; defined by f;(z) = 2* for ¢ = p and ¢. Taking join of f, and f,. one
obtains a G-map f = f, = f, : S(U1 & Uy) — S(U, & U,).
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Thus one can finally see
Proposition 2.7. Let G = C,,, and V, W G-representations. There exists a
P 7/
G-isovariant map V. — W if and only if
dim V — dim V# < dim W — dim W#
dim V" — dim V¢ < dim W# — dim W¢
for H =C,, C,.
See [2] for the detail.

Question (unsolved). How about ), for an arbitrary n?

3. BORSUK-ULAM TYPE THEOREM FOR ISOVARIANT MAPS

In this section we discuss a Borsuk-Ulam type theorem for isovariant maps, which
3 Ps,
provides non-existence results on isovariant maps as mentioned in the previous
section.
The Borsuk-Ulam theorem due to Borsuk [1] is generalized in various ways (see
j v‘
[6]. [7]). The following is one of them. Let C, be a cyclic group of prime order p
and assume that C), acts freely on spheres 5™ and S™.

Theorem 3.1 (mod p Borsuk-Ulam theorem).
If there exists a Cy-map ( <= C,-isovariant map) [ : S™ — S", then m < n, (or
equivalently, of m > n, there does not exist o Cy-map f: 5™ — S™).

Wasserman first studied the isovariant version of the Borsuk-Ulam theorem and

introduced the notion of the Borsuk-Ulam group.

Definition (Wasserman). A compact Lie group G is called a Borsuk-Ulam group
(BUG) if the following statement holds:
For any pair of G-representations V' and W, if there is a G-isovariant map [ :
V — W, then the Borsulk-Ulam inequality:
dimV — dim V% < dim W — dim W¢
holds.
Proposition 3.2 ([§]). C, and S* are BUGs.

The following are fundamental properties of Borsuk-Ulam groups.

Proposition 3.3 ([8]).
(1) If1 = H— G — K — 11is evact and H, I are BUGs. then G is also a
BUG.
(2) A quotient group of a BUG is also a BUG.
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Question (unsolved). Is a subgroup of a BUG also a BUG?
Using this result repeatedly, we have
Corollary 3.4. If
l=Hy<Hy<Hy< - <H. =G
and H;/H;_y are BUGs (1 <i <r), then G is a BUG.

We have the following.

Theorem 3.5 (Isovariant Borsuk-Ulam theorem). Any solvable compact Lie group
G is a BUG.

Proof. As is well-known, G is solvable if and only if there exists a composition
series
l=Hy<Hi<Hy<- -<H. =G
such that H;/H; 1 = C, or S'. By Proposition 3.4, G is a BUG. O
So the next question is: how about non-solvable case? Wasserman also found
non-solvable examples of BUGs using the prime condition.

Definition (Prime condition (PC)). (1) We say that a finite simple group G
satisfies the prime condition (PC) if
> o<l
plo(g) b

holds for any g € G, where o(g) is the order of g, and the sum is taken over

all prime divisors of o(g).
(2) We say that a finite group G satisfies (PC) if for a composition series

1= [T[()QH] <Hy<--<H,. = G,
each simple H;/H;_, satisfles (PC) in the sense of (1).

Theorem 3.6 ([8]). If a finite group G satisfies (PC), then G is a BUG.

Remark. In the proof of 8], the fact that a cyclic group C' is a BUG is used.

Example 3.7. Alternating groups As, As. ..., Ay satisfy (PC), and hence BUGs.

But A,, n > 12, does not satisfy (PC). In fact A,, n > 12, has an element of order
30=2-3-5and 1/2+1/3+1/5=31/30 > L.

Question (unsolved). Is 4, a BUG for n > 127

Example 3.8. PSL(2,p) satisfies (PC) for p: prime < 53; hence a BUG. But
PSL(2,59), PSL(2,61) do not satisfy (PC). Indeed there are infinitely many primes
p such that PSL(2, p) does not satisfy (PC).
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4. A NEW FPAMILY OF BORSUK-ULAM GROUPS
In this section G is a finite group. Let I, be a finite field of order ¢ = p”, p:
prime. Recall
PSL(2,q) = SL(2,q)/{%1}
={A € My(F,)| det A = 1}/{%T}.

Remark. PSL(2,27) = SL(2,27).

Also recall:
(1) If g = p" = 4, then PSL(2,q) is simple. On the other hand PSL(2,2) = Sy
and PSL(2,3) = Ay, which are non-simple.
. qlqg — 1) 5 p =2
(2) [PSL2.q) =4 10 DT =2
sqlg = 1{g+1) p:odd prime.
We introduce the Mébius condition in [5] and show the following.
Theorem 4.1 ([5]). PSL(2,q) is a BUG for any q = p'.
As a corollary,
Corollary 4.2. SL(2,q), GL(2,q), PGL(2,q) are BUGS.
Proof. These are shown from the following exact sequences.

1— {kl} — SL(2,q) — PSL(2,q) — 1

det

1— SL(2,q) — GL(2,q) — ]F; — 1

PGL(2,q) = GL(2,q)/center
(center = {al |a € F} = F). O

As seen before, PSL(2,59), PSL(2,61) etc. do not satisfy (PC). Our result
provides the first example to be a BUG not satisfying (PC).
Finally we announce the following result which will be proved in the forthcoming

paper. Let Syl (&) denote a p-Sylow subgroup of G.

Theorem 4.3 (N-U). If G satisfies one of the following conditions, then G is a
BUG.
(1) SylL(G) is a cyclic group Cy of order 27.
(2) Syl,(G) is a dihedral group Do of oder 27 (r = 2). As a convention,
D4 = C‘g X GQ‘
(3) Syly(G) is a generalized quaternion group Qor of order 27 (r > 3).
(4) Syl,(G) is abelian and Syl (G) is cyclic for every odd prime p.
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Example 4.4.
(1) PSL(2,q), ¢: odd, is an example of (2).
(2) SL(2.q). ¢: 0dd, is an example of (3).
(3) SL(2,27) is an example of (4).
(4) A finite group with periodic cohomology is an example of {1}, (3) or (4).

For the proof, we use the fact that PSL(2, g) is a BUG and several deep results
of finite group theory.
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Homotopy Classification of Maps from a Closed Manifold to the
Complement of a Subspace Arrangement

Tkumitsu NAGASAKI Y

Abstract. The Hopf classification theorem says that the degree of maps classifies
the homotopy classes of maps from an m-dimensional closed manifold M to an m-
sphere 8. In this paper, we give a generalization of the Hopf classification theorem
using the multidegree; i.e., the multidegree of maps classifies the homotopy classes
of maps from a connected closed manifold M of dimension 2(n — k) — 1 to the
complement of a k-subspace arrangement of C" for 0 < k < n.

1. The multidegree

Throughout this paper, we assume that a manifold N is connected and has a CW
structure. All maps between spaces are assumed to be continuous.

Although the notion of multidegree was first introduced in the equivariant setting
[3, 4], the multidegree itself can be defined in the non-equivariant case. In this section
we define the multidegree of maps from a closed manifold to the complement of a
certain subspace arrangement.

We begin with some basic notation and terminology. Let A be a non-empty finite set
of k-dimensional C-vector subspaces of C™. We simply call it a k-subspace arrangement
of C™. Let

Na= U
UeA
and set M 4 = C™\ N4 as the complement of N 4 in C™, which is called the complement

of a k-subspace arrangement. Let S?*~1 be the unit sphere of C*; namely,
S = {(21,.. ., 20) €EC™ | |21)> + -+ 2> = 1}

We set S 4 = S?"~1 N M. We first show the following basic results.
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Proposition 1.1. Let A be a k-subspace arrangement of C*. Setd =n — k.

(1) Sa is a (strong) deformation retract of M. In particular, the inclusion i :
S 4 — M4 induces isomorphisms

H.(Su;R) 2 Ho (Ma;R) and m.(Sa) 2 m.(M4).

(2) M4 and S are (2d — 2)-connected.
(3) There is the isomorphism
U= (Ty): Hag 1(Ma; R) = €D Haa-1(C"\U;R) = (P R
UcA UeA
induced by the inclusions iy : M4 — C™\ U, where R is an arbitrary abelian
group.
(4) If d > 2, then M4 and S are simple spaces and
mad-1(Ma) 2 ma1(S4) = P Z.
UeA
Here Hy(—; R) means the g-th singular homology group with coefficients in R, and
7q(—) means the g-th homotopy group.

Proof. (1) The map r : M4 — Sa defined by r(z) = z/|x| gives a retraction and a
homotopy H : M4 x I — M4 between id and 7 is given by H(z,t) = z/|z]||*.

(2) Let a : §* — M4 be any continuous map for 0 < i < 2d — 2. Since « is null
homotopic in C", we take a homotopy H : S* x I — C™ between o and ¢ a constant

map into M 4. Since
dimS* x I +dim Ny =i+ 1+2k<2n—1 < dimC",

we can deform H such that the image of H is in M 4 relative to S* x {0,1}. Therefore
o is null homotopic in M 4, and so S4 and M4 are (2d — 2)-connected.

(3) We prove it by induction on |4] the number of elements in .A. When |A] = 1,
we see My = C*\ U = CkF x (C?\ {0}), which is homotopy equivalent to S?¢~1.
Hence Hog—1(Ma; R) =2 R. Now let A= {Uy,..., Uy}, 7 >2. Set B={U1,...,Ur—1}
and M = C™\ JB. Suppose Hog_1(M;R) = Py R Set N = C*\ Uy; then
Hsy 1 (N; R) 2 R. Since M4 = M NN, by the Mayer-Vietoris exact sequence, we have

— Hgd(]w UN) — Hgd_l(]WA) — Hgd_l(ﬂf) @Hgdfl(N) — Hgdml(]\/[U N) —

where the coefficient group is R. Since M UN = C"\ (4 U and dim ;o4 U <
2(k—1), M NN is at least 2d-connected by a similar argument as (2). By the Hurewicz
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theoren, we have Hog(M U N) = Hyy (M U N) = 0. Thus one can see that
Hog 1 (Ma; R) = Hogt (M) 5 Hog 1 (N)

”
o @Hgdwl(@n \UiiR) = @ R.

i=1 UeA
(4) If d > 2, then M is l-connected by (2), and hence M 4 is simple. By the Hurewicz
theorem, we have

Toa-1(Ma) = Haq 1(Ma;2) = B Z.
UeA
0

Remark. 1f d = 1, M 4 is not necessarily I-simple; namely, 71(M 4) is not necessarily
abelian. For example, let A = {(zy, 29) € C?|2129(2,+22) = 0}. Then M 4 is homotopy
equivalent to (S' Vv .S§1) x S, see [5]; so m(Ma) = Fy x Z, where Fy is the free group

of rank 2.

We introduce the multidegree of a map from a (2d — 1)-dimensional closed manifold
N to M4 the complement of a k-subspace arrangement in C", where d = n — k.
Let f: N — M4 be any continuous map. Assume that N is orientable and N is
given an orientation by the fundamental class [N] of N. On the other hand, M4
has an orientation coming from the standard orientation of C". Thus we define the
multidegree mDeg f of f by

mDeg f = U(f. ([N @ Z.
UeA
Here ¥ = (Vy) : Hag-1(Ma; Z) — Py g Haa-1(C*" \U; Z) = @y 4 Z is the isomor-
phism induced from the inclusions iy : M4 — C*\ U.

Next we consider the case where X is non-orientable. Let [Ny € Hoag—1(X;Z/2)
denote the mod 2 fundamental class of V. We define the mod 2 multidegree mDeg, f
of f by

mDeg, f = Us(f«([N]2)) € €D Z/2.

UeA
Here ¥, = (\1127[]) : Hgd_l(]\{[A;Z/Q) — @UGA Hgd_l((C” \ U;Z/Q) = @UGA Z/Q is
the isomorphism induced from the inclusions iy : M4 — C™\ U. These multidegrees

are homotopy invariants for maps.

Example 1.2. Let A = {(z1,20) € C?|z122 = 0}. We define maps f,, : S* — M4y
by fp.q(2) = (2P, 29). Then mDeg f, ¢ = (p, ).
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2. A Hopf type theorem

Let X and Y are topological spaces. We denote by [X,Y] the set of (unbased)
homotopy classes of continuous maps from X to Y.

Classification of homotopy classes of maps or determination of the set [X,Y] is a
crucial problem in algebraic topology. Let X be a finite CW complex of dimension m
and Y be an m-sphere §”. If m < n, then every continuous map f : X — S" is null
homotopic; namely, [X,S"] consists of one element. In our setting, we generalize this

result as follows.

Theorem 2.1. Let M 4 be the complement of a k-subspace arrangement A in C™ and
X a connected finite CW complex of dimension m less than 2d — 1, where d = n — k.
Then every continuous map f: X — My is null homotopic; namely, [X, M 4] consists

of one element.
Proof. Let Z; denote the i-skeleton of a relative CW complex (X x I, X x 9I) for
0<i<m+1. Set

H_y = f]]e: 21y =X x 0l - Ma,
where ¢ is a constant map. We construct a map H; : Z;;) — Ma extending H_;
inductively for 7 > 0. Suppose that there is a map H; : Z;y — Ma. Note that Zq
has a form Z(; 41y = Z(;) Uj D§+1, where D;‘H are (i + 1)-dimensional cells. Since M4
is (2d — 2)-connected, Hy; = Hi|ypit1 : ' — Ma extends to Hy; : D! — My for
0 < i <m. Thus we have a map

Hi-l-l = H; Uj ﬁij : YF(H_I) — My4.

Consequently we have a homotopy H : X x I — M4 between f and c. O

H. Hopf [2] considered continuous maps from an n-dimensional closed manifold N
to an n-sphere S™ and showed the so-called Hopf classification theorem below.

Theorem 2.2 (Hopf classification theorem). Let N be an n-dimensional closed man-
ifold, where n > 1.

(1) If N is orientable, then the degree deg f of maps gives a bijection
deg : [N,S"] — Z.
(2) If N is non-orientable, then the mod 2 degree degs f of maps gives a bijection

deg, : [N,S"] — Z/2.
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We generalize this result as follows.

Theorem 2.3. Let M4 be the complement of a k-subspace arrangement A of C™ and
N a closed manifold of dimension 2d — 1, where d =n — k. If d = 1, then we assume
that 7w (M) is abelian.
(1) If N is orientable, then the multidegree mDeg f of maps gives a bijection
mDeg : [N, Ma] — €P Z.
UeA
(2) If N is non-orientable, then the mod 2 multidegree mDeg, [ of maps gives a
bijection
mDeg, : [N, M 4] — @ Z/2.
UeA
Remark. By Proposition 1.1 (1), the inclusion ¢ : S4 — My induces a bijection
[N, S4] & [N, My]. In particular, if k& = 0, then it follows that S4 = §?"~! and
the multidegree coincides with the ordinary degree deg f. Therefore we obtain the

Hopf classification theorem in the case where n is odd.

To show the theorem, we recall obstruction theory, see [1] for the detail. Let X be an
n-dimensional finite CW complex, and let K (m,n), 7 is abelian, denote an Eilenberg-
MacLane space; 1. e., m, (K (m,n)) = 7 and 7,(K (7, n)) = 0 for ¢ # n. By the universal

coefficient theorem and the Hurewicz theorem, there are natural isomorphisms
H"(K(m,n);m) = Homg(H, (K (7, n); Z2), 7) = Homg(mw, 7).

Let « € H™(K(m,n);m) be the element, called the fundamental class of K (7, n),

corresponding to the identity of 7. Then one can define a map
¢ [X, K(m,n)] — H"(X; )

by #([f]) = f*(¢). On the other hand, using the obstruction class y(f,c) between f

and ¢ a constant map, one can define a map
P [X, K(m,n)] — H"(X; )
by ¥([f]) = v(f,c). A fundamental result of obstruction theory is the following.

Proposition 2.4 ([1, chapter 7]). Both ¢ and v are bijections and they coincide.

Now we give the proof of Theorem 2.3. Since M4 is a smooth manifold, it has a

CW structure. Attaching cells of dimension greater than 2d to M4, one can kill the
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homotopy groups of M 4 greater than (2d — 1)-dimension and so one obtains a space
which is K (7, 2d—1). Consequently one may assume that K (m,2d—1) is a CW complex
including M 4 as a subcomplex and the relative dimension of a pair (K(7,2d —1), M 4)
is 2d + 1. By the cellular approximation theorem, there is an isomorphism

Zx : ’/ng_l(]\/[A) - ﬂ’gd_l(K(’l(')Qd - 1)),
where ¢ is the inclusion. We identify these homotopy groups and set

7 = maa-1(Ma) = mag_1(K(r,2d — 1)) = ) 2.
veA

Then there is a bijection
é=1:[N,K(r,2d —1)] - H**Y(N;x).
By the cellular approximation theorem, we also see that there is a bijection
is o [N, M4] — [N, K (7, 2d — 1)],

where i : My — K(m,2d—1) is the inclusion. In fact, for any map o : N — K (7, 2d—1),
there exists a map o : N — K(x,2d — 1) such that o/ and « are homotopic and
o/ (N) C K(m,2d —1)(24—1) = Ma. Hence [o'] € [N, M 4] and i.([o']) = [a]. Next if o,
B: N — M, are homotopic in K (7, 2d — 1), then the homotopy H between o and 3
is homotopic to a homotopy

H':NxT— K(m,2d—1)gq = M C K(r,2d — 1)
relative to N x 0I. Hence i. is injective. Thus we obtain a bijection
¢ :=1ix06: [N, Ma] - H*"'(N;m),
where ™ = mog—1(M 4). In this case, there are natural isomorphisms
H? 71 (M y; ) & Homg(Hogq—1(Ma; Z), ) = Homg(7, 7).

Let v € H*~1(My4; ) be the element corresponding to the identity of #. Then we

have

o([f]) = f*(v) = v(f,c) € H* " 1(N;7).
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2.1. The orientable case. We first consider the orientable case. Then there is the
isomorphism

ki H*YNix) — =

defined by

where [N| € Hoy—1(N;Z) is the fundamental class of N. Thus we have

K(f* (1) = (f* (), [N]) = (v, f(IN])) = B H(F(IN])) € m,
where I : 7 = moq1 (M4) — Hoy.1(Ma;Z) is the Hurewicz isomorphism. Identifying
7 with Hog (M43 Z) = @Ue 4 Z via the Hurewicz isomorphism, we conclude
R (f([N]))) = fo([N]) = mDeg f.
Thus mDeg : [N, Ma] — @ e4 2 is a bijection.
2.2. The non-orientable case. There are isomorphisms
o H2 YN ) — H2 YN 7 /2m)
and
Ky 1 H*¥Y(N;n/27) — n /2,
where r is the mod 2 reduction, and ks is the homomorphism defined by
ra(x) = (z, [N]2)
and [Ny € Hoq—1(N;Z/2) is the mod 2 fundamental class of N. Indeed the reduc-
tion r : ® — 7/27 induces a surjection r# : C2"YN;7) — C?~1(N;x/27) and
since the coboundary maps on C?4~1(N 7) and C*¢=1(N; 7 /27) are zero, C*4~1(N; x)
and C??~1(N;7/2m) are cocycles. Therefore 7* is a surjection. On the other hand,
H?=Y(N;Z) and H*'=!(N;Z/2) are isomorphic to @ 4 Z/2 respectively. Hence r*
must be an isomorphism. By the universal coefficient theorem over Z/2, we see that

Ko is an isomorphism. Thus we have
ka(r(f* (1)) = (P (f* (), [N]2) = (r*(v), £<([N]2)) = b3 (f([N])) € 7/2m,
where ho : ™ = Toq1(M4)®Z/2 — Hogq—1(M4;Z/2) is the mod 2 Hurewicz homomor-

phism. Identifying 7/2m with Hoq_1(Ma;Z/2) = @ye 4 Z/2 via the mod 2 Hurewicz

isomorphism, we conclude

ha(hy ' (f+([N]2))) = f«([N]2) = mDeg, f.
Thus mDeg, : [N, Ma] — @y 4Z/2 is a bijection. Thus the proof is complete. [

- 810 -



Example 2.5. Let A = { (21, 22) € C?| 2122 = 0}. Then we have
[SLMJ|=2ZaZ

and the homotopy classes are represented by the maps f,, ; defined in Example 1.2 for
(p,q) €ZS L.

3. Remarks on l-dimensional case

If d = 1, then m(M4) is not necessarily abelian. In this section, we consider the
case where 1 (M 4) is non-abelian. Since d = 1, then the 1-dimensional closed manifold
N must be a circle S'. We want to know the homotopy set [S', M 4]. As is well known,
[S', M 4] coincides with the orbit set of the m1(M4)-action on [S*, M4lo (= m1(Ma));
see for example [1]. Since the 71(M 4)-action is the conjugate action on 71(M.4),
we have [S, M4] & C(m1(M4)), where C(m1(My)) is the set of conjugacy classes of

elements in w1 (M4).

Example 3.1. Let A = {(21,22) € C?|2129(21 + 29) = 0}. Then m (M) & Fy X Z
as mentioned in section 1. In this case, C(Fy x Z) = C(F) x Z and hence [S!, M 4] &
O(FQ) X Z..

Finally we give a remark in the case where M 4 is K(m,1) and N is an n-dimensional
closed manifold N. If 7 is abelian, then we have
[N, M4] = HY(N;)
by obstruction theory. For example, let
A={(z1,...,2,) €C"| 2+ 2, =0}
Then
Ma = (C\{0}) x---x(C\{0}) (n times).

Hence M4 is K(Z™,1); in particular, we conclude
[N, Ma] = H'(N; 2") = B H'(N; Z).
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ganglion cells (RGCs).

RGCs.

(Background: No effective treatment exists for normal tension glaucoma (NTG), which induces a significant loss of retinal
Results: Apolipoprotein E-containing lipoproteins (E-LPs) blocked Ca?*-dependent apoptosis induced by glutamate in

Conclusion: Administration of E-LPs protects RGCs from glutamate-induced degeneration in vitro and in vivo.
Significance: Protection from neuron death by E-LPs provides a novel strategy of treatment for NTG.

~

/

Glaucoma is an optic neuropathy and the second major cause
of blindness worldwide next to cataracts. The protection from
retinal ganglion cell (RGC) loss, one of the main characteristics
of glaucoma, would be a straightforward treatment for this dis-
order. However, the clinical application of neuroprotection has
not, so far, been successful. Here, we report that apolipoprotein
E-containing lipoproteins (E-LPs) protect primary cultured
RGCs from Ca®*-dependent, and mitochondrion-mediated,
apoptosis induced by glutamate. Binding of E-LPs to the low
density lipoprotein receptor-related protein 1 recruited the
N-methyl-p-aspartate receptor, blocked intracellular Ca** ele-
vation, and inactivated glycogen synthase kinase 33, thereby
inhibiting apoptosis. When compared with contralateral eyes
treated with phosphate-buffered saline, intravitreal administra-
tion of E-LPs protected against RGC loss in glutamate aspartate
transporter-deficient mice, a model of normal tension glaucoma
that causes glaucomatous optic neuropathy without elevation
of intraocular pressure. Although the presence of @2-macro-
globulin, another ligand of the low density lipoprotein recep-
tor-related protein 1, interfered with the neuroprotective
effect of E-LPs against glutamate-induced neurotoxicity, the
addition of E-LPs overcame the inhibitory effect of a2-mac-
roglobulin. These findings may provide a potential therapeu-
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tic strategy for normal tension glaucoma by an LRP1-medi-
ated pathway.

From global surveys, the second leading cause of blindness
next to cataracts is glaucoma (1). Glaucoma is the major optic
neuropathy and is characterized by significant death of retinal
ganglion cells (RGCs)? (2). Although an elevated intraocular
pressure greater than 21 mm Hg increases the risk of develop-
ing primary open-angle glaucoma, many glaucoma patients suf-
fer from normal tension glaucoma (NTG), a subset of primary
open-angle glaucoma, with a normal range of intraocular pres-
sure (10-21 mm Hg). The occurrence of NTG varies world-
wide. However, of Japanese adult patients with primary open-
angle glaucoma, 92% were classified as having NTG (3). In
addition, the proportion of glaucoma patients who had NTG
(70%) was 4-fold higher than those with high intraocular pres-
sure (17%) in a Japanese American clinical population (4).
Moreover, it was also reported that all American Indian and
Alaska Native patients with glaucoma had normal eye pressure
(5). Although several factors appear to be associated with the
development of this disorder (6), the cause of NTG has not been
identified. Current clinical treatments for NTG, mostly con-
trolling intraocular pressure, are very limited and unsatisfac-
tory. Although the strategies for providing neuroprotection by
Ca®"* channel blockers, neurotrophins, and inhibitors of the
N-methyl-p-aspartate (NMDA) receptor (7-9) against RGC

2 The abbreviations used are: RGC, retinal ganglion cell; apo, apolipoprotein;
E-LP, apolipoprotein E-containing lipoprotein; GLAST, glutamate aspartate
transporter; GSK, glycogen synthase kinase; HBSS, Hanks' balanced salt
solution; LRP1, low density lipoprotein receptor-related protein 1; NMDAR,
NMDA receptor; NTG, normal tension glaucoma; Z, benzyloxycarbonyl;
fluoromethyl ketone; EGFP, enhanced green fluorescent protein; Glu, glu-
tamate; a2M, a2-macroglobulin.
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ApoE Lipoproteins Protect Retinal Ganglion Cells

degeneration have been recently considered, these treatments
have not been clinically successful. Thus, a novel strategy of
treatment for NTG is urgently needed.

It has been reported that nerve injury promotes the secretion
of significant amounts of apolipoprotein E-containing lipopro-
teins (E-LPs) (10, 11). This response of glia to nerve injury has
been suggested to provide support for the repair of neurons by
supplying materials for the cells. We have reported that glia-
derived E-LPs promote axon extension of RGCs mediated by
receptor(s) of the low density lipoprotein (LDL) receptor family
after axon injury (12). One multifunctional endocytotic and sig-
naling receptor of this family is the LDL receptor-related pro-
tein 1 (LRP1). We have also demonstrated that E-LPs strongly
protect RGCs from neurodegeneration elicited by withdrawal
of trophic additives (brain-derived neurotrophic factor, ciliary
neurotrophic factor, basic fibroblast growth factor, and other
supplements) (13). This neuroprotection was initiated upon
binding of E-LP to LRP1, which induced an intracellular signal
involving phospholipase C+y1, protein kinase C§, and glycogen
synthase kinase 383 (GSK3p), without endocytosis of the E-LPs
(14). Thus, we propose that E-LPs not only supply lipids but also
can function as an endogenous neuroprotective factor for sup-
pressing neurodegeneration by inducing intracellular signaling.

Here we provide a potential therapeutic strategy for NTG by
intravitreal administration of E-LPs. E-LPs bind to LRPI,
recruit NMDA receptors, and inhibit intracellular Ca®" eleva-
tion in RGCs. The inhibition of Ca®>* elevation by E-LPs sup-
presses mitochondrion-mediated and caspase-dependent apo-
ptosis in RGCs. In addition, treatment of E-LPs inactivates the
proapoptotic kinase GSK3 83 in vitro and in vivo. A deficiency of
the glutamate aspartate transporter (GLAST), a major gluta-
mate transporter in the retina, in mice induces optic neuropa-
thy without affecting intraocular pressure and exhibits many
features similar to human NTG (15). Thus, GLAST-deficient
mice are utilized as an animal model for NTG. In this study,
intravitreal administration of E-LPs prevented RGC loss
induced in GLAST-deficient mice. Although an increase of
a2-macroglobulin, another endogenous ligand of LRP1, in vit-
reous humor of GLAST-deficient mice may interfere with the
neuroprotective effect of E-LPs, exogenous administration of
E-LPs overcomes this inhibition.

EXPERIMENTAL PROCEDURES

Materials—A rabbit polyclonal anti-LRP1 antibody (R2629)
was generously provided by Dr. D. K. Strickland (University of
Maryland School of Medicine, Baltimore, MD) (16). A colony of
GLAST-deficient mice was established at Kumamoto Univer-
sity from mice obtained from Tokyo Medical and Dental Uni-
versity. All experimental procedures were approved by the Ani-
mal Care Committee of Kumamoto University.

Primary Culture of Retinal Ganglion Cells—Sprague-Dawley
rats (2 days old) were used for primary culture of RGCs accord-
ing to Barres et al. (17) with minor modifications (13, 14).
Briefly, retinae were digested with papain (16.5 units/ml) for 30
min at 37 °C and then triturated in minimum essential medium
(Invitrogen) with rabbit anti-rat macrophage antiserum (Accu-
rate Chemical, Westbury, NY). The cell suspension was first
incubated on a panning plate (150-mm Petri dish) coated with

25396 JOURNAL OF BIOLOGICAL CHEMISTRY

goat anti-rabbit IgG (Pierce Biotechnology) for 20 min at room
temperature. Nonadherent cells were incubated for 35 minon a
second panning plate (100-mm Petri dish) coated with goat
anti-mouse IgMp (Pierce) and mouse anti-Thyl.1 antibodies
secreted from T11D7e2 cells (American Type Culture Collec-
tion, Manassas, VA). The plate was washed with phosphate-
buffered saline (PBS), and then adherent RGCs were released by
treatment with 0.125% trypsin for 10 min at 37 °C. Isolated
RGCs were suspended in medium containing 1 mm glutamine,
5 pg/ml insulin, 60 pg/ml N-acetylcysteine, 62 ng/ml proges-
terone, 16 pg/ml putrescine, 40 ng/ml sodium selenite, 0.1
mg/ml bovine serum albumin, 40 ng/ml triiodothyronine, 0.1
mg/ml transferrin, 1 mm sodium pyruvate, 2% B-27 supplement
(Invitrogen), 10 pum forskolin, 50 ng/ml brain-derived neu-
rotrophic factor (PeproTech, Rocky Hill, NJ), 50 ng/ml ciliary
neurotrophic factor (PeproTech), and 50 ng/ml basic fibroblast
growth factor (PeproTech) in Neurobasal medium. Culture
plates (96 wells) were coated with poly-p-lysine (Sigma) and
laminin (Sigma). RGCs were plated at a density of 5,000 cells/
well in 96-well plates, 5,000 cells/culture insert for u-dishes
(ibidi, Munich, Germany), or 15,000 cells/dish for compart-
mented cultures and were cultured for at least 10 days before
experiments.

Isolation of Glia-derived E-LPs, Plasma High Density Lipo-
proteins, and Reconstituted E-LPs—Glia were isolated from the
cerebral cortex of 2-day-old Sprague-Dawley rats, digested with
0.25% trypsin, and cultured in Dulbecco’s modified Eagle’s
medium containing 10% fetal bovine serum. The glial cultures
were enriched in astrocytes (>>80%) (14). Glia were cultured for
3 days in the same medium used for RGCs but without forsko-
lin, brain-derived neurotrophic factor, ciliary neurotrophic fac-
tor, and basic fibroblast growth factor. This culture medium
was centrifuged for 10 min at 1,000 X g, and the supernatant is
defined as glia-conditioned medium. Mouse or rat plasma high
density lipoproteins (HDL) were isolated from blood collected
from the abdominal aorta of C57BL/6] mice, apoE-deficient
mice or Sprague-Dawley rats, as indicated. Reconstituted E-LPs
were prepared as described previously (13) and contained
1-palmitoyl-2-oleoyl-glycerophosphocholine (Sigma), choles-
terol (Sigma), and recombinant human apoE (Wako, Osaka,
Japan) at a molar ratio of 100:10:1 or 100:0:1 as indicated.
Briefly, 2.17 mg of 1-palmitoyl-2-oleoyl-glycerophosphocho-
line, with or without 0.11 mg of cholesterol, were dissolved in
chloroform and then evaporated under nitrogen gas. Four hun-
dred ul of 10 mm Tris-HCI (pH 7.4) containing 0.9% NaCl were
added and incubated for 1 h on ice. One hundred ul of 15
mg/ml sodium cholate were added. The mixture was incubated
for 2 h on ice, mixed with 1 mg of recombinant apoE3 or apoE4,
and incubated for 1 h on ice. Bio-Beads (100 mg; Bio-Rad) were
added to the mixture, rotated for 3 h at 4 °C, and filtered to
remove beads. The mixture contained reconstituted lipopro-
teins. Glia-conditioned medium, plasma, or reconstituted lipo-
proteins were centrifuged in a SRP28SA1 rotor (Hitachi,
Tokyo, Japan) at 100,000 X gfor 72 h at 4 °C on a discontinuous
sucrose gradient consisting of the following solutions: 3 ml of
density 1.30 g/ml, 3 ml of density 1.2 g/ml, 3 ml of density 1.1
g/ml, and 6 ml of density 1.006 g/ml. Ten fractions (1.5 ml) were
collected from the top of the gradient and immunoblotted for
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apoE as described below. Fractions containing apoE were con-
centrated using an Amicon Ultra filter (UFC905008, Millipore,
Bedford, MA). The amount of lipoproteins was adjusted for
cholesterol concentration (2 ug/ml) for glia-derived E-LPs and
HDL or for protein concentration (100 ng/ml) for reconstituted
lipoproteins. The cholesterol and protein concentrations of
lipoproteins were measured by a LabAssay cholesterol kit
(Wako) and BCA protein assay kit (Thermo Fisher Scientific),
respectively. a2-Macroglobulin (Sigma) was activated by treat-
ment with 100 mm methylamine for 1 h at room temperature
(18).

Immunoblotting—Immunoblotting was performed as
described previously (13, 14). Proteins were separated by SDS-
polyacrylamide gel electrophoresis, transferred to polyvi-
nylidene difluoride membranes, and probed with primary and
peroxidase-conjugated secondary antibodies. Inmunoreactive
proteins were visualized with SuperSignal West Pico or Dura
(Thermo Fisher Scientific). The following primary antibodies
were used: mouse anti-B-actin (a5441, Sigma), goat anti-albu-
min (A90-134:A, Bethyl Laboratories, Montgomery, TX), goat
anti-a2-macroglobulin (M5649, Sigma), goat anti-human apoE
(k74190g, Meridian Life Science, Inc., Cincinnati, OH), goat
anti-mouse apoE (sc-6384, Santa Cruz Biotechnology), rabbit
anti-protein kinase C§ (2058, Cell Signaling Technology, Dan-
vers, MA), rabbit anti-GSK38 and phospho-Ser-9-GSK3p
(9315 and 93368, Cell Signaling Technology), goat anti-Brn-3a
(sc-31984, Santa Cruz Biotechnology), rabbit anti-LRP1 (2703-
1, Epitomics, Burlingame, CA), mouse anti-LRP1 (545503,
R&D Systems, Minneapolis, MN), rabbit anti-phospholipase
Cv1 (sc-81, Santa Cruz Biotechnology), rabbit anti-NMDAR2A
(AB1555P, Millipore), and mouse anti-NMDAR2B (610416,
BD Biosciences).

Immunocytochemistry—Cultured RGCs were fixed in ace-
tone for 10 min at —20 °C and then blocked with 1% bovine
serum albumin and 5% goat serum in PBS for 1 h at room tem-
perature. The cells were incubated with rabbit anti-LRP1
(Epitomics), mouse anti-NMDAR2B (32-0700, Invitrogen), or
mouse anti-cytochrome ¢ (556432, BD Biosciences) in PBS con-
taining 5% goat serum for 1 h at room temperature, washed
three times with PBS, and then incubated with Alexa Fluor
488-conjugated goat anti-rabbit IgG (Invitrogen), Alexa Fluor
488-conjugated goat anti-mouse IgG (Invitrogen), or Alexa
Fluor 594-conjugated goat anti-mouse IgG (Invitrogen) for 1 h
at room temperature. For staining of mitochondria, RGCs were
incubated with 2 nM MitoTracker Red CMXRos (Invitrogen)
for 30 min 1 day before the experiment. Fluorescence images
were taken with an Olympus IX71 microscope or FV500 con-
focal microscope.

Apoptosis of RGCs—Primary cultured RGCs were washed
twice (15-min incubation at 37 °C) with Hanks’ balanced salt
solution (HBSS; Invitrogen) containing 2.4 mm CaCl,, 20 mm
HEPES without magnesium. Magnesium was omitted from the
washing solution to avoid blocking the NMDA receptor (19).
Subsequently, RGCs were incubated * 300 um glutamate and
10 um glycine, a co-activator of the NMDA receptor, in HBSS
containing 2.4 mm CaCl,, 20 mm HEPES without magnesium
for 2 h at 37 °C. After control (HBSS containing 2.4 mm CaCl,,
20 mMm HEPES without magnesium) or glutamate treatment,
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RGCs were cultured in the same medium without forskolin,
brain-derived neurotrophic factor, ciliary neurotrophic factor,
and basic fibroblast growth factor for 22 h at 37 °C. For detec-
tion of apoptosis with Hoechst 33342 (Dojindo, Kumamoto,
Japan), RGCs were incubated with 1 pg/ml Hoechst 33342 for
15 min. Fluorescent images (six images/well) were randomly
taken using an IX71 fluorescence microscope. For each treat-
ment, at least 12 images/two wells in 96-well plates were
obtained. Fragmented or shrunken nuclei stained with Hoechst
dye were counted as apoptotic neurons, and round/smooth
nuclei were counted as healthy neurons. More than 300 neu-
rons were blindly counted for each treatment. For detection of
apoptosis with annexin V-EGFP apoptosis detection kit con-
taining annexin V-EGFP, propidium iodide, and binding buffer,
the manufacturer’s instructions (Medical & Biological Labora-
tories Co., Ltd., Nagoya, Japan) were followed. Annexin
V-EGFP and propidium iodide are membrane-impermeable
reagents. During early stages of apoptosis, phosphatidylserine
becomes exposed on the outer leaflet of the plasma membrane
and is accessible to annexin V. Propidium iodide stains nuclei of
necrotic cells and also end stage apoptotic cells. Healthy cells
are not stained with either reagent.

Intracellular Ca®>* —RGCs were incubated with 3 umM Fluo-8
acetoxymethyl ester (AAT Bioquest, Sunnyvale, CA) for 30 min
at 37 °C. The cells were washed twice (15-min incubation each)
with HBSS containing 2.4 mMm CaCl,, 20 mm HEPES without
magnesium and then administered 300 um glutamate and 10
uM glycine. Fluorescent images were acquired every 500 ms
using an ORCA-R2 digital CCD camera (Hamamatsu Photon-
ics, Hamamatsu, Japan) and analyzed by the MetaFluor fluores-
cence ratio imaging software (Molecular Devices, Sunnyvale,
CA).

RNA Silencing of Protein Kinase C6—Negative control small
interfering RNA (siRNA) (300 nMm) {Accell non-targeting pool,
Thermo Fisher Scientific) or siRNA specific for protein kinase
C38 (Accell SMARTpool, E-080142-00-0005, Thermo Fisher
Scientific) was added to culture medium as indicated by the
manufacturer and then incubated with RGCs for 6 days. The
knockdown by negative control or protein kinase C8 siRNA was
confirmed by immunoblotting.

Compartmented Culture of RGCs—RGCs in compartmented
cultures were prepared as described previously (12, 20). Distal
axons and cell bodies/dendrites/proximal axons of the primary
neurons can be separately maintained with different media in
compartmented cultures. A Teflon divider, which creates three
compartments, was applied to the u-dish (ibidi) with silicone
grease. RGCs were plated in the center compartment in RGC
culture medium to which were added 25 ng/ml brain-derived
neurotrophic factor and 25 ng/ml ciliary neurotrophic factor.
The side compartments were supplied with the same medium
that also contained 75 ng/ml brain-derived neurotrophic fac-
tor, 25 ng/ml ciliary neurotrophic factor, and 50 ng/ml basic
fibroblast growth factor. Axons of RGCs crossed under the sil-
icone grease into the side compartments within 5 days. Prior to
the experiments, RGCs were cultured for at least 14 days.

Intravitreal Injection of E-LPs and Collection of Vitreous
Humor—Glast™'™*, Glast™~, or Glast™/~ mice (3 weeks old)
were anesthetized by intraperitoneal injection of 50 mg/kg of
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sodium pentobarbital. For intravitreal injection, the vitreous of
one eye was injected with 1 ul of E-LPs (1.5 g of protein/ml) or
HDL (30 pg of cholesterol/ml), and the other eye was injected
with the same volume of PBS through a 33-gauge needle
(Terumo, Tokyo, Japan) connected to a Hamilton syringe
{(Bonaduz, Switzerland). This procedure was performed under a
stereomicroscope (SZX7, Olympus) so that the lens and retina
were not injured. For collection of vitreous humor, the same set
of needles and syringes was used as for intravitreal injection.
Each sample of vitreous humor for immunoblotting was com-
bined from 10 eyes.

Histological Studies of Retinae—ZEyes from 3- and 6-week-old
mice were enucleated and fixed with Super Fix (KY-500,
Kurabo, Osaka) overnight at 4 °C, and the cornea and lens were
removed. Retinae with sclera were embedded in paraffin.
Sequentially, 4-jum paraffin sections of retina were cut through
the optic nerve and stained with hematoxylin and eosin. The
number of cells in the ganglion cell layer was counted from one
end through the optic nerve to the other end on the retinal
section. Ten sections, more than 2,000 cells, were counted in
each retina.

Co-immunoprecipitation—Co-immunoprecipitation ~ was
performed according to May et al. (21). RGC lysates were pre-
pared in lysis buffer containing 10 mm Tris-HCI (pH 7.4), 150
mm NaCl, 1 mm MgCl,, 1 mm CaCl,, and 1% Triton X-100 with
Complete EDTA-free protease inhibitor mixture (Roche Diag-
nostics, Mannheim, Germany) and PhosSTOP phosphatase
inhibitor (Roche Diagnostics). The lysate was passed 15 times
through a 22-gauge needle and centrifuged at 15,000 X g for 15
min at 4 °C. The supernatant was precleared with 40 ul of 50%
equilibrated protein G-Sepharose (GE Healthcare, Bucking-
hamshire, UK) for 1 h at 4 °C, and then the Sepharose beads
were removed by centrifugation. Rabbit anti-LRP1 (Epitomics)
or rabbit anti-NR2B antibody (AB1557, Millipore) was added,
and the lysate was rotated for 12 h at 4 °C. Forty ul of 50%
equilibrated protein G-Sepharose were added to the lysate and
rotated for 1 h at 4 °C. The Sepharose beads were washed three
times with lysis buffer containing 0.1% Triton X-100. For
immunoblotting, 30 ul of sample buffer were added, and the
beads were boiled for 5 min. The supernatant was subjected to
SDS-PAGE and immunoblotting, ’

Statistical Analysis—Statistical analyses were performed
using one-way analysis of variance followed by Bonferroni’s
multiple comparison. A confidence level of >95% was consid-
ered significant (p < 0.05).

RESULTS

Glutamate-induced Apoptosis in Retinal Ganglion Cells—
Glutamate is a major excitatory neurotransmitter and also acts
as an excitatory neurotoxin in acute and chronic central nerv-
ous system disorders such as cerebral ischemia, amyotrophic
lateral sclerosis, Alzheimer disease and glaucoma (15, 22, 23).
However, Ullian et al. (24) reported that RGCs were not vulner-
able to NMDA excitotoxicity. Thus, we determined whether or
not glutamate induced neurotoxicity in RGCs. As shown in Fig.
14, 300 uMm glutamate induced fragmentation or shrinkage of
nuclei stained with Hoechst dye (a marker of apoptosis) in
RGCs in the presence of 10 uM glycine (Glu: glutamate plus
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FIGURE 1. Glutamate with glycine induces apoptosis in RGCs. A, frag-
mented or shrunken nuclei in RGCs were detected by Hoechst staining 24 h
after control (C; HBSS) or treatment with glutamate alone (Glu(~); 300 um
glutamate), glycine alone (Gly(—); 10 umglycine), or glutamate + glycine (Glu;
300 um glutamate + 10 um glycine). Data are means = S.E. from 4 independ-
ent experiments. *, p < 0.001 for control versus Glu. B, fragmented or
shrunken nuclei were detected by Hoechst staining 24 h after control (HBSS)
or glutamate + glycine treatment (Glu; 300 um glutamate plus 10 um glycine)
with 0, 15 (one 15-min wash), 30 (two 15-min washes), or 45 min (three 15-min
washes) of washing by HBSS. C, fluorescence images of RGCs stained with
annexin V-EGFP, propidium iodide (P/), and Hoechst 12 h after control (HBSS)
or Glu treatment (300 um glutamate + 10 um glycine). Scale bar, 20 um. D,
RGCs stained with 2 nm MitoTracker Red (Mito) were immunostained with
anti-cytochrome ¢ (Cyto €) 12 h after control or Glu treatment. Scale bar,
20 pm.

glycine), but neither component alone (Glu(—), glutamate
alone; Gly(—), glycine alone) induced neurotoxicity. Thus, to
induce neurotoxicity, glycine was added with glutamate as co-
activator in the following experiments. Washing of the RGCs
for 30 min (two 15-min washes) was required for induction of
glutamate-induced neurotoxicity, but a longer washing time
(45 min: three 15-min washes) did not cause further neurotox-
icity (Fig. 1B), nor did a higher concentration of glutamate (1
mum) (data not shown). Exposure of phosphatidylserine on the
cell surface after glutamate treatment was monitored as
another marker of apoptosis. Annexin V-EGFP-positive and
propidium iodide-negative RGCs (i.e. apoptotic RGCs) were
observed 12 h after glutamate treatment but not without gluta-
mate (Fig. 1C). Moreover, glutamate induced cytochrome ¢
release from mitochondria (an additional marker of apoptosis),
as indicated by less overlap of cytochrome ¢ and MitoTracker
Red (i.e. mitochondria) in fluorescence images in the presence
of glutamate when compared with control (Fig. 1D). These
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